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Abstract

Cloud computing has created a radical shift in expanding the reach of appli-
cation usage and has emerged as a de-facto method to provide low-cost and
highly scalable computing services to its users. Existing cloud infrastruc-
ture is a composition of large-scale networks of datacenters spread across
the globe. These datacenters are carefully installed in isolated locations
and are heavily managed by cloud providers to ensure reliable performance
to its users. In recent years, novel applications, such as Internet-of-Things,
augmented-reality, autonomous vehicles etc., have proliferated the Inter-
net. Majority of such applications are known to be time-critical and en-
force strict computational delay requirements for acceptable performance.
Traditional cloud offloading techniques are inefficient for handling such ap-
plications due to the incorporation of additional network delay encountered
while uploading pre-requisite data to distant datacenters. Furthermore, as
computations involving such applications often rely on sensor data from
multiple sources, simultaneous data upload to the cloud also results in sig-
nificant congestion in the network.

Edge computing is a new cloud paradigm which aims to bring existing cloud
services and utilities near end users. Also termed edge clouds, the central
objective behind this upcoming cloud platform is to reduce the network
load on the cloud by utilizing compute resources in the vicinity of users
and IoT sensors. Dense geographical deployment of edge clouds in an area
not only allows for optimal operation of delay-sensitive applications but
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also provides support for mobility, context awareness and data aggregation
in computations. However, the added functionality of edge clouds comes at
the cost of incompatibility with existing cloud infrastructure. For example,
while data center servers are closely monitored by the cloud providers to
ensure reliability and security, edge servers aim to operate in unmanaged
publicly-shared environments. Moreover, several edge cloud approaches
aim to incorporate crowdsourced compute resources, such as smartphones,
desktops, tablets etc., near the location of end users to support stringent
latency demands. The resulting infrastructure is an amalgamation of het-
erogeneous, resource-constrained and unreliable compute-capable devices
that aims to replicate cloud-like performance.

This thesis provides a comprehensive collection of novel protocols and plat-
forms for integrating edge computing in the existing cloud infrastructure.
At its foundation lies an all-inclusive edge cloud architecture which allows
for unification of several co-existing edge cloud approaches in a single log-
ically classified platform. This thesis further addresses several open prob-
lems for three core categories of edge computing: hardware, infrastructure
and platform. For hardware, this thesis contributes a deployment frame-
work which enables interested cloud providers to effectively identify optimal
locations for deploying edge servers in any geographical region. For infras-
tructure, the thesis proposes several protocols and techniques for efficient
task allocation, data management and network utilization in edge clouds
with the end-objective of maximizing the operability of the platform as
a whole. Finally, the thesis presents a virtualization-dependent platform
for application owners to transparently utilize the underlying distributed
infrastructure of edge clouds, in conjunction with other co-existing cloud
environments, without much management overhead.

Computing Reviews (2012) Categories and Subject
Descriptors:

Computer systems organization → Distributed architectures
Networks → Network services
Networks → Network performance evaluation

General Terms:
Design, Experimentation, Performance, Protocols, Platforms

Additional Key Words and Phrases:
Edge computing, Task deployment, Multipath TCP, Virtualization
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Chapter 1

Introduction

Cloud computing has created a radical shift in application services and has
expanded the reach of computing, networking and data storage to its users.
The cloud service providers such as Google, Microsoft, Amazon etc., deploy
a network of large datacenters spread across the globe. Such datacenters
are home to large pools of highly managed servers, disks and network-
ing switches which are carefully architected to ensure consistent perfor-
mance [4]. Cloud providers encapsulate datacenter hardware into virtual-
ized and programmable resources, which can be dynamically provisioned
and re-configured on-the-go. This configurability is beneficial to applica-
tion services whose utilization varies from time to time. For such services,
the cloud providers offer their resources with an “on-demand” model which
allows application providers only to pay for resources they utilize [14]. The
key services offered by the cloud providers include hardware resources (In-
frastructure as a Service), operating environments (Platform as a Service)
and developer softwares (Software as a Service) [127].

Recently, applications such as Internet-of-Things (IoT), connected ve-
hicles, smart cities etc. have proliferated the network. These applications
are often dependent on a large number of sensor devices which record in-
formation of the surroundings and upload it to cloud for its processing
needs. Recent studies suggest that there will be more than 50 billion de-
vices connected to the Internet by 2020 [35,87]. Such devices will generate
a staggering amount of digital data, also known by the buzzword – big data,
the size of which has already been increasing exponentially over the past
few years [38]. Computations on big data in a remote datacenter is not
only inefficient due to bandwidth constraints but also impacts the perfor-
mance of time-sensitive and location-aware applications due to (i) network
delay for offloading data to the cloud, and (ii) computational dependencies
between data generated by nearby sensors. Self-driving cars, augmented
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2 1 Introduction

reality, video surveillance, automated industry and gaming are examples of
a few such applications. For example, queries such as “what is the distribu-
tion of velocities of all vehicles within a mile of an intersection?” requires
data from multiple vehicles and traffic cameras and is time-sensitive for
effective traffic control. In worst cases, failures to satisfy by the latency
constraints posed by such applications can even result in loss of life and
capital [47].

To decouple the network delay from the computation time for process-
ing big data, researchers have proposed to bring compute servers closer to
data generators and consumers. Several different cloud models have been
proposed by academia and industry alike to solve this problem [11, 32, 45,
59, 99, 116, 122]. Fog cloud proposes to augment existing network fabric,
i.e. switches, routers etc. with compute capability such that it can extend
the support of cloud application logic [11]. The objective of the fog cloud
is to perform low-latency computation and aggregation on data while it
is en route to the centralized cloud. Another approach is edge compute
cloud, which aims to utilize crowdsourced compute-capable devices, such
as smartphones, desktop etc. [45]. As such devices are available in the
same environment as that of data generating sensors, they can support
the ultra-low latency requirements of IoT applications. Moreover, there
already exist several frameworks that incentivizes the owners of such de-
vices to auction the excessive/not-in-use computational power for monetary
benefits [139,143].

Rather than focusing on differences between several such proposals, we
recognize the core idea of this research direction, which is utilizing com-
pute resources closer to data generators/consumers, and term it as edge
computing. We believe that despite having the ability to disrupt the cur-
rent cloud landscape, future edge computing deployments will co-exist with
the traditional centralized cloud and the effectiveness of both cloud plat-
form technologies will allow for transparent cooperation and coordination.
In this thesis, we emphasize providing practical solutions to several issues
surrounding adoption and functionality of edge computing in the existing
cloud-dominant environment.

1.1 Problem Statement

Centralized cloud infrastructure is designed to provide a generic deployment
platform for application owners while they remain oblivious to manage-
ment complexities of the underlying hardware. Strides in cloud computing
are made possible by standardized protocols and technologies which are
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specifically designed to mitigate the deployment complexity of application
owners [40, 42, 94, 95, 131]. However, the same is not valid for edge clouds
primarily due to differences in deployment and server characteristics which
does not allow for proper operation of such technologies. Even existing ap-
proaches which aim to transform heterogeneous clouds into a homogeneous
platform [129] do not work well for integrating edge computing due to the
following challenges.

1. Constrained hardware. While datacenters are composed of servers
with significant compute and storage capacity, the majority of edge
approaches aim to utilize hardware-constrained devices which restrict
the extent of computation capability that can be exploited by an
application. Although existing cloud-based protocols are designed to
provision multiple applications onto a single server, protocols for edge
clouds would require distribution of a single application on multiple
edge servers due to resource constraints.

2. Constrained environment. Datacenters depend on high-speed,
high-bandwidth, reliable network fabric to support the required ap-
plication QoS. However, despite extensive management and the iso-
lated operational environment of datacenters, it is commonplace that
cloud providers struggle to mitigate network congestion due to the
increased traffic load within a datacenter facility [44]. On the other
hand, the majority of edge cloud models require servers to operate
within public infrastructure, utilize loss-prone wireless networks such
as LTE, WiFi etc. and compete with unrelated user traffic for its
share of the spectrum.

3. Availability and Reliability. While existing cloud protocols are
designed to be resilient to operational failures and faults, such schemes
depend on the exact knowledge of the auxiliary hardware capacity
and existing load on each server in the facility for this functional-
ity [28, 138]. On the other hand, edge cloud aims to incorporate sev-
eral different types of resources in its platform, ranging from network
switches to smartphones, distributed in a geographical area. This
exposes several problems for existing cloud-based protocols. (i) The
availability of edge servers can be relatively unknown and vary from
region to region, e.g. the density of crowdsourced devices can be
higher in populated areas like city centers. (ii) The majority of such
compute resources are not reliable as they have the capability to leave
the system at any time per owner’s discretion.
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Hardware
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Server Deployment
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Figure 1.1: Edge computing service architecture.

4. Limited battery capacity. Several proposed edge models employ
servers that operate in mobile environments to support applications
of that type. Such devices need to rely on their limited battery ca-
pacity to complete assigned computations, which is in stark contrast
to server racks in a traditional data center. Limited power availabil-
ity impacts the extent of server’s task execution, which needs to be
considered while designing protocols for edge computing.

The challenges mentioned above highlight key issues obstructing the
effective operation of edge clouds, and require immediate resolutions. While
one approach is to handle each challenge in its entirety, we argue that the
issues presented are highly intertwined and require a systematic ground-up
redressal. Furthermore, the resulting solutions need to be compatible with
traditional cloud computing technologies such that pre-existing cloud-based
applications can be ported to edge environment with minimal overhead.

1.2 Edge Computing Service Model

Acknowledging the challenges above, we present edge computing service
model, illustrated in Figure 1.1, which is a hierarchical organization of dif-
ferent areas of research opportunities for successfully integrating edge and
cloud environments. The model is largely derivered from cloud computing
service architecture [30]. The primary aim of edge computing is to act as



1.2 Edge Computing Service Model 5

an extension to the current cloud infrastructure; to the point that existing
cloud applications can migrate to the edge without any modifications. To
this purpose, the model focuses on solutions for all but the last layer of the
cloud service architecture, i.e. hardware, infrastructure and platform.

Hardware

The foremost research direction which requires exploration concerns phys-
ical deployment of edge servers in a region. Although the edge computing
needs differ for different applications, the strictest requirements necessi-
tate extensive availability of compute servers close to the data generators
(read sensors) and consumers (read users). Some applications such as IoT,
surveillance cameras etc. require edge servers as aggregation points some-
where in the network. Other applications such as AR/VR, autonomous
vehicles etc. demand direct one-hope connectivity to the compute server
for optimal operation. To satisfy the variability in requirements and yet
support the majority of applications, the need for extensive installation of
servers in a public space increases significantly. This scenario is in stark
contrast to the siloed deployment of datacenters, which are protected ex-
tensively from human habitat and constantly monitored by cloud providers
to ensure service reliability, availability and security. The following research
questions address the key challenges of this layer.

RQ1. Where should the cloud providers install compute servers in the phys-
ical world to satisfy the application requirements at the “edge”?

RQ2. How can independent entities enroll their compute resources in an
existing edge cloud platform?

RQ1 and RQ2 explore the optimal placement of edge servers in both
physical and logical sense. As the edge cloud aims to operate in a semi/un-
managed environment, RQ1 targets cloud providers which scan for opti-
mal deployment locations offering some level of control. Moreover, cloud
providers also have the option of integrating compute resources from inde-
pendent entities if they satisfy the required terms of service. Although the
aforementioned allows for the proliferation of servers at the network edge, it
imposes several management issues for cloud providers as they need to offer
performance reliability over servers outside their administrative control.

Infrastructure

Heterogeneity in availability, configurations, reliability, capability and own-
ership of servers within the edge cloud platform calls for an aggressive re-
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thinking of traditional cloud solutions. Existing protocols for managing
cloud infrastructure depend on complete knowledge of underlying hard-
ware capability and capacity, which needs to be constantly monitored by
the provider. While servers in a datacenter are physically arranged in racks
and interconnected by fast, high-bandwidth network switches, the same
cannot be promised for edge cloud resources. As the edge servers operate
in public infrastructure, a similar granularity of control cannot be imposed
on them. Furthermore, the variance in edge server capability and capacity
far exceeds that of datacenters due to variability in edge deployment. Such
restrictions imposed by edge computing calls for an effective redesign of
existing cloud solutions as summarized in the following research questions.

RQ3. How do we utilize availability and variability of edge servers for com-
puting application tasks with different requirements?

RQ4. What techniques should be employed for pre-caching computational
data within edge servers to improve system promptness?

RQ5. Can existing network technologies available at the edge support the
requirements imposed by end-applications for optimal performance?

RQ6. How do we assure datacenter-like network behavior over edge servers
which operate on a public wireless network?

RQ3 reflects the need to improve application task allocation on available
edge servers in the vicinity of data consumers. RQ4 considers the availabil-
ity and management of pre-requisite data in edge servers for a particular
task to achieve minimal processing delay. RQ5 and RQ6 aim at provid-
ing reliable networking for edge servers which utilize access technologies
over publicly shared mediums. Specifically, RQ5 explores the possibility
to simultaneously combine multiple network interfaces at the edge server
using Multipath TCP (MPTCP) to simulate high-bandwidth connectivity
of datacenter networks. On the other hand, RQ6 suggests improvements
to MPTCP design such that it can support data transfer requirements for
edge computing.

Platform

A common practice of deploying application services is to encapsulate it
as a virtual machine or a container which can then be executed in any
cloud environment. This process is known as virtualization and it allows
the application service to easily scale with increasing utilization demand.
In order to integrate edge computing in existing cloud infrastructure, there
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is a strong need for solutions which enables standardized virtualization
technologies to function properly at the edge. In addition to ease-of-access
for application providers, use of virtualization in edge clouds can assist
in dynamic resource provisioning based on the density of user requests,
migration to locations closest to the source of requests and security. The
research questions prevalent in this layer are as follows.

RQ7. How can existing cloud virtualization technologies be exploited to op-
timize the application service deployment in edge clouds?

RQ8. How can edge cloud ensure the promised Quality-of-Service despite
significant variability in user requests and infrastructure hardware?

RQ9. How can independent edge providers generate revenue at par with
cloud providers for their service?

RQ7 focuses on understanding how virtualization technologies can cope
in edge clouds where the underlying resources may/may not be available
throughout the application operation. RQ8 explores possible solutions, us-
ing which virtualization technologies can operate in unreliable environments
while ensuring the promised QoS to applications. RQ9 delivers information
regarding generating revenue for independent owners of edge resources for
the application services hosted on their servers. Together, RQ7 – RQ9 look
for platform solutions which allow incorporation of the datacenter cloud
and edge cloud infrastructure without the need for pre-signed contractual
agreements between the two providers. Answers to these research questions
would allow cloud providers to discover edge servers in previously unknown
locations near the source of incoming requests and utilize in accordance
with service demands.

Figure 1.2 presents an infographic of how the research questions men-
tioned above are covered in the publications attached to this thesis and
form the core components of the edge computing service model.

1.3 Thesis Contributions

This thesis identifies critical focus areas for cloud providers, as edge cloud
adoption model, which aims to deploy and utilize the edge computing in-
frastructure. The thesis explores existing problems in all layers of the adop-
tion model and provides technical solutions for each one of them. The key
contributions are as follows:

• We propose Edge-Fog cloud architecture which acts as a blueprint
for organizing future deployment of edge computing infrastructure.
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RQ1. Where should the cloud providers 
install compute servers in the physical 
world to satisfy the application 
requirements at the "edge"?

RQ2. Can independent entities enroll 
their compute resources in an existing 
edge cloud platform for revenue?

RQ4. What techniques should be 
employed for pre-caching computational 
data within edge servers to improve 
system promptness?

RQ5. Can existing network technologies 
at the edge support the requirements 
imposed by end-applications for optimal 
performance?

RQ6. How do we assure datacenter-like 
network behavior over edge servers 
which operate on a public wireless 
network?

RQ7. How can existing cloud 
virtualization technologies be exploited 
to optimize the application service 
deployment in edge clouds?

RQ8. How can edge cloud ensure the 
promised Quality-of-Service despite 
signi cant variability in user requests & 
infrastructure hardware?

RQ9. How can independent edge  
providers generate revenue at par with 
cloud providers for their service?

Research Questions Edge Computing
Service Model

Hardware
Infrastructure

Platform

P1:  Anveshak: Placing 
Edge Servers In The 
Wild

P3:  Managing Data in 
Computational Edge 
Clouds

M1:  Is two greater 
than one?: Analyzing 
Multipath TCP over 
Dual-LTE in the Wild

P4:  QAware: A Cross
Layer Approach to 
MPTCP Scheduling

P5:  ExEC: Elastic 
Extensible Edge Cloud

P6:  ICON: Intelligent 
Container Overlays

Publications

RQ3. How do we utilize availability and 
variability of edge servers for computing 
application tasks with di erent 
requirements? 

P2:  Placing it right!: 
optimizing energy, 
processing, and 
transport in Edge-Fog 
clouds

Figure 1.2: Research questions and their matching publications along
with associated layers of the edge computing service model.
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The model builds on the requirements of edge-based applications and
segregates edge resources into distinct layers depending on their ca-
pability, ownership and functionality. The thesis also proposes a
novel deployment framework, Anveshak, which assists edge service
providers to efficiently identify prime locations in a geographical area
that would benefit from installing an edge server.

• For enabling the reliability and availability of edge infrastructure,
this thesis provides protocols which improve processing task alloca-
tion, manages caching of compute data and enhances the network
capability of wireless interfaces in edge servers. Our infrastructure
solutions are based on the requisite needs of applications which plan
to function at the edge and present full-fledged support for efficient
edge cloud performance.

• This thesis enables effective functioning of virtualized applications
in edge computing environments. It includes solutions which en-
able dynamic discovery of edge providers in previously unknown loca-
tions that can be exploited to maintain optimal application QoS. We
also provide a novel self-management platform solution which allows
containerized services to adapt to environmental and user request
changes, and self-migrate to new locations satisfying the targets for
optimal service delivery.

The research reported in this thesis encompasses the work published in six
original articles and a manuscript under submission. These articles and
manuscripts also construct the outline of the thesis and an emphasis is
drawn towards the work in which the author has contributed himself.

Publication I: Anveshak: Placing Edge Servers In The Wild. Nitinder
Mohan, Aleksandr Zavodovski, Pengyuan Zhou, and Jussi Kangasharju.
Published in Proceedings of the ACM Workshop on Mobile Edge Commu-
nications (MECOMM ’18). pages 7-12. Budapest, Hungary, August 20,
2018.

Contribution: The publication was led by the author who formulated the
problem and methodology and designed the solution algorithm. The author
also implemented the solution and procured the required data for evalua-
tion. Aleksandr Zavodovski and Pengyuan Zhou contributed significantly to
data analysis and solution implementation. The author, along with others,
participated in the writing process.

Publication II: Placing it right!: optimizing energy, processing, and trans-
port in Edge-Fog clouds. Nitinder Mohan and Jussi Kangasharju. Pub-
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lished in Annals of Telecommunications, Springer Nature, Volume 73, 2018,
pages 463-474.

Contribution: This journal paper is an extension of the work published
in [79]. The author was in the lead of planning and studying the literature
survey and requirements for the work, designing the closing architecture,
analyzing and providing the solution to associated placement problem. Prof.
Jussi Kangasharju contributed with sharing of ideas and active discussion
throughout problem formulation. The author and Prof. Jussi Kangasharju
were involved in the writing process of the publication.

Publication III:Managing Data in Computational Edge Clouds. Nitinder
Mohan, Pengyuan Zhou, Keerthana Govindaraj, and Jussi Kangasharju.
Published in Proceedings of the ACM Workshop on Mobile Edge Commu-
nications (MECOMM ’17). pages 19-24. Los Angeles, CA, USA, August
21, 2017.

Contribution: The author was in the lead of the problem formulation,
algorithm design, evaluation and writing of final publication. Pengyuan
Zhou contributed to the implementation and simulation setup. Keerthana
Govindaraj provided critical insights regarding related work and scope driven
by her personal industrial experience and also contributed to improving the
writing and paper structure. Prof. Jussi Kangasharju was involved in the
planning, discussion and writing process of the article.

Publication IV: QAware: A Cross-Layer Approach to MPTCP Schedul-
ing. Tanya Shreedhar, Nitinder Mohan, Sanjit K. Kaul and Jussi Kan-
gasharju. Published in Proceedings of IFIP Networking Conference (IFIP
Networking ’18), pages 190-198. Zurich, Switzerland, May 14-16, 2018.

Contribution: The publication was led by Tanya Shreedhar who formu-
lated the problem, delivered main ideas, algorithm, evaluation using simu-
lations and defined the structure of the publication under the supervision of
Dr. Sanjit K. Kaul. The author’s contributions were focused towards solu-
tion design for implementation – which were heavily driven by real-world use
cases and constraints. The author was also responsible for implementing the
solution for Linux and evaluating over real systems and applications. The
author also contributed to writing and suggested significant improvements
in the publication.

Publication V: ExEC: Elastic Extensible Edge Cloud. Aleksandr Za-
vodovski, Nitinder Mohan, Suzan Bayhan, Walter Wong and Jussi Kan-
gasharju. Published in ACM Workshop on Edge Systems, Analytics and
Networking (EdgeSys ’19), pages 24-29, March 25, 2019.
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Contribution: The research for this publication was led by Aleksandr Za-
vodovski who designed the main ideas, methodology and implementation.
The author contributed by participating in the problem formulation, design
of the solution’s workflow/algorithm and provided significant writing im-
provements to the publication. Dr. Walter Wong was responsible for data
collection and cleaning necessary for evaluation and Dr. Suzan Bayhan
contributed to the literature survey for the publication. Dr. Jussi Kan-
gasharju provided his insights and supervision at all stages and participated
in the writing process.

Publication VI: ICON: Intelligent Container Overlays. Aleksandr Za-
vodovski, Nitinder Mohan, Suzan Bayhan, Walter Wong and Jussi Kan-
gasharju. Published in ACM Workshop on Hot Topics in Networks (Hot-
Nets ’18), pages 463-474, November 15-16, 2018.

Contribution: The publication was led by Aleksandr Zavodovski who pro-
vided the key ideas, formed the problem scope and designed the solution’s
workflow. The author contributed to the technical design of the solution,
including the architecture of the central algorithm, ensuring adaptability to
existing protocols and correctness in real-world systems. The author also
contributed to the writing process and provided comments for improving the
quality of the publication. Dr. Suzan Bayhan designed the optimization
algorithm which was critical to the solution and Dr. Walter Wong col-
lected data necessary for evaluation. Dr. Jussi Kangasharju provided his
supervision to the design, scope and writing phases of the work.

Manuscript I: Is two greater than one?: Analyzing Multipath TCP over
Dual-LTE in the Wild. Nitinder Mohan, Tanya Shreedhar, Aleksandr Za-
vodovski, Jussi Kangasharju and Sanjit K. Kaul. Manuscript available at
arxiv.org/abs/1909.02601.

Contribution: The manuscript has a strong focus on measurements and
data analysis in real systems. The author held primary responsibility for
designing the measurement study, setup and methodology. The author also
implemented necessary scripts for data collection and carried out in-depth
analysis. Tanya Shreedhar played an instrumental role in measurement
study design, literature survey, analysis/discussion and writing of the manu-
script. Aleksandr Zavodovski contributed by participating in measurement
setup, data collection and writing. Prof. Jussi Kangasharju and Dr. Sanjit
K. Kaul provided essential insights throughout the study and were involved
in the writing process.



12 1 Introduction

1.4 Thesis Organization

The thesis is organized as follows. Chapter 2 provides the necessary back-
ground knowledge to the thesis and discusses the state of the art in cloud
technologies with a focus on edge computing approaches and challenges.
Rest of the thesis follows the components of edge cloud service model dis-
cussed in Section 1.2. Chapter 3 presents Edge-Fog Cloud architecture
which forms the foundation for organizing edge computing resources in a
physical space. Further, we provide a deployment framework catered to-
wards assisting existing cloud providers in identifying optimal locations for
installing edge servers in a region. Chapter 4 focuses on effectively utilizing
the available edge servers in an area for compute tasks and provide data
management that impacts overall task completion time. We also concen-
trate on enhancing the network capability of edge servers by simultane-
ously utilizing multiple network interfaces via Multipath TCP. Chapter 5
details platform solutions which enable virtualized applications to utilize
the underlying edge cloud infrastructure while maintaining the required
QoS. Finally, Chapter 6 concludes the thesis with a summary of solutions
and outlooks for future work.



Chapter 2

Rise of Edge Computing

This chapter gives necessary background on edge computing and the asso-
ciated challenge to redesign traditional datacenter-based cloud infrastruc-
ture. We start with a brief understanding of the components and design of
traditional datacenters and extensive care undertaken by the provider to
ensure consistent optimal performance. Further, we discuss the challenges
posed by emerging applications which call for a radical shift in cloud com-
puting infrastructure. The chapter includes a discussion on several edge
cloud architectures proposed by researchers in the past and their design
choices which make them suitable for specific application operation. We
end this chapter with several related state-of-the-art solutions that aim to
enable utilizing edge clouds in a real-world environment.

2.1 Overview of Datacenters

While the requirements and features of datacenter (DC) appeared as early
as the first computer operation in 1960s, the term was standardized by
Telecommunications Infrastructure Standard for Datacenters (i.e., ANSI/
TIA-942-2005) in 2005 as “a building which houses multiple servers, com-
munication equipment and other support areas” [8]. Since the standard-
ization of its definition, the extent of DC deployment and business entities
involved in providing compute services to users has seen significant growth.
The advent of DC-based computing has brought a radical shift in the re-
liability and performance of application services. Almost all major tech
giants, such as Microsoft, Amazon, Google, Dell, HP, Apple, IBM, etc.,
have set up DCs globally to ensure the premium performance of their soft-
ware products. While the number of DCs have been growing consistently,
with over 7500 datacenters operating worldwide [22], the size of the facili-

13
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ties has also increased to satisfy the growing demand in cloud services. It is
estimated that the top 10 largest DC facilities cover an area from 750,000
to 6.3 million square feet and house more than 3000 server racks [108].

The core physical component of a datacenter is a server, which is re-
sponsible for processing, analyzing and communicating with servers within
(and across) DC facilities. While each server has inbuilt storage to sup-
port local computations, the cloud providers also install network-attached
storage in the same facility which provides high-speed storage access to all
servers in the DC via fiber connections. Multiple servers are organized in
stacks, also known as racks, for effective space management. Servers in
a single rack are interconnected via high-bandwidth, low latency ethernet
cables (up to 100Gbps [67]) to a highly capable top-of-rack (ToR) switch.
The ToR switch allows servers within the same rack to communicate with
the lowest cost of connectivity.

The cloud provider physically arranges server racks in the facility in log-
ically organized architectures to minimize the network traffic load within
the DC. The traditional approach resembles a multi-rooted tree which ag-
gregates the network load as you move towards the root (also known as the
core) [66]. The server racks reside at the leaf of the tree and are intercon-
nected via high-speed aggregation switches. The root (also known as core)
connects the DC with other DC facilities deployed across the globe via an
extensively managed network fiber controlled by the cloud provider. This
allows cloud traffic to travel inter-continental distances without any scope
of congestion from public traffic via completely separate dedicated network
links. Such extensive cost of deployment and management is undertaken
to support the strictest reliability and availability requirements imposed
by application owners. Several other architectures have been proposed and
widely deployed to further reduce the networking and routing latencies for
ever-increasing DC loads. A few examples are Fat-tree [5], Diamond [124],
DCell [51], BCube [50] etc.

2.2 Emerging Application Requirements

Although traditional clouds present themselves as a repository of highly
compute capable servers, the demands of the emerging applications over
the internet sway away from features that typical DCs strive to provide.
Internet-of-Things (IoT) is one such use-case. IoT devices and sensors have
already proliferated the network and their deployment follows an exponen-
tial rising trend. More than 75 billion of such devices are predicted to be
connected over the Internet by 2025, resulting in an average of 7 sensors
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per person [123]. The trend is assisted by a parallel increase in the market
share of IoT-based applications, which is expected to generate 11 trillion
US dollars worth of revenue by 2025 [125]. However, the majority of IoT
(and similar) applications require latency-critical processing which cannot
be supported by traditional clouds due to excessive network latency and
bandwidth congestion between IoT sensor and DC. We now discuss the
requirements of several such applications.

1. Industry Automation. The demand to interconnect factories and
automate entities on the factory floor without human involvement has
given rise to Industry 4.0 [69]. The application requirements in this
area are two-fold. (i) Provide shorter development periods by allowing
connected machines to interact and share tasks and (ii) incorporate
flexibility in operation such that task recalibration can be performed
on-the-fly. Manufacturers have designed sophisticated robots, such as
Bosch APAS [109], to work in tandem with human workers on the fac-
tory floor. Such machines generate a multitude of data from attached
sensors and cameras (exceeding 100,000 GB a day) with processing
deadlines faster than human reaction time [73]. The service require-
ments imposed are strict, and breaches have the potential to affect
human safety and derail the entire production process.

2. Autonomous Vehicles. Automated driving is becoming a reality
due to the last three decades of active efforts from academia and in-
dustry alike. The key motivator is not just to reduce road accidents
due to human errors (which attributes to 94% of all reported acci-
dents), but also to reduce human resource expenditure in the trans-
port sector due to ineffective fuel usage, parking spot utilization etc.
Similar to factory automation, connected vehicles rely on many em-
bedded sensors and cameras which generate data exceeding 100GB
per vehicle. Applications in this area require efficient data process-
ing such that the resulting decisions are quick and correct. Failures
to comply with the latency deadlines can result in loss of property,
capital and (in worst cases) life [47].

3. Gaming. The competitive gaming industry has shown rapid growth
in recent years and has attracted significant investment from major
sporting brands in tournaments and game development [89]. Hard-
ware manufacturers continue to find ways to reduce on-device delays
of monitors and peripherals, such that it does not exceed the hu-
man perception time (< 10ms). However, the processing limitations
of gaming consoles have given rise to cloud gaming, perpetuated by
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industries such as Google [48], Microsoft [78] etc. While cloud gam-
ing supports the processing requirements due to high availability of
capable GPUs, it adds a significant delay in control due to network
latency for accessing the remote DC.

4. Health. Effective and responsive healthcare is one of the dominant
applications in the IoT domain. In 2015, the IoT healthcare market
was valued at 24.2 billion US dollars and was projected to grow by a
factor of 14 to reach 337 billion US dollars by 2025 [111]. Apart from
providing remote patient assistance and health monitoring (such as
stroke mitigation [13], ECG monitoring [46] etc.), remote surgery per-
formed from far-off regions is one of several growing needs of the cur-
rent healthcare market. Such scenarios not only require high network
bandwidth and uninterrupted access but also necessitates ultra-low
processing latencies for optimal control.

Smart cities, traffic control, augmented reality, drone-based delivery etc.
are a few more examples of use cases that require latency-critical processing
which cannot be supported by traditional DC-based cloud.

2.3 Edge Computing Approaches

Considering the motivations posed by the applications mentioned above, re-
searchers have proposed a number of edge computing architectures. While
the proposals differ in resource management and configuration, all of them
aim to satisfy the following key requirements: (i) low latency support for
delay-sensitive application services, (ii) data aggregation support for com-
bining readings from multiple IoT sensors to reduce bandwidth usage, and
(iii) support for context-aware location-dependent services. Table 2.1 pro-
vides a summary of edge computing architectures and key features of their
design which we now briefly discuss below.

Cloudlets. Cloudlets are a collection of resource capable servers deployed
near end users within the managed infrastructure offered by providers such
as Nokia, Elisa, Deutsche Telekom etc. Originally described by its authors
as “datacenter-in-a-box”, cloudlets assume a strong connection to the cloud
and acts as its extension [116]. Cloudlets are designed and managed with
the intention to support cloud virtualization technologies/protocols and
planned to be deployed by an existing cloud provider. The core advantage
of a cloudlet lies in its smaller deployment footprint which allows it to sig-
nificantly reduce the user access latency to a cloud-hosted service. Armed
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with high processing and network capacity, cloudlets are best fit for ap-
plications which require low-latency yet resource-intensive computing, e.g.
real-time video surveillance, IoT big data analytics, etc.

Fog Clouds. Fog cloud is a virtualized platform for managed compute re-
sources that are colocated with devices deployed within the access network,
e.g. routers, switches, access points etc. [11]. Unlike cloudlets, fog clouds
are managed and deployed primarily by cellular providers operating in the
region (in partnership with cloud providers) and aim to integrate wireless
technologies for user/sensor access e.g. WiFi, LTE, 5G etc. The principal
objective of fog is to provide in-network computation on data as it moves
towards centralized clouds for extensive processing. As the hardware for
fog requires less physical space, it can be deployed much closer to the users
and IoT sensors without significant management overhead. Their deploy-
ment design make fog clouds best suited towards smart city and real-time
video surveillance applications.

Mobile Cloud Computing. Also referred to as Mobile Clouds (MC) in
the research community [32], Mobile Cloud Computing represents a broader
platform where specialized compute servers deployed at the edge of the cel-
lular network, e.g. basestations, work in conjunction with a centralized
cloud to support applications on mobile devices. Unlike fog, mobile clouds
essentially rely on cellular access technologies such as LTE, 5G, for user
access. Rather than extending the cloud to the edge, the primary objective
of mobile clouds is to provide a one-hop computation offload facility for
mobile subscribers. This allows underlying mobile devices to support ap-
plication services that require computation capacity which far exceeds what
mobile devices can offer on-board. That being said, the mobile clouds aim
to support cloud virtualization technologies which allow them to integrate
with centralized clouds if necessary.

Edge Clouds. Edge clouds is a consolidation of human-operated, volun-
tary crowdsourced resources with varying levels of compute capacity [45].
Also referred to as Mobile Edge Clouds (MEC) [114], edge clouds extend
mobile cloud computing to non-mobile resources. A few examples of edge
resources are desktop PCs, tablets and nano-datacenters such as cloudlets
set up by independent providers. As edge clouds incorporate a wide variety
of compute capable resources and can also ensure low latencies due to their
physical proximity to end users and sensors, the model is often considered
to be the representative architecture for edge computing. Unlike fog, edge
resources are limited by their network capability as they primarily rely on
public shared wireless connectivity for interaction with users and cloud.



2.4 Edge Computing Services 19

Mobile Ad-hoc Clouds (MACC). Mobile ad-hoc cloud represents a
temporary collection of mobile devices in the vicinity, owned and operated
by end users, which form a dynamic network topology to share compute
tasks [59]. Composed of limited resource capacity of mobile hardware,
MACC does not offer any virtualization capability which would allow it to
work in conjunction with a centralized cloud. The key advantage of MACC
lies in its proximity to users and sensors (often within a single wireless hop)
which allows it to support the ultra-low latencies required for applications
such as group live video streaming, unmanned drone control etc. However,
MACC fails to offer reliability and availability guarantees to application
services due to its inherent “ad-hoc” nature.

Mist Clouds. Mist clouds propose a platform where the computation
is dispersed to the “extreme edge” and is handled by IoT sensors them-
selves [99]. The sensor, incorporated as mist resource, uses its limited
compute and storage capacity to perform contextual computations locally.
Prime examples of mist resources are smart watches, smart fridge, smart
speakers etc. Although like MACC, mist forms local network interconnec-
tions with other resources in the vicinity via wireless interfaces such as
ZigBee, Bluetooth etc., the resulting computations on the platform are not
performed ad-hoc, as mist also has consistent connectivity to a centralized
cloud for sophisticated computations.

2.4 Edge Computing Services

The sheer number of edge architectures which have been proposed by re-
searchers in the recent past allows for comprehensive support towards all
edge-dependent applications. However, the management, operation and
function of these architectures differ significantly from each other. This
has resulted in a unique problem in edge computing research where there
is a siloed development of protocols and platforms for specific edge cloud
architectures. Such protocols make several assumptions for their opera-
tion, which are valid only for their target deployment architecture and
fail to function when ported on other variants. The difference in opin-
ions regarding the “correct” reference architecture is not just limited to
research but exist even in standardization bodies, such as OpenFog [62]
and OpenEdge [24]. This motivates us to envision a future where widely
different edge cloud flavors co-exist in the same environment. In this sec-
tion, we briefly discuss several state-of-the-art edge computing protocols
and their limitations. The solutions discussed lie in the scope of the chal-
lenges tackled in this thesis.
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2.4.1 Task Deployment

Efficiently utilizing the processing capabilities of compute resources (of any
edge computing architecture) takes priority over any other protocol require-
ment. As edge clouds were designed to be an extension of traditional clouds,
several researchers assume that edge resources will support execution of vir-
tualized applications such as virtual machines, containers etc. Significant
work has been conducted to solve the VM placement problem in the con-
text of edge computing aiming to minimize the amount of data traffic sent
to the central cloud for processing [70,135,145]. However, such approaches
differ significantly due to their secondary objectives and methodology. For
example, Ahvar et al. [2] minimize the network cost of connectivity between
servers hosting the VM in their computations while Silva et al. [121] model
VM deployment as a bin-packing problem and propose greedy heuristics
for a near-optimal solution. While such approaches are successful in archi-
tectures like cloudlets and fog, their applicability is limited in MACC and
mist clouds due to their lack of support for virtualization technologies.

2.4.2 Storage

Utilizing resources at the network edge for storage is central to the deploy-
ment of Content Delivery Networks (CDN) [3]. Extensive research has been
conducted in the past for perfecting the design of CDN models which aim to
disseminate content to end users via distributed servers and edge cache hi-
erarchies [98,146]. The exploitation of in-network caching to enable efficient
content distribution also serves as a motivation behind information-centric
networking (ICN) research [144]. Yuan et al. [136] study cache placement
in MEC to satisfy the requirements of autonomous vehicles in the vicinity.
Researchers in [75] provide a probabilistic model for edge caches to improve
the delivery of 360◦ video streams.

However, the primary focus of such solutions is to support effective con-
tent retrieval, which departs significantly from computational data storage.
The task allocation models, discussed in the previous section, assume that
the required data for computation is already available in the local caches
of assigned edge resources. However, this assumption does not hold wa-
ter for edge computing architectures incorporating resources with limited
cache capacity (read MACC, mist etc.). Such resources would need to fetch
the required data from a distant cloud upon every task allocation, thereby
delaying the task execution. To the best of our knowledge, we are un-
aware of any existing work which considers effective caching of prerequisite
computational data in edge clouds.
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2.4.3 Application Placement

Unlike the task deployment problem, which focuses on processing a specific
job on a group of edge servers, edge applications require parallel compu-
tation of multiple “services” which can be distributed independently but
operate dependently. An example of this can be a streaming application
such as YouTube, which may be composed of multiple services such as
parental control, video optimizer and a firewall. Existing datacenter-based
placement solutions [132] are not influenced by the mobility of end users
and changes in subscriber locations due to their distance from the edge.
However, deploying applications on edge clouds require dynamic placement
approaches and a server discovery mechanism to utilize resources of dif-
ferent edge architectures coexisting in the same region. This would allow
application services to enjoy the least possible access latency along with
flexible migration to satisfy highly dynamic user request crowds.

The relevant works concerning discovery of edge servers in a network
are as follows. Bhardwaj et al. [9] propose an edge discovery protocol as
a backend service that hosts a directory of available devices. Varghese et
al. [126] present the concept of an EaaS (Edge-as-a-Service) platform, of-
fering a discovery protocol. The downside of both approaches is that they
rely on a central directory where the information regarding each server in
the network must be stored. For incorporating edge architectures that are
based on the ad-hoc availability of devices [59, 99], an open discovery so-
lution is required which is not tied to the pre-known registry of servers in
the network. On the other hand, despite several proposals which envision a
high availability of edge servers of varying capacities and capabilities, there
is a significant shortage of platform solutions that expose the availability
and configuration of such servers to application owners for usage. Plat-
form approaches such as [97, 133] are focused on supporting a niche set of
resources that operate in a well-managed network environment.
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Chapter 3

Hardware Solutions for Edge

The previous chapter discusses the multitude of edge computing models
which have been proposed in recent years to handle specific task require-
ments for specific applications. In the majority of research proposals we
observe a common trend, i.e. utilizing crowdsourced compute resources
(smartphones, tablets, smart speakers etc.) available in a geographical re-
gion. It has been estimated that billions of such devices will be utilized in
the near future as edge servers [18]. This is further substantiated by the
increasing processing capability of such devices due to increasing density
of transistors in an integrated circuit as predicted by Gordon Moore [92].
Past research has shown that not only is a collection of such devices able to
imitate server-like performance, it also results in a significant reduction in
energy usage due to efficient power management algorithms employed by
mobile CPUs [93].

The variety of resource configurations and capabilities incorporated by
various edge cloud approaches presents several hardware challenges that
require immediate resolution. Firstly, without any standardized model to
guide edge cloud deployment, we can envision a future where multiple edge
computing architectures operated by different entities coexist in a frag-
mented sense in a geographical region. Furthermore, not only will there
not exist any coordination and cooperation between such co-existing de-
ployments, they will also compete with each other for the larger market
share. Secondly, dense availability of crowdsourced compute resources in
an area will impact the revenue of cloud providers that have deployed their
edge servers in the same location; thereby lessening their motivation for
deploying managed servers. Still in its nascent stages, both challenges have
the potential to affect the real-world adoption of edge computing.

This chapter provides the following solutions for edge cloud deployment.

23
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Figure 3.1: Layered Abstraction of Edge-Fog Cloud .

I. We present Edge-Fog Cloud which is an all-inclusive, node-oriented,
edge cloud model. The model does not adhere to design restrictions
imposed by specific application scenarios and presents an opportu-
nity for unifying multiple edge cloud approaches. Edge-Fog Cloud
was initially published in [79] which was later extended as a journal
publication (attached as Publication II along with this thesis [80]).

II. For cloud providers aiming to deploy managed edge servers in any
geographical region, we develop Anveshak. Anveshak is a deploy-
ment framework that discovers the optimal locations for installing
edge servers. The framework prioritizes regions with lower installa-
tion costs and maximum investment returns to providers. Anveshak
predicts future density of crowdsourced edge servers throughout the
region along with the utilization of the installed server in its deci-
sions. The framework was published in Publication I attached to this
thesis [83].

3.1 Edge-Fog Cloud

Edge-Fog Cloud is a loosely-coupled edge cloud architecture which due to
its unique edge-centric design, supports the majority of application types
with varying QoS requirements. Figure 3.1 shows the resource-oriented
view of Edge-Fog Cloud .

While in reality, edge clouds are a consolidation of heterogeneous re-
sources with different storage, compute and network capacities distributed
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in a physical region, Edge-Fog Cloud logically segregates the resources in
three abstract layers, Edge, Fog and Data Store. The categorization of
compute resources into different layers of Edge-Fog Cloud is based on their
hardware capacity, ownership and network latency from the end user. It
must be noted that our segregation criteria does not include the exact
deployment environment or location of the edge server. This allows us
to easily integrate different edge architectures (discussed in Section 2.3 of
Chapter 2) managed by different entities with different goals (independent
providers, telco operators, cloud providers etc.) as a single logical platform.

Edge. The Edge1 layer is composed of loosely-coupled compute resources
with one-to-two hop network latency from the end users. Because of their
close proximity to the user, Edge servers rely on direct wireless connectiv-
ity (e.g. short-range WiFi, LTE, 5G, Bluetooth etc.) for communication
and coordination with other Edge servers and users alike. These devices
are often of a smaller size with limited computational and storage capacity.
Typical examples of Edge servers are smartphones, tablets, desktops, smart
speakers etc. The majority of Edge devices participate as crowdsourced
servers in Edge-Fog Cloud and are owned and operated by independent
third-party entities. Despite their limited capability, Edge resources are
highly dynamic in terms of availability, routing etc., and can collectively
address several strict application requirements. The ad-hoc nature of this
layer makes it the perfect candidate for handling contextual user requests
and support services catering to disaster relief, vehicular and robotic sys-
tems etc.

Fog. The Fog layer is composed of high-capacity compute servers co-
located with network-capable nodes near end users. Routers, network
switches, WiFi access points and cellular base stations are prime examples
of Fog resources. Unlike Edge, the devices are specifically designed, manu-
factured, operated and deployed by cloud vendors. Fog servers also support
existing cloud virtualization technologies and protocols out-of-the-box. The
central objective of the Fog layer is to provide in-network computation as
the data traverses to the centralized cloud for storage. Furthermore, the
Fog resources are tightly-coupled and utilize a large bandwidth and highly
reliable dedicated network links. However, compared to Edge servers, their
deployment is widespread in a geographical region.

Data Store. At the core of Edge-Fog Cloud architecture lies the Data
Store. Data Store closely resembles a centralized cloud infrastructure with

1For the rest of the thesis, we denote “Edge” as an abstract layer of Edge-Fog Cloud
and “edge” as a generic term for edge computing.
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the exception that it only acts as a data-storage repository and does not
provide any computation to user requests. Our primary reason to impose
this restriction is to maximize the utilization of Edge and Fog resources2.
The primary aim of Data Store in Edge-Fog Cloud is to ensure secure, reli-
able and global access to data by Edge and Fog nodes which are otherwise
distributed, failure-prone and equipped with limited cache size. Therefore,
the Data Store is responsible for maintaining the end user’s Quality-of-
Experience (QoE) by assuring availability and consistency of application
data in case of Edge and Fog resource failures.

As discussed in Chapter 2, different edge-based applications impose
different requirements on the underlying edge cloud architecture. The
unique design of Edge-Fog Cloud allows it to behave as a unifying edge
model for the majority of previously proposed approaches. For example,
while the proposals like edge clouds [45], mist [99], MACC [59], MEC [34],
MC [114] etc. bear a close similarity to the Edge layer, cloudlets [116] and
fog clouds [11] can be integrated as the Fog in Edge-Fog Cloud . This allows
Edge-Fog Cloud to also inherit the benefits and design objectives of such
architectures. Furthermore, by removing its dependency on the centralized
cloud for computation, Edge-Fog Cloud also provides a decentralized plat-
form which maximizes the utilization of available servers near sensors and
the end users to support the application QoS.

3.2 Physical Deployment of Edge and Fog Servers

While the modular design of Edge-Fog Cloud allows for an edge cloud vari-
ant composed entirely of Edge/Fog servers, the co-existence of both layers
is imminent and necessary to support the requirements of several emerging
edge-dependent applications. As the Edge is primarily composed of crowd-
sourced servers, the availability and reliability of such resources cannot be
ensured throughout the application run-time. Cloud providers can rectify
this by installing managed Fog servers in the same area, which would ensure
that the application SLA requirements are met throughout its operation.
Therefore, the presence of servers from both layers in a physical region is
necessary to ensure a consistent and reliable compute backbone to applica-
tion providers. However, installing a Fog server in a location which already
has a high density of crowdsourced Edge devices in the vicinity can result
in a significant under-utilization of either resource type.

Furthermore, the ISP-backed cloud provider must bear a combination of
CAPEX (purchase and deployment) and OPEX (operation, maintenance

2Deployment constraints imposed by centralized cloud on Edge-Fog Cloud is in [80].
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(a) WiFi access points (b) Telekom Italia basestations

Figure 3.2: Heatmap WiFi access points and Telecom Italia’s cellular base
stations over Milan, Italy.

and security) for every Fog server installation. It is only natural that cloud
providers seek to maximize their profits by discovering specific installation
locations in the region, which consistently observe high user requests such
that the deployed server can remain almost always fully utilized. However,
previous research has shown that user request distribution in any area is
not static but temporally and behaviorally influenced [77]. As a majority of
Edge servers participate as crowdsourced entities, shifts in user densities in
an area also impact the availability of such resources, which hold a priority
over Fog in Edge-Fog Cloud due to their ultra-low latency to the end user.

To illustrate the problem further, we extrapolate the extent of Edge and
Fog resources in Milan, Italy. Figure 3.2 shows the heatmap of WiFi access
points (APs) and Telekom Italia base station densities in the city3. While
WiFi access points behaviorally resemble the properties of Edge, cellular-
provider backed base stations are prime locations for deploying managed
Fog servers. As can be observed in the figure, the density of access points
is concentrated around the city center (center of the map) which boasts of
large user crowds as residential, commercial and tourist spots are clustered
around that region. As we move away from the center, the availability of
access points decreases. On the other hand, the deployment of Telekom
Italia base stations in Milan is almost evenly distributed throughout the
region. This is by design as the primary goal of a cellular provider is to
ensure consistent user connectivity throughout the operational zone such
as to maintain the required user QoE.

Such deployment density trends makes Fog server placement problem
unique to existing server deployment solutions. Naive installation of servers

3Data illustrated in the figure is extracted from open source datasets [63, 128].
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in higher population density areas will result in sub-optimal utilization as
the majority of requests will be satisfied by densely available user-managed
Edge devices in the vicinity. In such cases, a compute request will only
be offloaded to the Fog server if it exceeds the capacity of the Edge. On
the other hand, deploying Fog servers at all base stations in the region
is equally naive as the majority of servers will remain under-utilized due
to the absence of local user requests. Furthermore, existing server place-
ment solutions [101,102,112] are not directly applicable in this scenario as
the end-goal for such solutions is to discover deployment locations which
maximize the user-to-server bandwidth and latency requirements. On the
other hand, potential solutions for the Fog placement problem must focus
on optimizing server utilization and service availability.

Based on these observations, we design Anveshak [83] which is a server
deployment framework for ISP-backed cloud providers. Anveshak identifies
optimal base station locations in a metropolitan area for installing a Fog
server. Unlike existing placement approaches, which only consider user
population density, Anveshak predicts the availability of Edge resources and
identifies areas where the Fog server will handle user requests maximally.
Anveshak’s operation is based on the assumption that the interested cloud
provider partners with an existing cellular provider operating in the region
for deploying Fog servers. The motivation for this assumption is two-fold.
Firstly, it allows the cloud provider to co-locate servers with a base station
which is already managed by the ISP and the resulting maintenance and
operational overheads can be shared between the two parties. Secondly,
the ISP can provide the cellular provider access to a historical user request
database which may include, but is not limited to, Call Detail Records
(CDR), SMS connections, internet usage, etc.

Figure 3.3 shows Anveshak’s workflow. We design Anveshak as a three-
phase modular system where each stage is responsible for handling a specific
task. The modular design allows cloud providers to swap and add stages to
the protocol tailoring to the additional complexities of the region. In Phase
I, Anveshak identifies high communication zones of the area as they will
likely result in higher server utilization. The zone identification process is
as follows. Anveshak starts with logically dividing the geographical region
into equally spaced grids where the size of the grid is inversely proportional
to the base station density and the number of Fog servers the cloud provider
aims to install. The system then utilizes the historical data of cellular link
access by subscribers of the cellular provider (normalized over a longer time
to remove any temporal outliers) originating from each grid. The request
densities are clustered depending on their closeness. The resulting clusters
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Figure 3.3: Workflow of Anveshak.

closely identify regions where subscriber request density is on the higher
end. As the clusters can be overlapping, varyingly dense and of different
shapes, Anveshak normalizes them as a flat heatmap of grid locations. At
the end of the first phase, Anveshak presents the list of grid areas, ranked
in decreasing user request density, to the cloud provider.

In Phase II shown in Figure 3.3, Anveshak estimates future avail-
ability of Edge servers in every grid area by extrapolating the density of
currently operational WiFi APs in the region. For this purpose, the cloud
provider can exploit several openly available datasets of WiFi APs operat-
ing throughout the globe [128]. Anveshak filters the WiFi APs operational
in the target region and clusters them based on their density. The sys-
tem then negatively adjusts grid areas which have a high AP density. The
updated heatmap is a collection of grid locations which have high user re-
quest density and low availability of edge devices to satiate those requests.
Anveshak presents this list to the cloud provider in its final phase. Based
on the provider’s deployment budget and required service coverage area in
the region, the service provider can select top-k grid locations for deploying
the Fog server. In case there exists only a single serving base station in
the selected grid, the cloud provider may choose to co-locate the server at
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that site. However, if there are more than one cell sites operational in that
grid, the system must provide a priority level to each location depending
on its reachability extent for satisfying maximum user requests originating
in the vicinity. Phase III of Anveshak is designed to solve this prob-
lem. After identifying the exact locations of the cellular provider’s base
stations in the grid, Anveshak calculates the probability of one-hop la-
tency from each site to the majority of user requests. The model utilizes
a coordinate-based network latency approximation technique [90] and cal-
culates the maximum tolerated network distance (Rmax) and network cost
(n(S,u)) between users U in grid Gi to server S installed at base station in

the grid LGi = {l1, . . . , lx}. Formally, the variables are defined as follows:

Rmax
(ul,Sl)

= max[u− Sl] ∀u ∈ U (3.1)

n(S,u) = α ∗R(S,u) (3.2)

Variable α in Equation 3.2 denotes the maximum server access cost for
the user in the grid. Based on the network utility of each base station,
Anveshak identifies the optimal server location for an arbitrary user u in
the grid by solving the following equation.

Su = min
∑
l∈LGi

{Sl|Sl ∈ S, n(Sl,u) < nmax}xl (3.3)

Equation 3.3 closely resembles a Facility Location Problem [21] which is
known to be NP-hard. Anveshak approximates the solution to the problem
by limiting the grid size in Phase I such that even the worst-case iterative
solution completes within reasonable time. Further details regarding the
implementation of the problem and subsequent results can be found in
Publication II attached to this thesis [83].

To summarize, in this chapter, we presented a unifying edge cloud ar-
chitecture Edge-Fog Cloud which maximizes the computational capability
at the network edge by incorporating resource types of varying hardware
capacity and ownership but ensures data resilience through a centralized
data store. We also presented Anveshak, which is a deployment frame-
work designed for cloud providers that aim to install Fog servers amidst
crowdsourced Edge resources. Anveshak predicts the future density of user
request patterns and preexisting Edge servers in the area to holistically se-
lect the base station locations best for augmenting Fog servers. While the
solutions presented in this chapter were designed to unite multiple cloud
entities to ensure a consistent global edge compute covering, they can be
easily adapted to specific requirements of cloud providers competing in the
same region.



Chapter 4

Infrastructure services for Edge

Although Edge-Fog Cloud aims to be an extension to traditional cloud com-
puting, the underlying architecture of the two models is in stark contrast
to each other. As discussed in Chapter 2, the difference in the two cloud
models is not just limited to the organization of its compute resources but
extends to the properties and behavior of its infrastructure as well. For
example, while centralized clouds operate in well-managed and controlled
environments, Edge-Fog Cloud offer no such characteristics. Moreover, the
majority of salient features of DC servers, such as reliability, availabil-
ity, significant compute capacity, large local data storage, high bandwidth
and minimal network congestion, are not inherently supported by Edge-Fog
Cloud . This, along with additional complexity imposed by Edge and Fog
resources, such as wireless shared access medium, battery capacity, mobil-
ity, etc., begs for a complete redesign of existing cloud-based solutions such
that the hardware of these devices can be utilized effectively.

In this chapter, we focus on providing solutions for the three pillars of
cloud infrastructure; compute, storage and networking.

I. Compute. An effective computation strategy for Edge-Fog Cloud
must consider the following resource constraints. (i) Edge devices are
severely compute constrained and multiple such servers may need to
work in a distributed fashion to support a single application task,
(ii) computation power of several Edge resources may be limited by
their available battery capacity, and (iii) executing tasks on Edge-
Fog Cloud incurs an associated processing, networking and energy
cost. Considering the restrictions above, we design Least Processing
Cost First (LPCF), and energy-efficient Least Processing Cost First
(eLPCF), which are task allocation mechanisms for Edge-Fog Cloud ,
discussed in Section 4.1. While LPCF minimizes the associated pro-
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cessing and network cost for executing application tasks on Edge-Fog
Cloud , eLPCF additionally minimizes resource energy used to support
the computation.

II. Storage. While Edge-Fog Cloud utilizes centralized Data Store to en-
sure data permanence and availability, the Edge and Fog servers must
rely on their local disk/cache capacity for storing prerequisite data for
computation. This data is usually fetched from sensors/Data Store
and must be available in local caches of all involved servers prior com-
putation start time. Moreover, as Edge resources have limited cache
capacity and pre-cached data is rarely re-used in applications with
varying workloads, new (often non-overlapping) data must be fetched
for every subsequent task allocation. This significantly impacts the
performance of Edge-Fog Cloud as the network delay for acquiring the
required data far exceeds the latency gains of computing at the edge.
For this purpose, we design an edge caching mechanism which maxi-
mizes the probability of re-using locally cached data or retrieve it from
caches of nearby servers. Discussed in Section 4.2, our mechanism also
ensures coherency of shared data distributed across the platform.

III. Networking. Unlike DC networks, which boast of reliable, high
bandwidth, isolated ethernet connectivity, Edge-Fog Cloud primar-
ily relies on public wireless access networks, such as LTE, WiFi etc.
To imitate the characteristics of DC networking at the edge, we ex-
plore the possibility of parallelly utilizing multiple LTE connections
at an edge server via Multipath TCP (MPTCP) in Section 4.3. MP-
TCP is a standardized extension to TCP which allows applications to
transparently use multiple network interfaces by creating a TCP flow
over each path. However, our results in Section 4.3.2 indicate that
due to its internal design policies, MPTCP is unable to maintain its
performance under mobility due to excessive on-path queueing delays.
As mobility is one of the critical features that edge computing aims to
support, we design QAware in Section 4.3.3 which is a custom sched-
uler for MPTCP. QAware proactively avoids the network path with
large packet queues which results in a significant increase in MPTCP
performance over constrained wireless networks.

4.1 Deploying Tasks on the Edge

The Edge-Fog Cloud architecture discussed in Chapter 3 poses a double-
edged sword for edge computing infrastructure solutions. On one hand,
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the cloud model presents an amalgamation of devices of ranging compute
and network capacity for handling a multitude of edge application require-
ments. On the other hand, the server capacity is often limiting to the point
that a resource is unable to single-handedly complete user-assigned tasks
and requires constant coordination with other nearby servers in the plat-
form. Existing cloud-based task deployment frameworks such as MapRe-
duce [28], Spark [138] are not capable of effectively utilizing edge servers
due to two reasons. Firstly, the primary objective of such datacenter-based
frameworks is to maximize the utilization of the processing capacity offered
by the underlying servers, and network latency or congestion between the
servers is not considered in their operation. Secondly, while datacenters
provide consistent power and cooling facilities for optimal server operation,
Edge servers such as mobiles, tablets, laptops etc. operate in public envi-
ronment with limited battery capacity. However, past research has shown
that with effective task allocation, computations on such devices can sig-
nificantly reduce the overall energy used without sacrificing computation
time when compared to a datacenter server [93,110]. This is due to highly-
efficient power management algorithms built into the mobile CPU, which
constantly controls the processor’s clock speed based on the available bat-
tery capacity. Despite their energy-efficient behavior, additional care is
required to incorporate these devices as edge resources as battery depletion
in the midst of computation can result in an inconsistent application state.

In this chapter, we present two deployment algorithms, Least Processing
Cost First (LPCF) and energy-efficient LPCF (eLPCF). The algorithms
are part of Publication II attached to this thesis. Before we describe the
inner workings of our solutions, we first discuss the core objectives of a task
deployment strategy for edge clouds.

4.1.1 Naive Task Deployment Strategy

Figure 4.1a shows a snapshot of Edge-Fog Cloud with five compute re-
sources while Figure 4.1b shows an application job distributed into five
distinct sub-tasks. We represent an Edge-Fog Cloud resource by a unique
ID Di and maximum available processing power Dproc(i). The red intercon-
nections in the cloud snapshot denote direct network connectivity between
servers, which has an associated cost denoted by Dconn(i, j)

1. Similarly,
each job2 in Figure 4.1b is represented with a job ID Ji with required pro-
cessing cost for completion denoted by Jsize(i). Furthermore, there can

1Dconn can signify multiple network parameters such as bandwidth, latency, packet
loss etc.

2We use the term sub-task and job interchangeably.
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(a) Edge-Fog cloud resource graph

(b) User assigned task graph

Figure 4.1: Input constraints for task deployment on Edge-Fog Cloud .

exist two-way dependencies between jobs that operate on shared data or
need to be processed sequentially. Blue links in the task graph denote such
dependencies.

The primary objective of a task deployment algorithm is to optimize the
job-to-device placement such that both costs for processing (PC) and the
network interaction (NC) for the computation is minimized. These two
optimizations are formalized as follows.

PCmin =
∑
i,j∈A

(
Jsize(i)

Dproc(j)

)
xij (4.1)

NCmin =
∑
i,j∈A

Jconn(i, j) ∗Dconn(f(i), f(j)) (4.2)

where A is the set of all arcs in the graph and xij is a binary decision
variable.

Equations 4.1 and 4.2 show the minimization function for processing
jobs on Edge resources and network connectivity between dependent tasks
respectively. An ideal task deployment algorithm aims to discover optimal
placement with the least PCmin and NCmin. While there already exist
algorithms in the literature which can guarantee optimization of PCmin in
O(n3) bound [64], the same is not true for optimizing NCmin. Equation 4.2
closely resembles an NP-hard problem, Quadratic Assignment Problem
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Figure 4.2: LPCF and eLPCF algorithm workflow.

(QAP), which can only be approximated by applying strict constraints.
Without constraints, the optimization can take a significantly long time.
For example, computing the deployment for 30 nodes can take well over a
week on a grid of 2500 machines [137]. Existing approximation approaches,
e.g., Branch-and-Bound, only work for small problem sizes and is not appli-
cable in Edge-Fog Cloud where hundreds of edge servers can be candidates
for a single task deployment.

4.1.2 Optimized Task Deployment for Edge

Unlike existing task deployment strategies, our aim was to develop algo-
rithms that can provide semi-optimal job placements quickly ! Instead of
applying generic constraints for approximating QAP, we exploit an inherent
property of an edge cloud environment to reduce our problem search space
significantly, i.e. both Edge and Fog layers are composed of similar devices
with matching attributes such as CPU capacity, architecture, etc.. Con-
sidering this observation, we develop Least Processing Cost First (LPCF),
which guarantees a job assignment within polynomial time while optimiz-
ing both processing and network costs. We extend our principal approach
to devise an energy optimizing variant of LPCF, energy-efficient LPCF
(eLPCF). Figure 4.2 shows the anatomy of both algorithms’ workflow.
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Least Processing Cost First (LPCF)

Instead of optimizing for both processing and network costs, LPCF starts
with solving the optimal task deployment with the least associated process-
ing cost shown in Equation 4.1. Once the algorithm has a valid job-to-device
placement, it builds a search space from the solution by interchanging jobs
assigned to resources with equal processing costs and resources with jobs
requiring similar processing. At the end of this step, LPCF generates a
set of deployments, all with the least processing cost derived from the first
optimization step. Further, LPCF iteratively3 calculates the network cost
of each deployment in the search space and picks the variant with the least
value. The final deployment calculated by LPCF has the least processing
cost and an almost optimal network cost. Our results in Publication II show
that the strategy employed by LPCF reduces the problem search space by
several hundred orders of magnitude. This allows LPCF to complete its
execution within polynomial time while the network cost of the resulting
deployment always stays within a 10% range of the optimal solution.

Energy-efficient Least Processing Cost First (eLPCF)

eLPCF is an energy-efficient variant of LPCF that searches for deployment
which would result in least energy spent (Etotal) due to processing (Eproc)
and network usage (Enetw).

Etotal =
∑
i∈N

[Eproc(i) + Enetw(i)] (4.3)

Eproc(i) = PC(i) ∗ ep ∀i ∈ N (4.4)

Enetw(i) = NC(i) ∗ en ∀i ∈ N (4.5)

Here, en and ep denote networking and processing cost-to-energy metrics
for Di respectively. Both values depend on Di’s hardware configuration.

The first two steps of eLPCF workflow closely resemble that of LPCF
as it exploits the homogeneity in server hardware and job characteristics
to build a reduced search space. In step 3, eLPCF computes a deployment
solution with the least energy for processing and almost optimal energy
for networking in polynomial time. It is to be noted that eLPCF Etotal

optimization can be influenced by the resource’s en and ep which have no
correlation with PC and NC. As a result, the task deployment can have

3Intuitively, a branch-and-bound variant of LPCF can reduce the number of pointless
calculations, but for the sake of simplicity we opt for an iterative approach.
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Size 5 10 20 50 100 150

NC-Perm 0.068s 23m 20s > 1h > 1h > 1h NA
NC-QAP 0.026s 36.273s 18m 38s > 1h > 1h NA
LPCF 0.0005s 0.002s 0.073s 51.686s 12m24s > 1h
eLPCF 0.0011s 0.0116s 0.126s 1m14s 24m43s > 1h

Table 4.1: Computation time comparison between deployment algorithms.

significantly high completion time as en and ep are largely dependent on the
CPU algorithms and NIC peripherals of the device. So as to not be com-
pletely swayed by the makeup of the device hardware, eLPCF combines its
search space with that calculated by LPCF. This ensures that the resulting
deployment also considers reduction of both processing and network cost
metrics. In its combined search space, eLPCF utilizes a multi-objective
function to select deployment with optimal Etotal, PC and NC metrics.
We also provide weights to each deployment cost parameter, which can be
tweaked on-the-go by cloud providers according to their liking [80].

We compare both algorithms’ performance with the permutation and
the QAP variant of the network cost optimization function (Equation 4.2).
Table 4.1 compares the completion time for proposed algorithms to naive
and QAP-based network optimizing solutions for increasing number of par-
ticipating Edge-Fog Cloud resources4. The results show that LPCF’s strat-
egy of reducing the problem search space shows a significant gain in perfor-
mance over its competitors. Where NC-based solvers struggle to compute
any solution for topology sizes exceeding nodes, both LPCF and eLPCF
discover a task deployment within minutes. Surprisingly, for increasing
problem sizes, eLPCF performs twice as bad as LPCF. We attribute this
additional computational delay of eLPCF to the multi-objective optimiza-
tion step of the algorithm that waits for outputs from two parallel opti-
mization branches (see Figure 4.2). Detailed comparison between both task
deployment algorithms and the impact of Edge resource characteristics on
deployment is further discussed in Publication II attached to this thesis.

4.2 Storing and Retrieving Data on Edge

Edge-Fog Cloud relies on a centralized Data Store to provide data perma-
nence and availability. Data Store offers vast storage capacity and ease-of-
access for underlying Edge and Fog servers but with higher access delay.
However, the Edge-Fog Cloud dependence on a centralized data store is

4Maximum task computation time is set to one hour
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critical for two reasons. Firstly, the local cache of Edge and Fog resources
is often of limited capacity due to which the devices are unable to retain
relevant data for extended time periods. Secondly, as task operations in
Edge-Fog Cloud involve executions over multiple servers, all of which op-
erate on their local copy of relevant data, periodic synchronization with
a centralized data repository ensures that the computational data in the
resource’s cache always remains consistent and coherent.

On the other hand, centralized Data Store also acts as a bottleneck for
scaling Edge-Fog Cloud performance. A typical data exchange in Edge-Fog
Cloud is as follows. Task deployment algorithms, such as LPCF, select a set
of Edge and Fog resources to fulfill a user-assigned task which requires pre-
requisite data for computation. This data can either be information from
end-sensors or results of previously computed queries. Consider the exam-
ple of a fully-automated automobile factory which houses multiple machines
(read resources) that actively collaborate and coordinate with each other
to complete a specific task. A machine with a drilling tool must be able
to change its settings for the next workpiece (e.g. chassis to engine) which
requires data updates from sensors attached to the belt. However, it is also
possible that the machine needs to switch to a different tool altogether,
such as screwdriver, which requires coordination and specifications from
other machines involved in the project across the factory. Assuming the
sensor and the resources offload their data to a Data Store, the machines
need to retrieve the required specifications into their local caches before
initiating the task operation [84]. In this case, each assigned resource sends
a retrieval request to the Data Store, the phase also known as fetching.

As the waiting period for acquiring data is directly proportional to the
number of participating resources and latency between the resource and
Data Store, fetching data at the start of every computation can induce sig-
nificant delays in task completion. Furthermore, in a system with varying
workloads, cache reusability can be quite low as subsequent computations
may require data different from local cache content. Considering the com-
plications above, pre-caching required data at the edge seems to be the ob-
vious solution. However, this is not straightforward as majority of existing
approaches [106,107] were designed for Content Delivery Networks (CDN),
which have very different requirements when compared to computation-first
Edge-Fog Cloud . Specifically, unlike CDN’s, the compute data in Edge-Fog
Cloud has shorter temporal relevance and receives frequent updates.

We now present an efficient edge caching mechanism, published in Pub-
lication III, which leverages the already cached content in Edge-Fog Cloud
resources to predict and prefetch required data for upcoming computations.
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Figure 4.3: Edge-Fog cloud cache grouping algorithm.

4.2.1 Grouping Cached Content of Edge Resources

Our approach for improving data caching at the edge involves a three-step
iterative cache-grouping mechanism, which is built on the principles of the
task deployment algorithms discussed in Section 3.2. The core idea of our
approach is shown in Figure 4.3 and explained as follows. In its first it-
eration, the task deployment algorithm assigns an application task on a
set of {RC}i resources (phase Task Deployment). At time t = 0, the par-
ticipating resources are “fresh” with empty local caches5 and request for
the required data from Data Store (phase Populate Cache). In its next
phase, the algorithm exploits the insight that resources assigned to execute
a single task will cache the same/similar prerequisite content. This allows
the algorithm to classify each computation within a broader workload W
and data required for that particular workload as Dk

i . All resources {RC}i
housing data for Wi can be grouped in a logical cluster, termed as a cache
group (denoted as {CG}i). As Edge-Fog Cloud handles several computa-
tions on distinct tasks parallelly ; at arbitrary time t = n there are CGk

groups existing in Edge-Fog Cloud for Wk workloads6. The classification of
computation into workloads can be based on several metrics, which includes
(but is not limited to) location, time, sensor type etc. A comprehensive list
of different classifiers for workloads is in [85].

In its subsequent iterations, the cache grouping algorithm coordinates
with the task deployment algorithm to prioritize the further deployment
of tasks belonging to a workload on the member resources of its respec-
tive cache group. Along with increasing the probability of re-utilizing
pre-cached data of the assigned resource, the algorithm also improves the
chances for retrieving the required data from neighboring cache group mem-

5Even if resources have pre-existing data in their cache, the algorithm assumes that
either there will be available space to house data for the current computation or required
space would be freed through a cache replacement.

6It must be noted that membership to a cache group is strictly logical and a resource
can belong to more than one group.
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ber resources instead of fetching it from Data Store. In case the present
group members of that workload are less than ideal for computing the task,
the algorithm is free to choose any other resource that ends up becoming
a part of the cache group at the end of the computation. As the algorithm
cyclically progresses, the number of distinct groups in the system stabilizes
and sharing within a group far exceeds retrieval requests from Data Store.

We evaluate our algorithm on the Icarus simulator [113] for large net-
work topologies. We artificially generate requests for 96 ∗ 104 content
items belonging to 32 different workloads. Our algorithm significantly out-
performs non-grouping-based caching algorithms and achieves almost twice
the cache hit ratios resulting in 45% reduction in retrieval requests. Further
details of our evaluation are present in Publication III to this thesis.

4.2.2 Maintaining Edge Cache Coherence

Although the cache grouping algorithm compels servers to share required
content at the edge, it opens up another issue for Edge-Fog Cloud operation,
i.e. How do you ensure the correctness of shared data? Isolated operations
on a local copy of the shared content by multiple edge servers may result
in an incoherent data state. A resource must always operate on the most
relevant version of the required data, failure of which can lead to inconsis-
tent computations that may require multiple roll-backs and re-executions.
This scenario (as well as its consequences) bears a close resemblance to the
classical distributed shared memory problem [100].

Intuitively, the problem can be mitigated by employing one of the follow-
ing approaches. One, at the completion of every computation the involved
resources send update messages to all other servers in the cache group/sys-
tem updating them of their local state. Second, instead of sharing data
at the edge, the assigned servers periodically synchronize their local cache
contents with the Data Store which is then responsible for ensuring consis-
tency. We argue that both approaches are equally impractical in a system
operating at the scale of Edge-Fog Cloud . The first approach would in-
duce unnecessary network traffic in the system that would increase with
the increasing number of participating entities. On the other hand, the
second approach mars the sole objective of the cache grouping algorithm
i.e. maximizing sharing at the edge.

To resolve this issue, we design a resource communication model for
Edge-Fog Cloud for updating and retrieving the prerequisite data. The
overview of communication in both scenarios is shown in Figure 4.4. The
model is inspired by the directory cache coherence algorithm for networked
processing systems [1] and ensures causal coherence on shared data.
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(a) Data retrieval within cache group

(b) Data update within a cache group

Figure 4.4: Communication model for ensuring coherency.

Our communication model is strictly pull-based, which reduces unneces-
sary message exchange in the system significantly7. Periodically, the model
elects a leader resource in each cache group, which is responsible for serial-
izing the synchronization of cached content for the member resources. Any
resource can nominate itself for the leader election provided it has a consis-
tent connectivity to the rest of the group. The leader only acts as a central
database for enhancing communication between resources in the group and
is not involved in any data transfers. As shown in Figure 4.4, each resource
involved in the communication (leader, group member and Data Store)
uses specifically-designed tabular data structures that serve as bookmarks
for the communication. While the majority of the data structure fields
are self-explanatory, the most notable field for the communication model is
“Tag”. Tag denotes the state of locally cached data. If the data is currently
in-use by the resource, the Tag entry will be locked otherwise it will be free.

7While resources can fail, we assume that messages are not lost in transmission.
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Although we assume that resources regularly upload their computed data
to Data Store (preferably at the end of each computation), the design of our
communication model refrains from synchronizing content via centralized
Data Store but uses it only for failure recovery purposes.

Retrieving Content

The model restricts resources to only share information of the last updated
content with their respective group leader. Before initiating a new compu-
tation, every resource in the group requests their group leader for the latest
copy of prerequisite data, irrespective of whether a locally cached copy is
available or not. The group leader replies with the address of the resource
which last reported on updating that particular content. At this point,
the requesting server directly queries the last-updater resource to share its
cached copy of the content such that the content remains consistent in the
group. In case the node is no longer alive or has replaced its cache contents,
the retrieval request is escalated to the Data Store.

Updating Content

To avoid stale writes on data, the model follows a step-wise checkpoint
approach for update requests. After retrieving the required data follow-
ing the protocol described above, the updating resource locks the cached
content by marking its Tag field as locked before initiating computation.
At the same time, the resource also requests the leader to update its own
Tag for that particular content in its directory. If the group leader receives
any retrieval requests for that content from any other resource while the
data is under lock, the leader simply denies that request. After successfully
executing the task, the updating resource “un-tags” the content in its local
directory and notifies the group leader of the update. The leader responds
by freeing the content’s Tag in its own directory along with storing the time
at which it received the notification8.

In conclusion, we designed a cache grouping strategy which works in
conjunction with task deployment for Edge-Fog Cloud . The algorithm max-
imizes the data sharing between the resources, thereby removing Data Store
as a bottleneck for efficient computation. The strategy employs a commu-
nication model which provides causal data coherence for cached content at
the edge while enabling parallel updates.

8The timestamp field resolves any race condition due to message delays.
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4.3 Optimizing Networking at the Edge

Support for ultra-low network latencies due to proximity to end-users and
sensors alike heralds edge computing as a “silver bullet” for emerging
latency-sensitive applications. However, unlike traditional datacenters which
house an interconnection of large bandwidth ethernet pipes in isolated and
managed locations, edge servers plan to operate in public infrastructure and
overcome unrelated network traffic. Moreover, a variety of applications,
such as augmented reality, smart homes, smart vehicles etc., incorporate
mobility in their functionality and require access to nearby edge servers via
wireless network interfaces. Catering to such increasing demands, manu-
facturers plan to incorporate a myriad of wireless connectivity standards
in edge servers, e.g. LTE, WiFi, 5G etc. [23]. The performance of such
technologies is plagued by intermittent delays, congestion and failures dur-
ing active data transmissions as the research to support a wide variety of
applications and environments is still ongoing [56]. Even in isolated dat-
acenters, attempts to design a fully wireless architecture for inter-server
communication has been proven to be sub-optimal due to careful place-
ment restrictions of directional antennas, interference and MAC layer con-
tention [26, 118, 147]. As a result, the adoptability of wireless technologies
in edge clouds remains under question as the application providers must
also embrace its inherent flaws to maintain the required application QoS.

Multipath TCP (MPTCP) [10] is an extension to TCP that allows de-
vices with multiple network interfaces, such as smartphones equipped with
WiFi and LTE, to form multiple parallel TCP connections. The transport
protocol allows multi-homed devices to exploit available bandwidth over
multiple interfaces and offers increased robustness and resilience to packet
failures. Due to several benefits of MPTCP, researchers have proposed to
utilize the protocol for a variety of applications and configurations such
as datacenters [103], augmented reality [54], railway networks [71], video
streaming [53], opportunistic networks [105] etc. The MPTCP kernel is
available as open-source [19] and is actively supported and utilized by in-
dustries, such as Apple [6], in their products.

Due to several inherent benefits of MPTCP as mentioned above, the
protocol presents itself as a prime candidate to mitigate prominent connec-
tivity issues in edge clouds. MPTCP’s functionality can be well-exploited
in edge clouds as majority of edge resources will be equipped with multiple
network interfaces. For example crowdsourced resources such as smart-
phones support simultaneous dual-LTE and WiFi connectivity. Manufac-
turers plan to equip specifically designed Edge/Fog servers with even more
connectivity options [23].
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Figure 4.5: Edge Servers utilizing MPTCP over two interfaces.

Figure 4.5 illustrates an edge-to-edge VM migration scenario using MP-
TCP in such a utopia. As shown in the figure, both edge servers are
equipped with a combination of WiFi and LTE NIC. The end-to-end con-
nection between the servers comprises of two parallel TCP flows over each
NIC pair9. Individually, either WiFi or LTE would have been unable to
support the transfer rate required for fast VM migration. However, with
MPTCP both connection types can be utilized in parallel, which allows
edge servers to replicate cloud-like network performance. While a few pre-
vious works have proposed to utilize the protocol for this purpose [16, 81],
comprehensive understanding of MPTCP behavior over public wireless net-
works is required before drawing any conclusions regarding its applicability
in Edge-Fog Cloud .

In this section, we analyze, via extensive measurements, whether MP-
TCP over wireless connections can support the edge-based application de-
mands. Mainly, we focus on understanding the behavior of MPTCP over
multiple LTE connections for different mobility types, as required by use-
cases such as autonomous vehicles, augmented reality etc. Our results show
that all is not well with MPTCP as its performance degrades with increas-
ing mobility [82]. Through a thorough understanding of the root cause
for this decline, we propose a scheduling solution for MPTCP, which over-
comes this shortcoming and allows edge servers to perform optimally in
constrained wireless environments [119].

4.3.1 Internal Workings of MPTCP

We start with understanding the internals of MPTCP. Unlike regular TCP,
MPTCP builds connections over hosts and not interfaces. Figure 4.6 shows
the network stack of an MPTCP-capable sender and receiver. The kernel
implementation of the protocol adds a unifying abstraction/control layer
atop TCP. The user application remains unaware of the presence of MPTCP

9The default path-manger of MPTCP creates M×N TCP flows, where M and N are
the number of NICs at both ends of the connection.
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Figure 4.6: Multipath TCP end-to-end architecture.

and interacts with the system using the regular socket API. Instead of
establishing an end-to-end TCP path, the server now maintains an MPTCP
connection which is responsible for managing multiple TCP “subflows”.
MPTCP is a sender-oriented protocol as all of its control blocks, such as
connection management, scheduling and rate control, are handled by the
sender and the receiver is only responsible for accepting incoming packets.

The sender-side of the MPTCP protocol is composed of three modu-
lar control blocks: path manager (not shown), scheduler and congestion
control. The path manager is responsible for establishing and managing
subflows between the hosts over all available NICs. The workflow for this
is as follows. The path manager sets the MP CAPABLE TCP option in its
SYN packet and sends it to the receiver signaling its MPTCP compliance.
If the receiver replies with a positive acknowledgment, a single end-to-end
TCP flow over one of its interfaces is established which is known as the
“master” subflow. Following this, the path manager adds additional sub-
flows over remaining NICs in the same session using ADD ADDR TCP
option. The default “full-mesh” path manager does not require the sender
and the receiver to have the same number of interfaces and establishes
M×N subflows, where M and N are the number of distinct NICs at sender
and receiver respectively.

The application data arrives in the send buffer from which it is sched-
uled to one of the underlying subflows by the scheduler. Each TCP subflow
is monitored by its independent congestion control algorithm which con-
trols the local packet send rate. While deciding the optimal path for a
packet, the scheduler only considers subflows that have available space in
their congestion window. The default scheduler, minSRTT injects applica-
tion packets into the “fastest” subflow, i.e. TCP connection with the least
smoothed round-trip time (SRTT) to the receiver [96]. Overall packet in-
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put rate is governed by MPTCP coupled congestion control which balances
packet congestion over all underlying TCP subflows. While multiple solu-
tions for MPTCP congestion control have been proposed, such as LIA [104],
OLIA [65], BALIA [60] etc., a detailed explanation of the internal differ-
ences between the variants is out-of-scope of this thesis. As data packets
may not arrive in the same order as they were transmitted from the sender
due to losses and variable transmission delays, MPTCP employs a receive
buffer at the receiver to store all out-of-order arriving packets. The receiver-
side MPTCP waits for any missing in-sequence packets before re-ordering
and delivering them “in-order” to the application.

The current implementation of MPTCP enables researchers to incor-
porate their custom scheduler and congestion control schemes, provided
they fulfill two fundamental design objectives. First, MPTCP over multi-
ple paths should always achieve more throughput than TCP over the single
better performing path. Second, the protocol must allow for interchange-
ability and resilience over all underlying TCP paths.

4.3.2 Poor MPTCP Performance in Mobility

As the typical requirement for a majority of edge-based applications is the
support for mobility, we analyze MPTCP behavior for increasing movement
speeds through extensive real-world measurements. We opt for analyzing
MPTCP over dual-LTE connections due to the vast coverage areas, large
combined bandwidth and reliable packet delivery promised out-of-the-box
by LTE. Furthermore, considering the internal stake of cellular providers
in setting up Fog infrastructure in a region (as discussed in Chapter 3), we
envision cellular network to be the prime enabler of edge computing in the
future. The measurements and resulting analysis is part of Manuscript I.

Our Edge server is a Raspberry Pi 2 (RPi) equipped with two Telewell
CAT4 LTE USB modems. The RPi runs Raspbian OS over the latest
MPTCP v0.94 [20] and is powered by an external battery to enable mobility.
We equip USB modems with LTE connections from two major cellular
providers operating in Finland, Sonera and DNA which offer extensive
network coverage in the test region. On the other end of the connection is
a cloud server hosted in AWS-central Europe. The server is equipped with
32 GB RAM, 1 Gbps Ethernet and 16-core 2.4GHz CPU. We ensure that
both cellular connections at Edge have non-intersecting paths to the cloud
by periodically running traceroute on both paths.

Throughout our experiments, we collect packet traces via tcpdump, sig-
nal strength (dBm) on each modem and associated basestation ID (BSID).
We asked three volunteers to carry the RPis along their daily commute,
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Figure 4.7: Effect of mobility on MPTCP performance.

which largely comprised walking, driving and using public transport such
as trams, buses etc., from September 2018 to February 2019. This allowed
us to cover the full spectrum of target speeds for the bulk of edge-based
applications. As the RPi moved in the physical space, both LTE modems
experienced signal strength changes and handovers between basestations.

Our measurements reveal that MPTCP shows promise in scenarios
where both the sender and receiver are static while the network remains
consistent. In such cases, MPTCP achieves almost 1.7× throughput com-
pared to a single TCP over either LTE connection. However, MPTCP
performance degrades significantly with the increasing mobility of the RPi,
as shown in Figure 4.7a. In slow-speed (< 10kmph) scenarios, we observe
a 37% decrease in overall throughput over two LTE links using MPTCP
while parallel tests using TCP over single LTE revealed a reduction of 10%.
The degradation is intensified in high-speed mobility cases (< 100kmph),
which happens to be the prominent network configuration smart vehicular
applications. At such speeds, MPTCP throughput can observe up to 65%
drops resulting in even lower performance than the single TCP connection.
The result is highly intriguing and directly contradicts the design goal of
MPTCP, i.e. always perform better or at-par TCP.

MPTCP’s performance degeneration is not just limited to file down-
loads but also impacts streaming services over edge clouds, such as gaming,
video delivery etc.. Figure 4.7b shows the average bitrate of three different
segment-sized DASH streams over MPTCP. We observe up to 49% drop
in video bitrate for constant streams (1-second segments) when the RPi is
moving at high speeds. In such a case, the receiver struggled to maintain a
consistent 1080p stream quality over a combination of two LTE connections
when even a single LTE theoretically supports the bandwidth required for
that quality. We attribute the primary reason for this degradation to MP-
TCP’s inability to support data transfers at high speeds, as the receiver
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Figure 4.8: Effect of network events on MPTCP performance.

switched video quality more than four times in one minute of playback (as
shown in Figure 4.7c). Closer analysis via data traces reveals that MPTCP
fails to take advantage of bandwidth gains using two LTE connections in
high mobility scenarios and the resulting path utilization over both be-
comes excessively skewed. This decline in performance is primarily due to:
(i) impact of the last-mile link changes with increasing mobility, and (ii)
sub-optimal design and functioning of the default minSRTT scheduler.

Impact of last-mile link changes

A user experiences both changes in signal strength (δsignal) and handovers
as it moves closer/farther from the basestation. Figure 4.8 shows how
MPTCP behaves as either connection experiences handovers and drops in
signal strength (collectively denoted as network events in this thesis). We
first focus our attention on Figure 4.8a and 4.8b which show a snippet of
MPTCP throughput, RTT behavior as one of the connection experiences
a signal drop and handover (vertical line) respectively. The figures also
show the simultaneous throughput of individual TCP flows over each LTE
connection. It is evident from the results that the occurrence of a network
event induces a spike in RTT of that connection. In the case of signal drops
the resulting RTT spikes can grow almost twice its average value, which
in turn results in 22% decline in MPTCP throughput. On the other hand,
for handovers, the RTT spikes are exceedingly intense compared to that
observed in signal drops, reaching as large as 15 times its average value
(see Figure 4.8c).

Our analysis reveals the primary reason for the elevation in RTT in
response to a network event is due to bufferbloat [37]. In Figure 4.8a, LTE
Radio Resource Management (RRM) at the basestation switches to a lower
link rate to accommodate for increased distance from the user (denoted by
the decrease in signal strength). This leads to increased packet buffering
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Figure 4.9: Behavior of minSRTT scheduler for varying RTT.

at either end of the last-mile link, i.e. user equipment and basestation,
as the transport protocol remains unaware of the reduced link rate. The
resulting packets on the path encounter additional queueing delay which
causes spikes in RTT. In the case of handovers, the RTT spike is primarily
due to temporary link outages as LTE follows a hard handover strategy
(based on “break-before-make”) [31].

At high speeds, both LTE connections can experience extremely fre-
quent and often overlapping network events. The shaded region in Fig-
ure 4.8 reveals that the recovery time for the RTT of the affected subflow
from a network event can last as long as 40 seconds and impacts a signifi-
cant share of subsequent packets sent on that path.

Analyzing the workings of MPTCP

An interesting observation from our measurements was the difference in
behavior of MPTCP and TCP in response to network events. Figure 4.8
shows that signal drops and handovers affect MPTCP throughput much
more than TCP. The results are quite intriguing as intuitively MPTCP is
simply a combination of two parallel TCP connections. Further analysis
revealed the root cause for this behavior to be the minSRTT scheduler and
out-of-order buffer at the receiver.

Figure 4.9 shows the throughput and RTTs of both MPTCP subflows.
Consider closely the RTT of Flow 1. The RTT captures in a lagged manner
the impact of scheduling decisions on the subflow. High RTT values (12-
14s) correspond to the time when the subflow was assigned packets by the
scheduler while there was a significantly high queuing delay on the path.
However, the scheduler remained impervious to the increased buffering as
the RTT remained lower compared to the other path. The sharp dip around
14s captures the transition from when the flow was stopped being assigned
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packets by the scheduler due to high RTT. These packets encounter a lower
queue occupancy which causes the dip. The scheduler notices the lower
RTT and switches back to Flow 1, which results in increasing RTT from
16-18s. Apart from constantly playing catch-up with better performing
subflow in case of frequent network events, minSRTT also causes significantly
high out-of-order delivery at the receiver.

We can observe in Figure 4.8 that while a signal drop only impacts the
performance of the affected subflow, handovers result in throughput drop
on both LTE connections. On closer inspection, we find that the receive
buffer stalling impacts MPTCP performance. With increasing mobility,
both LTE links encounter frequent network events (often) simultaneously
which results in elevated RTTs of both connections. The scheduling de-
cisions by minSRTT does not account for additional intermittent delays on
the subflow and the resulting packet arrives later than expected at the re-
ceiver. This increases the number of out-of-order deliveries at the receiver,
as evident from Figure 4.9c. As perceived from the figure, MPTCP receive
buffer size increases with increasing mobility speeds. Larger the buffer oc-
cupancy, longer a packet waits in the kernel to be delivered “in-order” to
the application. If the network remains unstable for an increased duration,
the buffer reaches its maximum capacity and the receiver can no longer
accommodate the arriving packets. This remains the case until there is
available space in the receive buffer. As a result, MPTCP experiences an
overall drop in throughput over handover in Figure 4.8b.

4.3.3 Alleviating bufferbloat in MPTCP

The previous section shows that variable delays on access paths is the pri-
mary reason for degradation in MPTCP performance at high mobility. As
minSRTT does not account for such delays in its scheduling decisions, large
queue build ups can often happen at the last-mile, which in turn results in
increased out-of-order deliveries at the receiver [120]. It becomes obvious
that monitoring the presence of queue build-ups at either end of the last-
mile link (user or access point) would help alleviate the problem. However,
this is easier said than done. A majority of access points at the last-mile
are heavily controlled and managed by their providers, and do not share
information other than what is necessary for their functionality. Cellular
network providers are well-known for carefully configuring their network
according to promised QoE, and a majority of WiFi access points utilize
proprietary firmware. Therefore, we focus our attention on the user equip-
ment as it aims to be an integral component of edge clouds. In particular,
we concentrate on providing solutions for assisting high-rate upload traffic,
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which is necessary for data sharing within an edge platform. In such a case,
as discussed in the previous section, the edge server can encounter high oc-
cupancy in the local NIC queue. The scenario we tackle is not limited to
cellular connections but spans all constrained wireless networks where a
data packet may be required to wait for the channel to become available.

Before we describe our solution, we first dissect the functionality of
minSRTT to identify the reason behind increased queueing delays. The
default scheduler sends packets on the TCP connection with lowest SRTT
to the receiver. The reliance on the SRTT metric for scheduling decisions
is the cause of the problem. We explain this as follows. Firstly, per-packet
instantaneous RTT itself is a delayed metric for gauging delays on the
path as it is updated once an acknowledgment of the packet arrives at the
sender. If the data packet encounters intermediate delays during delivery,
such as in LTE, sender-side TCP (by default) smoothens it out with its pre-
existing knowledge of RTT for that path. The instantaneous RTT is given
much smaller weight (0.2 in practice). This exercise is carried out as TCP
considers intermediate elevations in RTT as outliers and not representative
of the behavior of that network. In this case, minSRTT continues to insert
packets on its assumption of the better performing connection until the
excessive delay due to queueing starts to reflect in the SRTT. We argue
that due to this delayed feedback mechanism, MPTCP loses out on many
opportunities of scheduling packets to subflow with lower queue delay.

Considering the motivations above, we design a custom scheduler for
MPTCP, QAware which is published in Publication IV. QAware aims to
maximize end-to-end throughput over all MPTCP subflows by better esti-
mating segmented delays on the path. The core idea is explained as follows.
Consider a simplified queue-theoretic abstraction of an end-to-end MPTCP
connection, illustrated in Figure 4.10. The shaded region signifies the inter-
nals of sender device equipped with two TCP flows to the receiver. Packets
scheduled over either TCP connection (denoted as service facility in the
figure) encounters the following delays: (i) buffering at the underlying NIC
queue with a service rate μ, (ii) service delay which includes access net-
work and intermittent nodes on the path. If incoming packet rate from the
application exceeds the service rate of NIC queue, a scheduled packet may
find other packets waiting in the service facility. Bear in mind, we consider
a scenario where other non-MPTCP protocols are also actively using the
NIC alongside MPTCP e.g. UDP. In this case, an MPCTP packet waits for
all other packets to finish service before it enters the server of the facility.

Algorithm 1 captures the workflow of QAware. Consider K service
facilities indexed 1, . . . ,K. Let facility k have a service rate of μk. Let
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with two subflows.

Algorithm 1 QAware Algorithm

1: Inputs:
Available Subflows SF∈ {1, . . . , n}

2: Initialize at packet arrival Pk:
minService ← 0xFFFFFFFF

selectedSubflow ← NONE
3: //The function below will return best subflow for packet Pk

4: for each subflow ∈SF do
5: nk ← queueSize(subflow)

6: if nk �= 0 then
7: Δt ← sampling time
8: Δpackets ← packets dequeued in Δt
9: Wk ← [1/(Δpackets

Δt )]nk

10: else
11: Wk ← 0

12: Ŵ ← αŴ + (1− α)Wk

13: Ŝk = [RTT− Ŵ ]
14: TSk = (nk + 1)Ŝk

15: if TSk < minService then
16: minService ← TSk

17: selectedSubflow ← subflow
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nk(t) be the number of packets waiting for service in facility k at time
t. The expected service time (1/μk) of a packet in that facility can be
estimated as follows. The RTT includes the time packet waits in the device
driver queue of its assigned subflow before it starts service and the time
it spends in service. Let Wi be the time the packet i waits in the queue
which can be estimated by the sender by constantly monitoring the NIC
queue. The time Xi that the packet spends in service begins when the
packet enters the NIC for transmission and ends when a TCP ACK for the
packet is received, i.e. Xi = RTTi −Wi. Let Ŝk be the current estimate of
the average service time of facility k. On receipt of a TCP ACK for packet
i, QAware updates

Ŝk = αŜk + (1− α)Xi, (4.6)

where 0 < α < 1 applies weights to the last estimate of the average and the
current service time (the default being 0.8). Therefore, QAware schedules
to the TCP subflow k that satisfies least Ŝk for the packet (line 14 in
Algorithm 1).

We implement QAware as a modular scheduler for MPTCP kernel ver-
sion 0.93 and our implementation is open-source [91]. We evaluate and
compare QAware performance for a variety of application workloads and
network configurations via both network simulator-3 (ns-3) and real-world
testing. Along with comparing our results with that from the default
scheduling policy, i.e. minSRTT, we also compare the performance gains
over other state-of-the-art schedulers recently proposed by researchers, such
as Delay Aware Packet Scheduler (DAPS) [68], Blocking Estimation based
Scheduler (BLEST) [36] and Earliest Completion First (ECF) [72]. The
key results are as follows:

i) QAware achieves 40% increase in upload throughput compared to
state-of-the-art when both subflows offer the same bandwidth. In case
the paths have unequal bandwidth availability, the gains can be as high
as 50%.

ii) For paths experiencing variable packet losses, QAware can detect and
exploit both subflows efficiently and achieve 32% throughput improve-
ment over minSRTT.

iii) QAware is also applicable in traditional CDN applications over the
edge as it is found to improve the performance of video streaming
services using DASH [57] by 10%.

Further details of QAware’s implementation and evaluation can be found
in Publication IV attached to this thesis.
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Chapter 5

Platform solutions for Edge

The previous chapters of this thesis focused on providing working solutions
for an open edge infrastructure which does not restrict itself to management
and control of a specific cloud provider. The scale and service required for
adopting edge computing for satiating the requirements of emerging appli-
cations begs for the participation of independent entities. The Edge-Fog
Cloud , discussed in Chapter 3, can be considered as an amalgamation of
such managing entities that offer their compute-capable resources. Sev-
eral different managing entities that participate in the Edge-Fog Cloud are
independent users (e.g. smartphone owners), telecom providers and small-
to-mid cloud providers. For the rest of the thesis, we denote such entities as
Independent Edge Providers (IEP). It must be noted that an IEP is not just
limited to managing a single resource but can host and maintain multiple
servers in its authority (e.g. cellular provider hosting Fog servers).

The solutions discussed in Chapter 4 were designed to enhance the
functionality of servers managed by a single IEP. To elevate the edge cloud
as a viable platform for hosting application services, transparent utiliza-
tion of edge servers across multiple operational IEPs is required. However,
resource cooperation across authoritative boundaries presents a unique re-
search challenge. While Edge-Fog Cloud envisions a future where multiple
IEPs are aware of each other’s existence which allows them to collaborate;
in reality, an edge provider operates in a siloed environment and remains
agnostic of other IEPs operating on the platform. In absence of standard-
ized technologies which allow seamless interaction of servers belonging to
different IEPs, the Edge-Fog Cloud platform will remain unable to support
the need of application developers to run their services in a flexible manner.
Consider the following scenario. An application owner deploys its applica-
tion, composed of both back-end and front-end services, on Edge-Fog Cloud
facility in the northern USA. As the popularity of the application grows,
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user crowds from the other half of the earth, e.g., southeast Asia, starts sub-
scribing to the application. Situations such as this are commonplace as the
Internet becomes cheaper and more accessible to users across the globe [58].
Let’s assume that the cloud provider only offers edge facilities in the USA
but not in Southeast Asia. Attempts of administrative personnel to find
local IEPs operational in that region are slow and inefficient [142]. Such
endeavors are further affected by delays in budget negotiation and ensuring
a homogeneous software stack for supporting the application. Since result-
ing QoS becomes low, the application provider stands at significant risk of
losing this new audience.

While the example above extrapolates the problems of future edge de-
ployments, we argue that the scenario is quite prominent even in the current
cloud computing landscape. Multiple cloud providers (analogous to IEPs)
such as Amazon, Google, Microsoft etc. allow application owners access to
their infrastructure via specially designed protocols and technologies which
bear little-to-no resemblance to those offered by another provider. This
results in a minimal collaboration opportunity between the infrastructure
of different providers and restricts the application developers to use tech-
nologies of a single cloud platform. The solutions we present in this chapter
address several such challenges described above.

• We design an open framework for edge clouds, Elastic Extensi-
ble Cloud (ExEC), which unifies the infrastructure of multiple IEPs
in the Edge-Fog Cloud . ExEC enables the cloud provider hosting
the application to detect emergent request flows for that service and
discover availability of IEPs near the request origin to allow for bet-
ter serviceability. The platform also facilitates application owners to
transparently negotiate with IEPs such that both parties can comply
with the required terms of service. ExEC is published in Publication
V attached to this thesis [141].

• To utilize the resources across multiple IEPs discovered by ExEC,
we develop Intelligent Container (ICON) which leverages exist-
ing container technologies [25,33,42,43,86] for deploying application
services. However, ICON’s objectives differ from such technologies
in a significant way. While existing containerized solutions require
constant monitoring for service migration and replication, ICON “in-
telligently” discovers and autonomously moves virtualized services to
edge servers on the platform. This self-operation is derived from high-
level control thresholds set by the application owner and significantly
reduces the management overhead compared to traditional methods.
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The salient feature of ICON is to enable the migration of services
across multiple IEPs, making it desirable for application owners who
want to utilize resources from multiple cloud providers without any
configuration hassles. ICON is published in Publication VI attached
with to thesis [140].

We design our platform solutions over open-source, well-maintained
standardized protocols such that their applicability and usability in real
environments can be maximized.

5.1 Unifying Multiple Edge Providers

The primary aim of ExEC is to enable all IEPs, such as ISPs managing
Mobile Clouds (MC), crowdsourced edge resources and cloud providers, to
operate on a homogeneous Edge-Fog Cloud platform despite varied configu-
ration, ownership and management. For this purpose, we rest our solution
on the assumption that interested IEPs are willing to support all neces-
sary technologies for ExEC operation. We believe that the assumption is
well-placed as it allows interested IEPs to operate in a more substantial
infrastructure umbrella, which in turn increases their extent of revenue.

Figure 5.1 illustrates the operation of ExEC. ExEC employs an edge or-
chestrator within existing Edge-Fog Cloud environment, which allows ExEC
to build its own view of the network. Overall operation is composed of two
stages, i) discovery of on-path IEPs, and ii) negotiation and contractual
agreements between involved entities. For onloading services onto the se-
lected edge servers, ExEC transfers the control to ICON.

5.1.1 Discovery of edge providers in the network

Figure 5.2 shows the discovery mechanism of ExEC. In its first phase, ExEC
orchestrator monitors the location and density of incoming user requests
for a particular application. The objective of the orchestrator in this phase
is to discover best-suited IEPs (in terms of end-to-end latency from the
user) for offloading the service. If the orchestrator observes requests from
a previously unseen subnet, it initiates a network tomography procedure.
The procedure is performed by running a traceroute [76] to the user’s IP.
This allows the orchestrator to record the latencies of the user to on-path
routers along with their IP addresses (denoted by path “Traceroute”).

ExEC assumes that the IEPs register themselves in their local DNS
domain and their resources as a DNS service (SRV) record [61] with a
consistent service name (e.g. edge). The assumption is essential to the
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effective functioning of ExEC discovery mechanism as it allows IEPs to
become discoverable on the network. Considering that IEPs satisfy this re-
quirement, ExEC identifies DNS domains from the IP addresses collected in
the first step through DNS PTR records or by augmenting whois informa-
tion. This step is denoted by the path “Identify domains” in Figure 5.2
which shows that ExEC discovers two domains on path, Domain A and
Domain B. ExEC further queries the DNS for resources for edge service
in the discovered zones (path “Edge SRV query”) for which a possible
reply can be as follows.

edge . t cp . domainA . com . 86400 IN SRV 10 30 5060
mecServer . domainA . com .

mecServer . domainA . com . 86400 IN A 192 . 168 . 121 . 30

The SRV record for DNS Domain A shows the presence of a TCP server
which is accessible through IP address 192.168.121.30 and port 5060. ExEC
orchestrator uses this information to build a topology, with intrinsic detail
(IP address, user latency) of all edge servers in discovered domains, which
lie on the path to end-users. Based on this, ExEC can filter a set of edge
servers (irrespective of their managing IEP) based on the minimum latency
requirement imposed by the application owner.
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5.1.2 Negotiation and agreements with edge providers

Once ExEC collects the information of potential IEPs for deploying the
service, it initiates the negotiation procedure by entering a contractual
agreement with the IEP. The communication for agreement is divided into
two broad steps.

Initial Negotiation. The orchestrator contacts the management service
of the target IEP with a hello message. The message contains several
service-level preferences for optimal application operation e.g. possible time
of operation, configuration requirements etc. If the IEP agrees with pro-
posed likings, it acknowledges the orchestrator with available time slots for
deployment and maximum hardware capability which can be exploited by
the service. If ExEC finds IEP constraints in line with the application QoS,
it initiates the process to form a contractual agreement.

Agreement. The agreement between IEP and orchestrator binds both
parties for the duration of application service. In order to form an agree-
ment between the two parties, the de-facto method is to utilize a third
trusted entity. This role is usually fulfilled by a third-party broker [27, 55]
which can be trusted by all participating entities. However, in the case
of edge computing, the sheer scale and frequency of incorporating IEPs
calls for a process which can be distributed and conclude agreements on-
the-fly. Therefore, ExEC utilizes smart contracts to handle payments and
concordance [12, 39, 41]. Specifically, smart contracts are blockchain-based
self-executing contracts wherein the participants achieving consensus ver-
ify the correctness of the execution. Unlike centralized broker systems,
smart contract presents itself as a peer-to-peer solution that can achieve
agreement on an Internet scale.

The IEP sends the orchestrator-required details for formulating a con-
tractual agreement, e.g. price for service, chosen time slot, ownership ver-
ification etc.. Upon receiving the details, the orchestrator calls the smart
contract method for initiating an agreement with the IEP. At the end of
the contractual agreement process, ExEC orchestrator green-lists the IEP
for service placement with a positive acknowledgment message to the IEP.

As the contractual agreement also involves a transfer of funds between
parties, there is a possibility of fraud in the system. One such example is as
follows. A malicious IEP can advertise fake configurations to the orchestra-
tor at agreement time but does not fulfill its promises in the Service Level
Agreement (SLA) at runtime. To avoid such deceptions, future versions
of ExEC can incorporate research solutions which allow smart contracts
to hold off payment to the seller until the buyer verifies and acknowledges
service satisfaction [130].
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5.2 Service Placement on IEPs

Once ExEC partners with IEPs to host application services, the next ob-
vious question that needs to be answered is, where and how do we deploy
the application service amongst all discovered edge servers? The question
has been well-explored in the context of Service Function Chaining (SFC)
wherein the application services are virtualized using container technologies
e.g. Docker [33], Kubernetes [86], Rocket [25] etc. and deployed in virtual
infrastructure within a single cloud platform [95]. In such environments,
the primary objective of placing application services is to maintain a “ser-
vice chain”, i.e. multiple services follow a hierarchical ordering depending
on goals of the application. For example, Netflix may distribute its com-
ponent services like parental control, traffic encryption and acceleration, in
that particular order, for optimal functionality. Even in controlled data-
center environments, formation, migration and replication of such complex,
end-to-end services require fine-grained control, which usually involves solv-
ing an optimization problem over global view of the infrastructure [15]. The
solution to service placement requires optimization over several constraints
such as budget, delay to end-users, delays between services, application
user QoS and SLA requirements etc. [117]. Therefore, the complexity of
the problem can become quite large and may incur a significant manage-
ment overhead for the cloud provider.

5.2.1 Limitations for placing services on Edge

Figure 5.3 illustrates an end-to-end service chain comprising of two distinct
services over the Edge-Fog Cloud infrastructure composed of two IEPs.
Both IEPs operate in different DNS domains, wherein IEP1 manages three
edge servers while IEP2 hosts two. The figure also shows that IEP1 is
closest to the clients of the application and, therefore, can offer better QoS
than IEP2. Let us assume that IEP1 demands a higher price for service
deployment than IEP2. The chain terminates at the Fog platform, which
is composed of two servers. While there exist several possible service place-
ment combinations, we show two probable examples, SFC1 and SFC2, in
the figure. SFC1 deploys both services within the IEP1 platform and can,
therefore, enjoy low latency to the client along with the homogeneous man-
agement by the same provider. However, the benefits accompany the higher
costs charged by IEP1. SFC2, on the other hand, distributes the services
over both providers so that the front-facing service enjoys lower latency on
IEP1 while the other service operates in IEP2 infrastructure. While SFC2
allows the application owner to limit its placement expenditure, it suffers



5.2 Service Placement on IEPs 61

IEP 1

IEP 2

Core
Network

Fog Platform

SFC 1
SFC 2

ES1 ES2 ES3

ES1 ES2

FS1 FS2

Client

Service

Figure 5.3: Example of application service placement on Edge-Fog Cloud .

from inflexibility to adapt to variable user requests due to management
overheads for incorporating two different providers.

Considering the example above, we summarize several constraints for
deploying services in Edge-Fog Cloud .

1. The Edge-Fog Cloud infrastructure is highly susceptible to changes –
with IEPs constantly joining and leaving the platform. While ExEC
discovers IEPs that lie on the path to emerging client requests, exist-
ing techniques require a “global” view of the infrastructure for optimal
service placement.

2. Unlike datacenters, crowdsourced Edge resources can offer significant
heterogeneity in their hardware capability, e.g. in processing, net-
work distribution, deployment costs etc. Incorporating this in existing
placement problems adds further complexity to deployment decisions.
This can result in significant placement delays and, therefore, impact
client QoS.

3. As discussed in the example, the coordination overhead between dif-
ferent IEPs participating in Edge-Fog Cloud can cause significant de-
lays in service migration, replication and termination.

The solutions presented in this chapter implicitly assume that all edge
servers participating in the platform must be able to support container
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virtualization technologies. However, this may not be true for server types
discussed in approaches such as [99]. In such cases, we propose the following
alternative. The independent edge provider utilizes a resource orchestrator,
which is a server capable of supporting virtualized application services.
While the orchestrator acts as the face for deploying applications for that
platform, it utilizes task deployment algorithms (e.g. LPCF proposed in
Chapter 3) to distribute application tasks on underlying edge resources.

5.2.2 Intelligent Container Overlays (ICON)

Considering the constraints above, there is a need for a flexible service
management scheme which offers resilience and adaptation over infrastruc-
ture variability of Edge-Fog Cloud . To this purpose, we design Intelligent
Containers (ICON) [140], the overview of which is illustrated in Figure 5.4.

As the name suggests, ICONs are self-managing virtualized services
(such as containers, virtual machines, unikernels etc.) which can “intel-
ligently” migrate/replicate/terminate between different IEPs participating
in the Edge-Fog Cloud . ICONs remove the management overhead for appli-
cation owners as it opts for a completely decentralized decision and control
scheme. ICONs form a tree-shaped logical control overlay, the root of which
is the origin application service. The tree grows organically downwards as
ICONs deploy replicas on other servers in Edge-Fog Cloud , each replica
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becoming a child of its parent. Such a hierarchical control structure allow
ICONs to employ fine-grained management over services on the platform,
one in which the communication flow and control is limited to single hop.
To elucidate, the child ICON reports its local information (request per sec-
ond, cost incurred) only to its immediate parent, which aggregates it with
its own information and sends it further upstream. Every ICON can inde-
pendently take one of the following decisions: (i) spawn a child to another
server, (ii) migrate to a new location or (iii) terminate itself. This allows
each ICON to determine its own state without being overwhelmed by the
responsibility of managing its children. The self-managing overlay structure
of ICON frees the application owner from the vice of “micromanagement”
and allows the application services to react faster to environmental changes.

We now briefly describe the lifecycle of ICON, a high-level description
of which is shown in Figure 5.4. The life of an ICON can be divided into
three phases: Initialization, Active and Termination.

Initialization. The application owner deploys each service in the chain as
a virtualized container managed by ICON. The owner allocates a fixed bud-
get for ICON operation along with the SLA requirements, which impacts
the extent of replication the service can achieve in its lifetime.

Active. Each ICON monitors the frequency, location and pattern of in-
coming user requests and remains deployed at the current location until
the request density remains consistent. If an ICON detects a change in the
request pattern, it requests ExEC to discover IEPs in subnets close to new
request location. ExEC replies with a renewed list of potential IEPs which
have agreed to host the service1 along with the configurations of the edge
servers in their management. ICON calculates utility (Uj) of each edge
server as follows.

Uj = (1− w)bj + w
∑
∀i∈S

λili,j (5.1)

Equation 5.1 shows the utility function for edge server at location j which
serves λi requests per second from a subnet i. bj is the budget cost of run-
ning ICON at location j, li,j is the latency experienced by users (or ICON
for service earlier in the chain) from subnet i if served from network loca-
tion j. w is the weight parameter (0 ≤ w ≤ 1) which allows the application
owner to tune the priority of cost or latency objective. Depending on the
available budget, the utility of the current edge server and utility of the
target edge server, ICON can perform one of the following operations.

1We assume that all participating edge servers support container technologies.
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i) Replication: If both current and target edge servers have high util-
ity, ICON may choose to deploy a replica of itself at the target edge
server. The resulting container is an independent ICON which takes a
percentage of the budget from origin ICON (depending on the ratio of
utilities of both edge servers) for its own future decisions.

ii) Migration: If the utility of the current server is far less than the target
location, the ICON migrates itself to the new location and retains its
allocated budget. Any user requests arriving at the previous ICON
location is redirected to the new server by a redirection stub.

For migration and replication, ICONs utilize several well-explored tech-
niques which cover all applicable corner cases such as application state,
client redirection etc. [17, 52, 74,88,134].

Termination. If the utility of ICON dips below the threshold specified by
the application owner and ICON is unable to find any new location which
requires service, it decides to terminate itself. Although this allows the
application owner to refocus the budget requirements of ICONs in locations
which require more service, it also opens up two obvious issues in ICON
operation. (i) how do we maintain the tree-like management overlay if the
parent ICON decides to terminate?, and (ii) what happens to any future
requests which were initially to be handled by the now-extinct ICON?

We tackle the first question by reshuffling the control order of underly-
ing branches of the affected ICON. The terminating container assigns the
control of its descendants to its parent, who is then informed of the change
in hierarchy. The original budget of the terminating ICON is redistributed
amongst the children depending on their (and their sub-branches) utility
(calculated via Equation 5.1). For the second issue, ICONs utilize a redi-
rection stub, similar to the one used in the migration phase. As the name
suggests, the stub redirects any incoming client requests for terminated
ICON to its previous parent.

In case an ICON exceeds its budget requirement but still requires fur-
ther service, it contacts its parent to allocate more budget for an effective
application operation. If the parent is unable to satisfy the demand, it
forwards the request up the tree until it reaches the application owner who
can assign more money to be redistributed ICONs. Alternatively, if the
owner decides not to satisfy the budget requirement, there may be overall
re-allocation of budget across all branches, which may result in migration
and termination of near obsolete ICONs.

The novel design of ICON lifecycle allows the containers to grow to-
wards the locations which observe larger request densities and prune obso-
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lete branches for minimizing overall deployment expenditure. Although the
control operation of ICON is self-reliant, it is also susceptible to several op-
erational and security flaws. One open challenge is deploying ICONs in an
untrusted/unmanaged environment. While the IEP servers are protected
by virtualization, ICONs are vulnerable to malicious IEPs examining their
code and application data. One solution is to allow application owners
to express high security requirement in their configuration which curtails
ICON deployment to edge servers which support Trusted Execution Envi-
ronments (TEE) [115]. With TEEs, the application is executed in a pro-
tected memory region of the server which even non-accessible for users with
root privileges. Although the TEE technology is still in its nascent stages
of developement and comes with several drawbacks [7], it shows promise
as it is a prominent research area which is supported by leading processor
manufacturers such as Intel [49], ARM [29] etc.

To summarize, in this chapter we presented two novel platform solutions
for Edge-Fog Cloud , namely ExEC and ICON, which opens an opportunity
for third-party edge providers and makes it possible for applications to
unfold dynamically towards the edge without any administrative overhead.
Both solutions utilize existing standardized technologies for their operation
and allow for easier integration of edge clouds in the current cloud-dominant
environment. Not only are the solutions presented based on already existing
protocols and technology, thus making them easy to incorporate, they are
also designed as modular blocks and can easily be integrated in emerging
virtualization technologies.
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Chapter 6

Conclusion

This thesis proposed several solutions necessary for the adoption of edge
computing in the current cloud-dominant environment, which are summa-
rized in this chapter. We start by revisiting the research questions posed at
the beginning of the thesis in Section 1.1 of Chapter 1. We further discuss
shortcomings of the presented solutions and avenues for future work.

6.1 Research Questions Revisited

RQ1. Where should the cloud providers install compute servers
in the physical world to satisfy the application requirements
at the “edge”?

To emulate datacenter-like performance, edge servers installed by a
cloud provider require constant monitoring and maintenance. We
find that existing basestation locations in an area offers a good fit
for future edge deployments as it is already heavily managed by cellu-
lar providers. However, provisioning all cellular towers with an edge
server is not worthwhile for cloud providers. While deployment of cell
towers is usually evenly distributed in the area for consistent connec-
tivity, locations of server deployment must be driven by the need to
maximize the density of request resolution and server utilization. To
this purpose, we present Anveshak in Section 3.2 of Chapter 3 which
prioritizes basestation locations for deploying servers by predicting
the future density of user requests arising at that location along with
a number of competing crowdsourced resources in the vicinity.

RQ2. How can independent entities enroll their compute resources
in an existing edge cloud platform?
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Non-conventional compute resources such as WiFi AP, smart speak-
ers, smartphones, desktops etc. can fulfill the compute requirements
of edge applications while maintaining a low latency to the end-user.
This makes their presence in edge clouds crucial for supporting sev-
eral latency-critical applications. In Section 3.1 of Chapter 3, we
introduce Edge-Fog Cloud architecture which merges the functional-
ity of independent resources with a back-end of managed edge servers
operating in a region. Our solution unifies the benefits of several pre-
vious edge cloud approaches and allows multiple cloud providers and
heterogeneous edge servers to operate on a single platform.

RQ3. How to utilize availability and variability of edge servers for
computing application tasks with different requirements?

In Section 4.1 of Chapter 4, we propose two task allocation frame-
works designed for clouds, Least Processing Cost First (LPCF) and
energy-efficient LPCF (eLPCF). Both frameworks distribute appli-
cation jobs on edge servers by actively considering the variability in
application tasks and edge server characteristics. Every server may
be equipped with different hardware which results in several differ-
ences in processing, network and energy utilization while computing
the same task. Similarly, an application can be distributed into sev-
eral tasks which may require different levels of processing and coor-
dination between servers. We design our algorithms to discover the
best subset of resources which can minimize both task completion
time and the energy used by the servers throughout task processing.

RQ4. What techniques should be employed for pre-caching com-
putational data within edge servers to improve system prompt-
ness?

We find that fetching the required data at the start of every computa-
tion can result in significant processing delays, due to network latency
between the edge server and the Data Store. However, pre-caching
data at the edge is a challenge due to shorter temporal relevance of
the data, limited cache size and undetermined number of servers for
each arising task. In Section 4.2 of Chapter 4, this thesis provides an
edge caching mechanism which leverages the characteristics of pre-
existing data in a server’s cache to predict and store the prerequisite
data for coming computations. Along with maximizing the probabil-
ity of fetching the required data from neighboring servers instead of
the centralized cloud, our technique also provides causal coherency
to in-computation cached data at the edge.
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RQ5. Can existing network technologies available at the edge sup-
port the requirements imposed by end-applications for op-
timal performance?

We answer this question semi-negatively. We find that edge-dependent
applications can have significantly varying QoE requirements. For
example, even servers with a limited capacity placed somewhere in
the network can support the demands of applications such as IoT,
smart city and smart delivery. On the other hand, AR/VR, auto-
mated vehicles, etc. require constant connectivity with edge servers
for optimal operation. Section 4.3 of Chapter 4 shows that almost
all edge-dependent applications demand mobility support from edge
clouds. Our measurements show that while current wireless tech-
nologies, such as WiFi, LTE etc., can theoretically satiate this need,
they are often unable to support the strict application QoS due to
significant degradation in link performance at high speeds. Analysis
of our results finds the reason to be excessive last-mile link changes.

RQ6. How do we assure datacenter-like network behavior over
edge servers which operate on a public wireless network?

To provide larger bandwidth and reliability over wireless networks,
this thesis explores the possibility of exploiting multiple network
interfaces of an edge server simultaneously using Multipath TCP
(MPTCP). However, our studies show that mobility impacts MP-
TCP performance more severely than regular TCP, primarily due
to excessive packet buffering on one of the paths. To this purpose,
we develop QAware, which is a cross-layer scheduler for MPTCP.
QAware actively estimates link delays due to on-path packet buffer-
ing and proactively counters it by switching to the better performing
connection. Our evaluation in real environments shows that QAware
achieves more than 50% increase in data rates compared to the state-
of-the-art.

RQ7. How can existing cloud virtualization technologies be ex-
ploited to optimize the application service deployment in
edge clouds?

Adoption of existing cloud protocols and technologies in edge com-
puting is necessary for integrating both cloud architectures. How-
ever, we show that due to the existence of multiple cloud providers
at the edge (both independent and managed), a direct port of cur-
rent virtualization solutions is not possible. One of the problems we
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address in this thesis is the discovery of available edge server loca-
tions in the network with their latency to end-users. In Section 5.1
of Chapter 5, we provide a platform solution, ExEC, which enables
this interaction between cloud and edge platforms. We design ExEC
using existing protocols and technologies, and aim to define practices
for integrating edge providers on a single unifying platform on-the-go.

RQ8. How can edge cloud ensure the promised Quality-of-Service
despite the significant variability in user requests and in-
frastructure hardware?

Although ExEC enables discovery of edge servers close to the users,
migration of containerized services to such servers requires the as-
sistance of the application owner. As the user requests at the edge
can be fluctuating and localized, existing container protocols cannot
cope with such variations. In Section 5.2, this thesis provides ICONs
which are self-managing container entities which can make indepen-
dent decisions to migrate and replicate to new servers without the
guidance of the application owner. Moreover, ICONs operation is
not limited within a single edge cloud platform as it is intended to
cross administrative borders of edge providers and benefit from de-
centralized control overlay.

RQ9. How can independent edge providers generate revenue at
par with cloud providers for their service?

This thesis takes the viewpoint that the availability of independent
edge servers is key to guaranteeing the efficient performance of edge
computing. The technical solutions we propose in this thesis enables
a symbiotic relationship between the existing cloud and independent
edge providers. However, we also acknowledge that without a mone-
tary reward for service, the benefits of hosting personal resources at
the edge are minimized. To this end, we design an agreement module
for ICONs which enables cloud providers to settle transactions with
independent providers on the fly. The framework utilizes smart con-
tract technology to ensure a secure, transparent, and fault-tolerant
book-keeping.

6.2 Future Work

This thesis has presented several techniques which allow for a full-fledged
adoption of edge computing in the current infrastructure. While our so-
lutions were designed to complete their required operation, some of our
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approaches can use more granularity. The infrastructure protocols pro-
vided in this thesis require tweaking depending on the exact requirements
of the edge cloud provider (prioritizing bandwidth over processing in task
allocation, supporting data traffic for specific traffic type etc.). Specifically,
the task deployment algorithms assume a direct 1:1 mapping between ap-
plication jobs and the number of servers involved in the computation. This
assumption limits the extent of edge cloud utilization as monolithic jobs
only require a single “fat” server for computation. Future versions of the
algorithm should take design cues from existing cluster computing frame-
works, such as Spark [138] which enable an unequal server-to-job mapping.

Similarly, our platform solution should allow existing application own-
ers to develop required softwares for the edge. For this, we are aware of the
shortcomings in ICON design. Firstly, the control interaction of ICON is
simplified and requires a complex overhaul, of which multiple possibilities
exist. One design choice is to group services by type and have different op-
timization goals for each group, e.g. creating latency-critical and backend
service groups of ICONs. Another possibility is grouping based on respon-
sibility, such as services catered towards crowds in the USA and those in
Europe. Furthermore, the one-hop communication model in ICONs may
not support complex interactions required for services with large dependen-
cies. Future work involves allowing an application owner to configure the
workings of the communication model as per their application requirement.

As edge computing is an up-and-coming concept, it requires significant
attention from the research community to resolve several pressing issues ob-
structing its real-world adoption. Edge servers equipped with specifically
designed hardware and communication technologies can impart huge im-
provements in application performance. Utilizing 5G, fiber-wireless (FiWi)
and FPGA-based chipsets as networking and processing components re-
spectively are few such directions worth exploring. The issue of security
and trust in edge clouds is also of paramount importance. While this thesis
allows integration of crowdsourced resources, we acknowledge the presence
of security holes due to malicious edge servers attacking the system from
within. To subvert this situation, we proposedly utilized hardware enclaves
(i.e. TEE) in our platform solutions to protect the applications from attack.
However, TEE’s are known to instill significant performance overheads on
applications due to their restrictive operation [7]. Furthermore, it does not
subvert infrastructure attacks on other edge servers in the system such as
sharing wrong results, denial-of-service, network overload etc. Further re-
search is required for ensuring privacy and security of application providers
and edge resource vendors for an effective edge cloud infrastructure.
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