
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Have your cake and eat it too: Analyzing the
energy consumption of blockchain protocols

Stefan Vladov

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Have your cake and eat it too: Analyzing the
energy consumption of blockchain protocols

Auf zwei Hochzeiten gleichzeitig tanzen:
Energieverbrauchsanalyse von

Blockchain-Protokollen

Author: Stefan Vladov
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: Dr. Ph.D. Nitinder Mohan
Submission Date: 15.07.2022

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.07.2022 Stefan Vladov

Acknowledgments

I would like to thank my advisor, Dr. Ph.D. Nitinder Mohan for his continuous
support and helpful feedback throughout the entire thesis. I also want to thank the
Chair of Connected Mobility at TUM for the testbed and devices which made my
experiments possible. Finally, I’d like to thank my friends and family for their support
during my studies.

Abstract

The energy costs for blockchain protocols are often the center of heated discussion.
Latest figures place the annual energy consumption of Bitcoin and Ethereum as 143
TWh and 62.75 TWh respectively. This is in the annual energy consumption range of
countries with inhabitants in the millions, like Bangladesh. In this thesis we review
the existing literature on blockchain energy consumption and what are their estimated
figures. In addition, we will analyse the causes of the high energy consumption and its
impacts on the environment.

Little research has been done on the energy consumption on granular levels of
blockchain systems, for example a single network peer or how a small private network
scale. Therefore, we will try to fill this gap by performing experiments on small
scale networks and measuring their energy consumption. We will focus mainly on
Ethereum’s Proof-of-Work and Proof-of-Authority consensus algorithms, Ethash and
Clique, as well as the permissioned blockchain Hyperledger Fabric.

Finally, we will comment on the future tendencies in blockchain systems, especially
on the migration to Ethereum 2.0, which promises to drastically reduce energy costs
and improve performance.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1
1.1. Problem statement . 3
1.2. Thesis Approach and Outline . 3

2. Background and Related Work 4
2.1. Consensus protocols . 4
2.2. Proof of Work (PoW) . 4

2.2.1. Ethereum . 6
2.3. Proof-Of-Stake (PoS) . 12

2.3.1. Ethereum 2.0 . 12
2.4. Proof-Of-Authority (PoA) . 14

2.4.1. Clique . 14
2.5. BFT and CFT . 15

2.5.1. Hyperledger Fabric . 15
2.6. Related Work . 18

2.6.1. Global energy consumption . 18
2.6.2. Non-PoW blockchains . 21
2.6.3. Contribution . 22

3. Experiment and Testbed Setup 23
3.1. Testbed . 23

3.1.1. Software . 24
3.2. Ethereum Experiment . 25

3.2.1. Test workflow . 26
3.2.2. Genesis configuration . 27

3.3. Hyperledger Fabric Experiment . 27
3.3.1. Test workflow . 28
3.3.2. Configuration . 29

v

Contents

4. Blockchain Evaluation 30
4.1. Geth PoW network . 30

4.1.1. Test parameters . 32
4.1.2. Performance . 32
4.1.3. System resource consumption . 36
4.1.4. Energy consumption . 38
4.1.5. Energy waste . 40

4.2. Geth PoA network . 41
4.2.1. Performance and energy consumption 41

4.3. Hyperledger Fabric . 42

5. Conclusion 44
5.1. Summary . 44

5.1.1. Global energy consumption . 44
5.1.2. Experiment results . 45

5.2. Have your cake and eat it too . 46
5.3. Future Work . 46

A. Reproducability 47
A.1. Networks . 47

A.1.1. Geth network . 47
A.1.2. Fabric network . 48

A.2. Data Collection . 49
A.2.1. pprof . 49
A.2.2. Monsoon PowerTool . 49

List of Figures 50

List of Tables 51

Bibliography 52

vi

1. Introduction

Since Bitcoin’s first inception in 2009 [46], blockchains have become a mainstay of
the global market with a market capitalization of 5.92 Billion USD in 2022, which is
expected to grow with more than 80% until 2030 [9]. Next to the economical interest
there is of course heated discussion regarding the notoriously high energy consumption
of blockchain protocols, especially Bitcoin and Ethereum.

Figure 1.1.: Comparison of bitcoin energy consumption in TWh [5]

Although exact values are unavailable, various estimates can be made. For total
annual energy consumption Statista (figure 1.1) estimates 143 TWh for Bitcoin for the
year 2021 which is significantly more than the country of Bangladesh, which has a
population of roughly 168 million people [3]. The same statistic show also, that bitcoin
consumes about 100 times more energy than Google and Facebook. Furthermore
according to Digieconomis [27] Ethereum consumes 62.75 TWh, which is similar to

1

1. Introduction

Denmark and even the "joke" blockchain Dogecoin [19] consumes about 3.33 TWh,
which is in the range of electricity consumption of Jamaica. In perspective these
values can look more extreme, for example a single Bitcoin transaction consumes
approximately the same energy as a US household for nearly 2 months [27].

Figures this high naturally create a strong social backslash as the expended CO2 in the
energy generation for blockchain systems can have strong environmental impacts. More-
over, intergovernmental organizations such as the International Monetary Fund(IMF)
[17] and European Union(EU) [48] are now actively discussing blockchain protocols
and their environmental impacts. Furthermore, China has banned all blockchain
transactions since September 2021, although the exact reasons are unknown [72]. In
addition, there was a failed petition [52] to ban PoW blockhains in the United Kingdom
parliament.

To address this issue, Ethereum has been planning since 2017 a migration that would
drastically reduce energy consumption [63], which is planned to fully release in 2023.
Moreover, new blockchains systems such as Energy Web [23] are emerging as new
carbon-friendly alternatives to Bitcoin and Ethereum.

Nevertheless, the energy consumption of blockchain protocols warrants detailed dis-
cussion on how it is caused, how it can be addressed and what are possible alternatives.

2

1. Introduction

1.1. Problem statement

Due to the high energy consumption the profitability and the sustainability of blockchains
are questioned not only in the academic field [58], on the political scene [48] and in
the environmental area [66]. Especially with the emergence of stricter environmental
regulations in the European Union [22] and the drive to use efficient and sustainable
systems, blockchain systems are part of a heated debate on their environmental impact.
Therefore it is important to determine if this emerging technology is worth investing in
despite the high energy costs.

For this thesis we have devised the following objectives and research questions:

1. Investigate current research on blockchain energy consumption. What are the
reported values, what is their impact for example on the environment? What is the
current direction blockchain systems are heading in terms of energy efficiency?

2. Run tests on small private networks and examine system resource and energy
consumption. What are the correlations? What energy is wasted?

3. Discuss the feasibility of PoW. How justified is the usage of PoW? Should we
adopt non-PoW blockchains instead?

For the last question, we would like to especially examine the idea of having both a
"public permissionless blockchain" that also has "low energy consumption and high
throughput", or in the context of the thesis "have your cake and eat it too".

1.2. Thesis Approach and Outline

In this thesis we employ a mixture of both literature review and experiments. Ap-
pendixes are added for the more technical parts of the experiments which are mostly
related to reproducibility and not results.

Chapter 2 will first provide background on the analyzed blockchain systems, namely
what is their structure and function. Then it will conclude with a literature review on
energy consumption of blockchain protocols. Chapter 3 will explain the test bed and
the experiments we plan to run. Chapter 4 will then contain the result and evaluation
of the experiments. Finally, Chapter 5 will summarize the results from the literature
review and experiments, and discuss the the topic as a whole.

3

2. Background and Related Work

This chapter will go through the theoretical background used for the evaluation and
conclusion. The first section will go through the different consensus algorithms and
their definitions. Moreover, two frameworks: Ethereum and Hyperledger Fabric, will be
explained more in-depthly in the evaluation phase. Finally, we’ll conclude the chapter
with a literature review on the energy consumption of blockchain protocols.

2.1. Consensus protocols

Blockchain consensus algorithms are responsible for reaching an agreement on the state
of the blockchain across all the nodes participating in the network[70]. Generally the
consensus algorithm in a blockchain depends on the blockchain type: permissionless
and permissioned.

Permissionless or open-access constitute systems where there are no requirements
for entry and participating nodes can remain anonymous. They are easiliy scalable, but
employ a probalistic Byzantine agreement, usually reached via solving a cryptographic
puzzle with a financial incentive(Proof-of-Work) [70].

Permissioned blockchains, on the other hand, focus on a smaller set of authenticated
nodes, which have to be approved to gain access. They usually employ practical
Byzantine-Fault-Tolerance(pBFT) or Crash-Fault-Tolerance(CFT) algorithms that reach
consensus immediately. Their throughput is usually much higher at the cost of worse
scalability due to message overhead [70].

2.2. Proof of Work (PoW)

Proof of Work (PoW) is by far the most notorious consensus algorithm in the context of
energy waste. It can be described as an algorithm where the verifier (or miner in PoW
blockchains) has to expend a certain amount of computational resources in a specified
interval of time to be elected temporarily as the leader in the consensus [41].

The PoW algorithm as described in the original Nakamoto paper consists of three
procedures [46]:

4

2. Background and Related Work

• Chain validation: This step verifies that the transactions field of the block are
valid.

• Chain comparison and extension: The peer compares the chain proposed by
himself or the one broadcasted by his peers and picks the longest one.

• Solution searching: The peer attempts to solve the search puzzle to prove the
validity of the proposed block.

The third step is the most computationally intensive as it involves executing the hash
function H with input x (containing the blockdata and hashcode) and an incremented
nonce value for a specific difficulty h until the following condition is fulfilled:

th = H(x||nonce) ≤ D(h) (2.1)

where th is the target header [70].
As per definition, the probability of a node winning the peer election is entirely

based on its share of computational power. [41] Formally, it can be expressed with the
following formula:

Pri
win =

wi

∑j∈N wj
(2.2)

where N is the set of nodes participating in the network and wi is a generalized
resource of computational power [70]. Most often the computational power is expended
CPU time, but in other variances of the algorithm it can also include memory, disk
storage, time elapsed, etc.

Energy waste

In the paper which coined the PoW algorithm, the authors also mentioned the so called
"bread pudding" algorithm, where the expended computational work, could be used
for the benefit of the network [41]. The PoW algorithm in Bitcoin and Ethereum is
most certainly not a "bread pudding" algorithm as the expended computational work
is not utilized outside of the verification process. Moreover, as previously mentioned,
the PoW algorithm is CPU intensive. Additionally, as microchips (in CPUs, ASICs
and GPUs) are one of the most power consuming components, there is a precedent
to examine the overall power consumption of PoW networks and their environmental
impact.

5

2. Background and Related Work

2.2.1. Ethereum

First introduced in 2015, Ethereum is at the time of writing the blockchain with the
second-highest market cap [14]. Its implementation of the PoW algorithm is called
Ethash and is further explained later in this section.

In this thesis for the PoW evaluation we will be focusing mainly on Ethereum, as
it is currently in an interesting position between Proof-Of-Work and a Proof-Of-Stake
migration called Ethereum 2.0[63]. Nevertheless, Ethereum and Bitcoin share many
similar structures and concepts, and when possible we will draw parallels between
them.

Technical Overview

Ethereum [10] can be imagined as a state machine, replicated across all the network
peers. Each valid transaction submitted by a user is a state transition, that gets executed
on each of the peer’s world state. This state machine is called the EVM [10], and in
comparison to Bitcoin, allows the execution of Turing-Complete code.

Accounts are either owned by a user or a smart contract (more on them later) and
controlled with a private key. Moreover, the account consists of the following elements
[73]:

• nonce - the number of transactions sent by the sender

• balance - number of Wei owned by the address

• storageRoot - hash of the root node of a Merkle Patricia tree

• codeHash - the hash of the EVM of this account, which gets executed during a
message call. This field is immutable.

The block is in this context the collection of state changes [73] that get appended to
the blockchain. Here are some of the key attributes of the Ethereum block:

• parentHash - hash of parent block

• ommersHash - hash of list of ommers block (more about them in Ethash)

• beneficiary - address to payout mine rewards

• difficulty - value for difficulty level of block

• number - number of ancestor blocks

• gasLimit - current gas limit

6

2. Background and Related Work

• gasUsed - total gas used in transactions

• timestamp - Unix’s time() at block inception

• extraData - arbitrary data array. Usually used for miner signatures

• mixHash - used to prove with nonce that a sufficient computation time has been
carried out

• nonce - used to prove with mixHash that a sufficient computation time has been
carried out

gasLimit and gasUsed will be further explained in chapter 4 as they are key to
measuring and determining Ethreum performance. The importance of the ommersHash,
mixHash and nonce will be examined in the Ethash section. Generally, Bitcoin blocks[46]
follow the same structure, but omit the ommerHash, gas features and mixHash.

Transactions, Smart Contracts and Gas

Now, we’ll talk about the functional elements of the EVM, e.g those that lead to state
changes, namely the transactions, smart contracts and gas.

Transactions

A transaction is a cryptographically signed instruction sent to the EVM from an external
actor [73]. External in this case refers to outside of the blockchain, in the sense of an
actual human or software, in comparison to smart contracts which are not allowed to
send messages by themselves. The transaction hash has the following general structure
[73]:

• nonce - number of sent transactions

• gasPrice - price per unit of gas

• gasLimit - maximum amount gas that can be expended during execution of
transaction

• to - target address

• value - amount of Wei(Ethereum) to be transferred

• r, s - contains signature of sender

7

2. Background and Related Work

Smart Contracts

The EVM is a Turing-complete stack-based language, which executes deterministically.
EVM code is usually written in a higher level language, the most popular currently
being Solidity [60].

There are two sub-types of transactions, ones that result in message calls and ones
that create smart contracts.

Initialization message calls include the following field:

• init - EVM-code fragment, which contains the actual code of the smart contract,
which will get executed when this account receives a message call.

The message call transaction in turn contains the following field:

• data - specifies the input data, e.g the arguments which are supplied to the smart
contract

Ethash

Ethash is the current PoW algorithm for Ethereum 1.0 [24]. It is memory-hard in the
sense that it consumes a significant amount of memory. It was initially devised as an
application-specific integrated circuit(ASIC) resistant algorithm. Although Ethhash
ASICs are feasible, they are not economical in the sense that, due to memory bandwidth
being a limiting factor, they can’t outcompete GPUs, which are a commodity hardware
and therefore more easily available [43].

Figure 2.1.: DAG size growth [16]

Memory hardness is achieved with a directed-acyclic-graph(DAG) structure, which
grows linearly overtime. A new one is generated every 30000 blocks. This 125 hour
window is called an epoch. Initially it was 1 GB 2.1, but for the current mainnet it’s
4,91 GB. The size of the DAG therefore constitutes the minimum memory requirement
to operate an Ethereum mining node, hence why the current ideal device for mining
are GPU cards with more than 4GB of memory.

Ethash has the following general workflow [24]:

1. Compute a seed by scanning through the block headers up until the current
epoch.

8

2. Background and Related Work

2. From the seed generate a 16 MB pseudorandom cache. Light clients store it for
verification

3. From the cache, generate the DAG dataset, with the property that each item in
the dataset depends on only a small number of items from the cache. Full clients
and miners store the dataset.

4. Mining involves grabbing random slices of the dataset and hashing them together.
Verification can be done with low memory by using the cache to regenerate the
specific pieces of the dataset that you need, so you only need to store the cache.

Step 4. can then be further broken down into the following workflow figure 2.2.
Generally, it follows the same procedures as the PoW in Bitcoin where it checks the
generated hash value against the target difficulty. If the value is above the target,
the nonce is incremented. In Ethash, the addition are the mixing steps, where the
generated hash is passed into a mixing function, which returns an address of a memory
page(128B) in the DAG. This procedure is repeated 64 times until the final digest is
produced and compared against the target [24].

As a sidenote, as Ethash development coincided with the SHA3 standard, its hashes
are not standard sha3 and are therefore referred to as "Keccak-256" and "Keccak-512"
[24].

In conclusion, Ethash is a predominantly a CPU heavy algorithm, which in compar-
ison to Bitcoin’s PoW also requires an increasing amount of memory to perform the
aforementioned operations. It’s unsuitable for ASICs, that’s why mining is predomi-
nantly done on graphics cards, which due to their higher memory bandwidth are more
efficient.

Simplified GHOST

An important aspect of the blockchain consensus is the fork resolution. Generally, this
is the heaviest chain, the one that has the most computation expended on it [73]. As a
block header contains a difficulty field it is easy for miners to recursively compute the
total difficulty of the chain and choose the one with the highest difficulty.

Longest-Chain-Rule(LCR) is the protocol used in Bitcoin [46], where the valid chain
is the one with the highest total difficulty.

The GHOST protocol is a proposed alternative to LCR for Bitcoin [61], where in the
computation of the total difficulty ommers(also known as uncle blocks) are included.
This serves the purpose of decreasing the feasibility of selfish mining and increasing
the overall security of the blockchain.

Ethereum uses a modified version of the GHOST protocol [73], where, like Bitcoin,
ommers are not included in the total difficulty of a block. Instead, for the winning

9

2. Background and Related Work

Figure 2.2.: Mining with Ethash

10

2. Background and Related Work

Figure 2.3.: Distribution of mining rewards for modified Ghost. Blocks colours corre-
spond to miners. On the right is the total mining reward for this branch

block, the miner gets an additional reward(approx. 3.125% of coinbase reward) for
each valid uncle block, and the miner of every uncle block gets part of the coinbase
reward himself(approx. 93.75%). This calculation is done up to 7 generations. Therefore
miners are incentivized to pick blocks with a higher amount of uncles to maximize
block rewards. As shown in figure 2.3, the tree with the highest amount of mining
rewards is the one with the most uncles (given same length). Moreover, miners can
still get rewards for their uncle blocks, reference green miner, who has collected more
rewards than red, despite only winning 2 blocks.

In terms of energy waste, although there is no significant difference in the mining
work miners expend in LCR and modified Ghost, there is in the payout. In LCR, stale
blocks are completely wasted energy in the sense that they don’t give a benefit to the
miner (no block reward), neither do they increase the security of the chain as they can
spawn a selfish attack. In modified GHOST focusing on the tree with the most uncles
gives some justification to the expended computational power as the reward for the
mining the block increases substantially.

11

2. Background and Related Work

2.3. Proof-Of-Stake (PoS)

Peercoin was the first blockchain to utilize the Proof-Of-Stake algorithm as a way to
address the excessive computational demands of PoW[50]. Here the concept of coin
age was first introduced, which is a product of network tokens and the length of time
they are held. Originally, (in Peercoin) expending coin age reduced the difficulty of
the search puzzle. In modern iterations of PoS [49], mining is removed altogether in
favour of block leaders being chosen solely on their stakes. Generally, a higher stake
corresponds to a higher chance of being elected as leader.

Removing the computational demands of PoW will naturally drastically improve
the energy efficiency of the algorithm. Additionally, PoS has a higher transaction
confirmation speed, which also leads to a higher throughput and overall blockchain
efficiency. [49]

2.3.1. Ethereum 2.0

For the PoS evaluation we’ll turn our attention towards the Ethereum 2.0 migration,
which if successful would turn Ethereum into the largest PoS blockchain. The concept
of Ethreum 2.0 was initially conceived [28] to address the high energy requirements
of Ethereum 1.0 and Ethash, as well as the limited throughput and increasing storage
costs. Particularly, it tries to tackle the following disadvantages of Ethereum 1.0:

• Miners trying to solve the PoW challenge in order to mine a block requires overall
a significant amount of energy, which if not being 100% gained by renewable
methods, harms the environment and contributes to climate change. According
to Digiconomist [27], the current yearly energy consumption of the Ethereum
network is around 60 TWh, while the carbon footprint is around 35 MT of CO2.

• The proof-of-work consensus algorithm implies a higher chance for successfully
mining blocks by those miners with high computational power. This is usually
achieved using specialized equipment tailored for mining, which is a significant
financial expense. Therefore to maximize profits, miners group together in
centralized mining pools, which is the dominant way to mine[25].

Consensus

Ethereum 2.0 intends to solve the two aforementioned problems by transitioning from
the Ethash to a PoS consensus mechanism. Compared to PoW, the risk-based staked
currency of PoS is not an amount of expended computational work, but instead the
provided deposit in the form of a staked unit of a cryptocurrency.

12

2. Background and Related Work

Should a node become a validator and therefore gain the skill of creating new blocks
on the blockchain, the node has to stake a certain (specification-defined) amount of
units of a cryptocurrency as a protective deposit. While being a validator, a node’s
job is to listen for new incoming blocks from peer-nodes, to execute the code stored
in these blocks, to check the blocks’ signature and to promote that block across the
network. The set of nodes, which are chosen for validating a block is randomly selected
[55].

Should a set of nodes detect a fraudulent node on the network, which is trying to
commit a 51% attack, the nodes either have the option to ignore the fraudulent node or
to blacklist it on the network in combination with deleting the fraudulent node’s stake
from their network. In the latter case, the node would lose, from the perspective of the
(majority) set of nodes, its security deposit, which creates the protective risk against
fraudulent behaviour [55].

In this way, not only is the energy consumption reduced (according to Ethereum by
"99,95%"[63]) by not using Ethash, but also no special equipment is required, which
lowers the barrier for newcomer nodes.

Sharding

An additional feature of Ethereum 2.0 is "Sharding", which is described as "the process
of splitting a database horizontally to spread the workload"[59]. Sharding will split
up the overall ledger data horizontally into different sections (shards), which are then
handled by a subsection of nodes. Therefore, certain traffic can be limited to these
subsections, in case the transactions affects only the data stored in the nodes in the
subsection. In this way, Sharding reduces the overall network traffic as well as the
storage load per node and increases the number of transactions per second as well as
the amount of fitting devices for running a validator [59].

In comparison to an unsharded Etherum blockchain, it is due to the fast data
transaction and therefore the lack of necessity not yet intended for a Sharded Etherum
blockchain to store executable code, but only the data relevant to the transaction[59].

The Beacon Chain and the Merge

Currently, the PoS consensus mechanism is not yet in operation on the Ethereum
mainnet, but on a side blockchain, called Beacon Chain. This beacon chain "does not
process transactions or handle smart contract interactions"[62] but only forms a "ledger
of accounts that conducts and coordinates the network of stakers"[62].

The next two main events in the launch of Ethereum 2.0 are:

13

2. Background and Related Work

1. Connecting the yet separated Beacon Chain with the mainnet in order to switch
the consensus mechanism from PoW to PoS. This event is called "the Merge" and
it is planned for the 3rd or 4th quater of 2022[63][62].

2. The introduction of Sharding onto the mainnet after the Merge. This event is
planned for 2023[59][62].

2.4. Proof-Of-Authority (PoA)

Proof-Of-Authority (PoA) is a consensus algorithm, where a subset of pre-authorized
nodes called validators manage the consensus in the network. The stake is the identity
of each node and nodes who have exhibited malicious behaviour are banned from the
network [21][48]. Due to its relatively simple mechanism, it achieves high transaction
throughput with a low energy cost.

A notable example of this consensus algorithm is EW Chain [23], which uses a
permissioned version of Proof-Of-Authority. Therefore it manages to achieve high
scalability with low energy costs, a claimed 6 orders of magnitude less than PoW [48].
For example, in 2021 the entire network energy consumption was approximately 7.5
kilowatts, which is 2.2 million times less than Bitcoin or 1.0 Million for Ethereum.

2.4.1. Clique

As part of the thesis we will evaluate a lesser known PoA algorithm called Clique
[21]. It’s most widely used in Ethereum private networks, especially the biggest test
network Görli [34]. Outside of the consensus algorithm, all other parts of the Ethereum
ecosystem function practically the same.

In comparison to the PoW on the mainnet, in Clique the genesis configuration now
contains the addresses of the pre-authorized nodes, which are the validators. Only they
are allowed to seal blocks, which is the PoA version of mining. Other peers may be
later added or removed as a validator based on the consensus. Key features of Clique
include:

• Block finality - sealed blocks are final

• Rotation principle - miners cannot seal concurrent blocks

• Voting mechanism for joining or leaving the authorized list of miners

We have deliberately chosen Clique for the experiments as it would allow us to
evaluate the function of the Ethereum blockchain with two different types of consensus
algorithm.

14

2. Background and Related Work

2.5. BFT and CFT

Crash-Fault-Tolerance(CFT) and practical Byzantine-Fault-Tolerance(BFT) are another
two types of permissioned algorithms, which take two different approaches to security.

CFT is designed to sustain up to ⌊N/2⌋ failures where N is the number of nodes.
There are two types of nodes: Leaders and Followers, where the former is solely re-
sponsible for constructing and adding the blocks to the blockchain. Block propagation
is done with a two phase commit protocol(2PC), where the leader first checks that fol-
lowers are ready to commit (commit-request phase) and then broadcasts the committed
or aborted the transaction. An important prerequisite for CFT is that the network has
a high level of trust, as the algorithm does not handle malicious actors. A popular
example that uses an implementation of CFT called Raft[56] is used in Hyperledger
Fabric[64].

On the other hand, Byzantine-Fault-Tolerance(BFT) is designed to handle generally
up to 1/3N of malicious nodes. Similarly to CFT it is uses a three phase commit proto-
col(3PC), where there is an extra phase in-between(pre-commit), which checks whether
enough nodes will commit to the transaction[48]. Popular implementation of BFT is
practical Byzantine-Fault-Tolerance[11], versions of which are used in Hyperledger
Besu[37] and Hyperledger Indy[39].

In conclusion, both CFT and BFT algorithms generally achieve a performance much
higher than permission less algorithms. Moreover, they achieve immediate finality on
blocks. However, 2PC and especially 3PC have a much higher message complexity[58].
Therefore they have a more limited scaling, often making them unsuitable for larger
networks.

2.5.1. Hyperledger Fabric

Hyperledger Fabric is a distributed permissioned ledger part of the Hyperledger
Foundation. Fabric serves the purpose of enabling the development of modular and
versatile solutions that simultaneously satisfy the need for trust, transparency and
accountability.

Some of its key differentiating characteristics include an easily configurable architec-
ture, support of multiple programming languages for smart contract development and
exchangeable consensus protocols. Properties such as high performance, scalability
and privacy are also typical for Fabric.

15

2. Background and Related Work

Network architecture

As a permissioned ledger, a Fabric network is initially defined by a set of organisations
(often legal entities), which determine a set of policies that will serve as the initial
configuration of the network. These organisations are often referred to as the consor-
tium. Afterwards, of course, other organisations may also join the network or network
policies can be changed, following an agreement from the existing consortium [8].

Figure 2.4.: Hyperledger Fabric Network Overview

In Hyperledger Fabric, there are two fundamental types of network nodes - peers
and orderers [51][64]. Peers(P1) host ledgers(L1) and chaincode(C1) figure 2.4, the latter
being a representation of the business logic, synonymous to smart contracts.

A collection of physical peers providing points for access to organizations willing to
transact with each other form the logical structure known as a channel(C1) figure 2.4.
Channels provide an efficient sharing of infrastructure and at the same time preserve
data and communications privacy. A peer can belong to multiple channels for each of
which it keeps its own ledger.

Orderers, on the other side, gather endorsed transactions and order them into
transaction blocks. These are eventually distributed to every peer node in a channel,
where any local copies of the ledger are updated accordingly. [64] The ordering service
further enforces basic access control for channels, regulating who can configure them,
as well as who can read and write data. All orderers also contain the blockchain portion
of the ledger, but not the state database.

In general, there are several different ways to reach consensus on the ordering of
transactions between ordering service nodes, which constitutes the pluggable consensus

16

2. Background and Related Work

algorithm of Hyperledger Fabric. The current recommended option is Raft, with Kafka
being deprecated since version 1.2, and with a BFT-Smart algorithm currently being in
discussion. [4]

There are several other elements in the Hyperledger Fabric network, these include
Certificate Authorities (CA1) and Applications (A1) figure 2.4. The former manage the
identity of participating actors via issuing digital certificates and the latter constitute
applications developed with the Fabric SDK which communicate with the network.

Execute-Order-Validate

When executing chaincode, a 3-phase process, the so-called execute-order-validate
model [64], ensures that all the peers in a blockchain network maintain their ledgers in
the same state, which derives the following transaction flow:

• Execute In the Fabric network, the application-specific endorsement policy deter-
mines how many endorsing peers need to vouch for the correct execution of a
given smart contract invocation. After the client has sent the signed transaction to
the appropriate number of peers, each of them executes the transaction, confirm-
ing its validity and producing a read/write set, which contains the state variables
which have been modified during the contract execution. Afterwards the peer
returns a signed endorsement to the client.

• Order With enough endorsements the client can send the transaction to the
ordering service, which will then establish the total order of transactions for the
block, based on the chosen consensus algorithm (by default Raft).

• Validate The block is then propagated via gossip across the network. After a peer
receives a block it will then verify it has a sufficient number of endorsements,
otherwise it ignores it. Then based on the previously produced read/write set,
it will check the transaction for state modification conflicts. If a transaction has
a read input from the state database, which has already been modified by a
transaction earlier in the block, it will be ignored.

Raft

Raft is a "leader and follower" distributed consensus model [56]. In the context of
Fabric, each Raft node is an Orderer node. The following is a brief rundown of Raft
workflow:
"Raft nodes are always in one of three states: follower, candidate, or leader. All nodes
initially start out as a follower. In this state, they can accept log entries from a leader

17

2. Background and Related Work

(if one has been elected), or cast votes for leader. If no log entries or heartbeats are
received for a set amount of time (for example, five seconds), nodes self-promote to
the candidate state. In the candidate state, nodes request votes from other nodes. If a
candidate receives a quorum of votes, then it is promoted to a leader. The leader must
accept new log entries and replicate them to the followers." [64]

Channel configuration

As previously mentioned, the consortium defines the channel configuration, which
contains several parameters which directly influence the transaction workflow [65]:

• Batch size defines the size of blocks, based on the absolute max bytes or max message
count. Blocks are cut if they are going to exceed either of those parameters

• Batch timeout is the amount of time to wait before cutting a block. Directly
influences latency

• Block validation defines the signature requirements, e.g how many endorsements
a transaction needs to be considered valid

2.6. Related Work

In this chapter we will examine the available literature on the energy consumption
of blockchain systems, future research and legislative directions. Finally we’ll make
conclusions based on what is covered and where our research can fit in.

2.6.1. Global energy consumption

It is well known that PoW blockchains, especially Bitcoin, consume vast amounts of
energy [69]. Still getting exact figures on the global energy consumption is hard, if
not impossible. This is often the case, because miners withhold information on the
hardware they are using and the associated energy costs. In the literature an estimated
lower and upper bound are often used, based on the works of Vranken(2017)[68] and
Krause and Tolaymat (2018)[42]. These bounds can be expressed as the following for
the lower bound:

total power consumption ≥ total hash rate ∗ min energy per hash (2.3)

and for the upper bound respectively:

18

2. Background and Related Work

total power consumption ≤ block reward ∗ coin price + transaction f ees
avg. blocktime ∗ min. electricity price

(2.4)

The lower bound can be explained as the minimum amount of power, when for
example using the most efficient hardware, that will achieve the total hash rate. The total
hash rate can be calculated based on the difficulty and block times in the blockchain.

On the other hand, the upper bound refers to the financial feasibility of mining.
Generally, miners would feel inclined to mine, when the financial rewards from the
block reward and transaction fees compensate operating energy costs. Of course
the upper bound is therefore highly volatile, especially in sudden changes in crypto
currency value and energy prices [48].

Furthermore, Sedlmeir [58] uses the following system to estimate the total energy
consumption of the top 5 PoW blockchains for 2020 in figure 2.5, which for example
places the Bitcoin power consumption between 60 TWh and 125 TWh a year.

Figure 2.5.: Market capitalization and est. bounds of the top 5 PoW blockchains [58]

This is further backed by a study of Gallersdörfer [31], which accounts 2/3 of the
energy demand to Bitcoin. For more recent data, Digieconomist[6] estimated an all
time high of 205 TWh in May 2022, a 64% increas for 2 years based on Sedlmeir’s
estimates[58]. In perspective the current consumption of 131.51 TWh(July 2022)[6]
is still an exorbitant amount, somewhere between the annual power consumption of
Norway and Argentina [44]. Alternatively, the energy expenditure of a single Bitcoin

19

2. Background and Related Work

transaction can be equated to the energy requirements for several weeks or months of a
German household [58].

Figure 2.6.: Market share on consensus algorithm[33]

Blockchains that utilize PoW still constitute the majority of the crypto currency
market share with 87%[33], moreover there seems to be correlation between the market
size and energy consumption of a blockchain [15][58]. A popular is that miners will
simply prefer to mine blockchains with a higher block reward.

Hardware

For mining hardware generally Bitcoin uses ASICs, Ethereum - GPUs. In the following
table you can find newer devices with their respective hashrate, power supply and
price, which is based on Bitmain[7] and Amazon[2] as of July 2022.

Generally there is a 6 magnitude of order difference between the hashrate for PoW
and ASIC-resistant PoW blockchains. Although, ASICs are much more energy efficient
for hashing than GPUs, there does not seem to be a noticeable difference in power
consumption based on the hashrate alone. Researchers agree that energy price is the
driving factor in mining [58][42][31], therefore for miners the energy price, and not the
upfront cost, is the determining factor on what and how much hardware they operate.

However, both ASICs and GPUs used for mining blockchains contribute significantly
to e-waste[6].

20

2. Background and Related Work

Device Type Hashrate Power supply Price
Antminer S19 Pro BTC 110 TH/s 3250W $5940
Antminer S19 BTC 95 TH/s 3250W $3990
Antminer T19 Hydro BTC 145 TH/s 5438W $2175
Antminer ETH/ETC Miner E9 ETH 2400 MH/s 1920W $9999
NVIDIA GeForce RTX 3090 ETH 121MH/s 350W €1,649
NVIDIA GeForce RTX 3060 Ti ETH 60MH/s 200W €559.00
AMD Radeon RX 6700 XT ETH 47MH/s 230W €675
AMD Radeon RX 580 ETH 28MH/s 185W €440

Table 2.1.: Mining devices

Environmental impact

Unsurprisingly the environmental impact of PoW blockchains is a heated discussion.
Generally, translating the total power consumption to carbon footprint is not a good
practice. For example, research from the Cambridge Centre for Alternative Finance
(CCAF) reports that 76% of hashers use renewable energy source to some degree,
whereas non-renewables still account 39% of the total hashing energy consumption
[1]. Moreover, the 2021 report of the European Commission [48] identifies that Bitcoin
miners often operate in remote locations where they can make use of cheap excess
energy, often from renewable energy sources, e.g solar panels, wind turbines, hydro,
etc.

Additionally, the European Commission report gives the following strategies for
lower energy consumption and costs [48]:

1. Use of renewable energy sources

2. Operating during hours when the energy price is low (e.g during the night)

3. Using the excess energy from energy producers which cannot be stored

2.6.2. Non-PoW blockchains

The most popular alternative to Proof-Of-Work in terms of energy efficiency is Proof-
Of-Stake [58]. Moreover, in paper from the UCL Centre for Blockchain Technologies
(UCL CBT) [53] various different PoS blockchains were compared and their energy
consumption was predicted based on a mathematical model. The paper then concluded
that PoS is 3 orders of magnitude less energy intensive than the Bitcoin PoW, reference
figure 2.7.

21

2. Background and Related Work

Figure 2.7.: PoS energy consumption comparison [53]

2.6.3. Contribution

A lot of papers estimate the global energy consumption of blockchain networks, its
implications and energy impact. Most of them take a black box perspective and only
consider the network as a whole. Significantly less research is done on lower levels of
the blockchain protocols, for example the energy expenditure of single nodes or how
small networks scale. In this thesis we will examine such cases.

Therefore in the following chapters, we will create a small test network for Ethereum
and Hyperledger Fabric. On this network we will perform tests to measure the
expenditure of computational resources and energy, and especially how they scale with
different network settings. Finally, we will try to relate the findings to the mainnet to
create more generalized assumptions.

22

3. Experiment and Testbed Setup

In this chapter we will focus on the experimental setup. As previously mentioned in
the thesis outline we will aim to examine performance tendencies in private networks
and scale them with the available computational resources. Firstly, we’ll describe the
used hardware, software and then the experimental setup and orchestration.

3.1. Testbed

For the test setup, we have used a combination of physical devices and VMs. Table 3.1
lists all the used devices and their characteristics. Additionally, for the physical devices
the appropriate power supply is included. All devices also run Ubuntu Server as an OS.

Device Count CPU cores RAM Power supply
Raspberry Pi 4b 1 4 4 GB 5V
Udoo Board x86 1 4 4 GB 12 V
Fujitsu Esprimo G558 1 8 32 GB 20 V
VM(M) 1 2 2 GB -
VM(L) 10 4 4 GB -
VM(XL) 1 8 8 GB -

Table 3.1.: Device list

For the power measurements we have utilized the high voltage power monitor
by Monsoon Solutions [35]. It outputs up to 13V which makes it only compatible
with the Raspberry Pi 4b and Udoo Board x86, from which we will draw our energy
measurement data.

23

3. Experiment and Testbed Setup

3.1.1. Software

In this section we’ll briefly go through the different software tools used throughout the
evaluation section.

Geth

Go Ethereum(Geth) is the golang implementation of the Ethereum protocol[29]. At
the time of writing geth is the most popular Ethereum client with over 80% utilization
based on the mainnet statistics [12]. Therefore it would be representative candidate for
the Ethereum network. Additionally, geth supports CPU mining, which would make it
easier to have mining and passive nodes in the same configuration.

Web3j

Web3j [71] is the Java client for Ethereum. It allows us to administer the geth peer, as
well as send transactions and call smart contracts. As our test orchestration will be
done in Java, we will use it to interface with the different Ethereum nodes.

go tool pprof

pprof package is the profiler tool for the golang ecosystem. [54] This tool supports
several different performance profiles and can produce visualizations for them. In this
thesis we will focus on the CPU and Heap profile, which contain the amount of CPU
time per goroutine. Luckily, geth supports pprof [13] out of the boxes, which makes
gathering this data relatively simple. For more information on how pprof was set up,
refer to the appendix A.2.1.

Glances

glances is a monitor tool for keeping track of system resources [32]. We will use it to
keep track of system resource consumption on each of the nodes.

Docker

We use docker [18] for the Hyperledger Fabric network, as it is the go-to tool for
managing deployments [67]. As we will be only running a couple of containers per
node, the performance overhead of virtualization should be negligible.

24

3. Experiment and Testbed Setup

Hyperledger Fabric Binaries and SDK

We’ll be using the Fabric binaries to setup the HF fabric network[67]. Transactions will
be the sent with the NodeJS Fabric SDK[38] to one of the peers.

3.2. Ethereum Experiment

For the PoW and PoA algorithm we have devised the following experiment setup
shown in figure 3.1. It consists of two sub-networks: the VM network and the Local
network.

The VM network contains all of the VM nodes. In the test the VM L nodes will be
used as miners as they fulfill the hardware requirements of mining with geth[13] and
we have a large number of them to scale with. A smaller VM M will serve as a Full
node, which does not mine, but only syncs with the blockchain. The role of VM M will
be further explained in the workflow section.

Figure 3.1.: Ethereum network overview

In the Local network there are two devices: the PC, which is used as the orchestrator
in the test and a physical device which will also play the role of a miner. In the case of
the Udoo x86 and Raspberry Pi 4b, there is also an attached energy monitor.

25

3. Experiment and Testbed Setup

Finally, all nodes are completely interconnected and will therefore propagate all
received messages to each other.

3.2.1. Test workflow

For the test we have devised the following general workflow:

1. Start the geth process on all nodes and the physical device. Mining is not enabled
yet.

2. Connect all nodes to each other, this ensures full network connectivity.

3. Send transactions to VM M. As VM M is not a miner, it will store the transactions
in its local mempool

4. Start the mining process on the mining nodes

5. Verify that all transactions are successfully mined and part of a block

6. Stop the geth process an all nodes and collect data

For step 1. we ensure that we run the experiment in a clean environment. We launch
all nodes firstly as full nodes. For step 2. we connect all nodes explicitly to each other
by adding each of their addresses explicitly. This ensures full network connectivity.

During step 3. we send all transactions to the VM M node. It will then verify and
store them in its mempool (storage for transactions). This way, once step 4. is executed
they will be distributed in a fair way to all the mining nodes, removing the advantage
a node would get if it received a transaction first.

For step 4. we start the mining process on all VM L nodes. This also serves as the
start timestamp for the test. For step 5. we keep track of the blocks propagated back to
VM M until we can confirm that all transactions are accounted for and are part of a
mined block.

Finally, at step 5. we stop the mining process and collect all the measurement data
that we have. Step 5. also serves as the end timestamp for the test. The difference
between the start and end timestamp we will define as the mining duration in the
experiment. Steps 1,2,4,6 are executed for all of the nodes, whereas steps 3,5 are done
only between the PC and the VM M node.

Additionally, all transactions use the default gas cost, e.g there are no tips for faster
processing of transactions. This would ensure that all blocks are close to their maximum
size, which should be close to the theoretical throughput limit for this setup. Moreover,
this setup works the same with both PoW and PoA.

26

3. Experiment and Testbed Setup

3.2.2. Genesis configuration

The experiment is running as part of an Ethereum private network for which we need
an initial genesis configuration[13]. An example can be found below. Notable attributes
include the unique chainId which we use to define our network as well as the gasLimit
and difficulty (or period in PoA), which directly affect the performance and are covered
in-depth in the next chapter.

Listing 3.1: Genesis config for private network

{
"config": {
"chainId": 15870,
...

},
"nonce": "0x0",
"timestamp": "0x621f7acc",
"extraData": "0x00",
"gasLimit": "0x47b760",
"difficulty": "0x100000", # or period in PoA
"mixHash": "0x00",
"coinbase": "0x00",
"alloc": [#...#]

}

As Proof-Of-Authority needs a list of validators, the extraData property will hold the
public addresses of all miners, so that they are authorized to seal.

3.3. Hyperledger Fabric Experiment

For the Hyperledger Fabric we follow a very similar experiment architecture as pre-
sented in figure 3.2. Now on each of the VM L we run a Peer, Certificate Authority(CA)
and a database docker container. Three VM M each run an Orderer docker container,
which forms the RAFT consensus group. This is similar to the official Fabric test
network[67]. The PC now runs a NodeJS client with the Fabric SDK that is used for
sending transactions to the network.

27

3. Experiment and Testbed Setup

Figure 3.2.: HF network overview

3.3.1. Test workflow

The test on the Fabric instance follows the following steps:

1. Start all the docker containers

2. Create channel and join all peers to channel

3. Deploy chaincode

4. Execute transactions

5. Stop containers and collect measurements

In the case of Fabric it doesn’t matter to which peer we send the transaction, as
it would also be resent to the other peers in order to gain the required number of
endorsements.

28

3. Experiment and Testbed Setup

3.3.2. Configuration

As Hyperledger Fabric is a permissioned blockchain, it’s initial configuration is more
in-depth than the previously described genesis. Here need to define all the peers, their
certificates and IP addresses explicitly. See appendix A.1.2 for additional information
on the setup.

Moreover as Fabric does not have an in-built currency and transaction system, we’ll
deploy a small chaincode that creates a wallet, which is stored on the blockchain. We’ll
then used this function as part of the experiment.

Listing 3.2: Chaincode for fabric

class CoinContract extends Contract {
/**
* @param {ctx} context
*/
async createWallet(ctx, walletId) {

// Check if wallet already exists
if(await Wallet.queryWalletByID(ctx, walletId) != null) {

throw new Error(‘${walletId} already exists‘);
}

let cid = new ClientIdentity(ctx.stub);

return new Wallet(walletId, cid.getMSPID(), 0)
.save(ctx);

}
}

29

4. Blockchain Evaluation

4.1. Geth PoW network

In this section we will try to measure the performance and resource consumption of a
private PoW network. We will firstly focus on the throughput and general performance
and how they are influenced in Ethereum. Afterwards we will have a look at the system
resource expenditure and total energy consumption to give better context on the energy
metrics.

Based on a Ethereum performance research, Schäffer(2019)[57] identified Block size
and Block frequency as the primary bottlenecks in an Ethereum network. Both of these
parameters are directly configurable in the genesis file, so we will firstly examine them
in-depth.

Figure 4.1.: Hierarchy of bottlenecks overview [57]

Block frequency in Ethereum is represented by the difficulty value. As previously
mentioned in the Background and Related Work chapter, the difficulty sets the target
for the search puzzle [10]. A higher difficulty corresponds to a lower target and
subsequently more hashing operations on average to mine a block.

Therefore if the hardware remains unchanged, increasing the difficulty results in a
longer execution of the PoW algorithm, longer time between mined blocks and a lower
block frequency. A lower difficulty similarly does result in a higher block frequency.
Additionally, increasing the hashrate of hardware also increases the block frequency.
As the PoW execution is a very resource intensive process, the this parameter should

30

4. Blockchain Evaluation

also relate directly to the energy consumption.
Block size works a little bit differently in Ethereum than in Bitcoin. In Bitcoin there

is a fixed block size of 1 MB [46], whereas Ethereum uses the concept of a gas limit [10].
As previously mentioned, each operation executed on the EVM has a fixed gas cost.
The gas limit enforces that all operations part of a block have a total gas cost less than
or equal to the gas limit. Increasing the gas limit, would therefore increase the number
of transactions per block boosting the overall throughput.

To sum up, difficulty impacts the speed at which new blocks are generated and
gas limit determines the amount of transactions(information) in each added block.
Difficulty is by design self-adjusting and over a long enough period of time, would
adjust itself to a target of 15 tps [10]. The general tendency in PoW blockchains is for
the difficulty to increase [26] as the market of the blockchain grows.

On the other hand, changing the gas limit seems to be more complicated. For example
doubling the gas limit should in theory require half the number of blocks to process
the same amount of transactions, practically doubling the throughput. Although, this
would substantially improve the expended energy per transaction, it will not change the
overall power consumption of the blockchain network. Recall that PoW executes on a
block basis and is not influenced by the amount of information in each block. Moreover,
substantial increases to the block size would also increase the energy expenditure of
the blockchain[58]. Increasing the block size would also increase the speed at which
the blockchain grows in terms of storage requirements and would require a higher
bandwidth for propagating blocks. The gas limit has been last changed in the London
Upgrade [36] and changes to it have been part of heated debate [40].

31

4. Blockchain Evaluation

4.1.1. Test parameters

In table 4.1 you can find the parameters used in the test.

Difficulty Gas limit Transactions Network size Physical device
0x100000 0x47b760 5000 1..10 RP, Udoo, Fujitsu

Table 4.1.: PoW test parameters

For the Difficulty the value 0x100000(104857610) was chosen, which on the VM L
results throughput: 17.78tp/s which is comparable to the mainnet of 15tp/s. The Gas
limit of 0x47b760(4 700 00010) is the default value for mainnet, so we have kept it the
same. 5000 Transactions results in approximately 23 blocks based on the default gas
limit. Network size is the number of nodes in the network and is scaled from 1 up to
10. Finally, the Physical device refers to which of the physical devices was used.

4.1.2. Performance

In this section we will go through the general performance metrics. Recall, that we
define Mining duration as the time since the mining process was started on all nodes
until all transactions are verified to be part of the block, which is the end goal of the
test. Mean block frequency would then be average time in seconds between blocks.
For the throughput we then derive the following formula:

Throughput(tps) =
Transactions

Number o f Blocks ∗ Block f requency
(4.1)

Finally, take into consideration the uncle rate, e.g the percentage of blocks which are
stale.

Device comparison

Firstly, let’s have a look at figure 4.2 which shows how the different device types
perform on the tests on their own, or in other words as the only miner in the network.

At first glance the Fujitsu is clearly outperforming the other devices with more than
4 times the throughput, but keep in mind that it has a much higher power supply. The
Raspberry Pi 4b is the slowest device by a significant margin, although it operates on a
5V power supply.

32

4. Blockchain Evaluation

Figure 4.2.: Devices comparison

The VM L and VM XL are part of the VM network, and therefore not directly
comparable to other devices in terms of hardware. Moreover, the VM XL has double
the amount of cores (8), which is an overall 40% power gain over the VM L.

Network scaling

Figure 4.3.: Performance of VM L network

Now let’s have a look at how the performance scales with the size of a network. Let’s
take a homogeneous network made up entirely out of the VM L nodes as shown in

33

4. Blockchain Evaluation

figure 4.3. Additionally, keep in mind that this experiment was done entirely on the
VM network, where network latency was not a factor.

It seems that scaling the network causes a logarithmic decrease performance, gen-
erally converging to 50 seconds for the total mining duration and a 2 second block
frequency. A similar tendency was also observed in the work of Schäffer(2019) [57],
where the measured throughput was lower than the theoretical throughput.

A possible, explanation for this could be the increasing rate of uncle blocks. Generally,
when the propagation delay of blocks is higher than the block frequency, blocks can’t
be built effectively one after another, causing branches in the blockchain and the
occurrence of uncle blocks [20]. This of course represents a waste of computational
resources as uncle blocks do not contribute to new information being added to the
blockchain.

Figure 4.4.: Block distribution

Finally, let’s have a look at the block distribution in figure 4.6, e.g how many blocks
has each miner successfully mined. Following the formula 2.2 for winning the search
puzzle, we should expect equal shares across the nodes. This seems to be roughly
the case for the homogenous networks, but there is still some variance. This could
be the cause of some internal issues in the configuration of the VM network node,
which causes a bottleneck like in figure 4.1. With mixed network there are pronounced
differences, generally the Raspberry Pi is slower and therefore achieves a lower share,
likewise the fujitsu has the highest share in its respective network.

34

4. Blockchain Evaluation

Mixed networks

Figure 4.5.: Raspberry Pi 4b network performance

Now let’s have a look at figure 4.5, which shows mixed networks consisting of
a physical device and a number of VM L nodes from the VM network. Generally,
they follow the same tendencies from above, but have a more pronounced plateau on
performance gains between network size 7 to 10, where they again covnerge on 50s
and 2s respectively. Additionally, there is a higher rate of uncle blocks, most likely the
result of the increased network latency from adding a device from an external network.

35

4. Blockchain Evaluation

4.1.3. System resource consumption

Let’s consider the system resource consumption. With the glances tool we can extract
the system statistics before the test and during the load of the mining process. The
results are in table 4.2 and table 4.3.

cpu_total mem_total mem_percent
count 77.000000 7.700000e+01 77.000000
mean 3.270130 3.974017e+09 9.862338

std 3.420683 0.000000e+00 0.048772
min 1.900000 3.974017e+09 9.800000
25% 2.400000 3.974017e+09 9.800000
50% 3.000000 3.974017e+09 9.900000
75% 3.100000 3.974017e+09 9.900000
max 32.400000 3.974017e+09 9.900000

Table 4.2.: Normal OS stats

cpu_total mem_total mem_percent
count 16.000000 1.600000e+01 16.000000
mean 94.056250 3.974017e+09 17.506250

std 16.088421 0.000000e+00 0.156924
min 35.100000 3.974017e+09 17.300000
25% 98.800000 3.974017e+09 17.375000
50% 99.300000 3.974017e+09 17.500000
75% 99.500000 3.974017e+09 17.625000
max 99.600000 3.974017e+09 17.700000

Table 4.3.: Under load stats

As we can see the node uses almost all the available CPU and approximately 690MB
of memory. Generally, this holds true for all of the tested devices, which will consume
all the available CPU resource during the mining process.

With the pprof tool we can extract the CPU measures for the entire test. This
information includes the cumulative time each goroutine(function in the context of go)
spends on CPU:

36

4. Blockchain Evaluation

Listing 4.1: pprof output PoW

Showing nodes accounting for 632.20s, 71.14% of 888.64s total
Dropped 1119 nodes (cum <= 4.44s)
Showing top 10 nodes out of 38

flat flat% sum% cum cum%
0 0% 0% 862.09s 97.01% consensus/ethash.(*Ethash).Seal.func1

0.96s 0.11% 0.11% 862.09s 97.01% consensus/ethash.(*Ethash).mine
0.28s 0.032% 0.14% 856.02s 96.33% consensus/ethash.hashimotoFull
54.85s 6.17% 6.31% 855.74s 96.30% consensus/ethash.hashimoto
566.16s 63.71% 70.02% 566.16s 63.71% runtime.memmove
1.09s 0.12% 70.15% 77.52s 8.72% crypto/sha3.(*state).Read
5.70s 0.64% 70.79% 75.67s 8.52% crypto/sha3.(*state).padAndPermute
0.73s 0.082% 70.87% 72.72s 8.18% crypto.Keccak512
1.66s 0.19% 71.06% 68.54s 7.71% crypto/sha3.(*state).permute
0.77s 0.087% 71.14% 66.83s 7.52% crypto.Keccak256

From the text output we can see that Ethash constitutes approximately 97% of the
total CPU consumption.

Figure 4.6 shows several CPU related metrics for the homogeneous VM L network.
These include the aforementioned mining duration, the mean time each node spends
on the CPU and finally the total time all nodes spend on the CPU.

As seen on the graph, the mean time spend on the CPU is a factor of the mining
duration. This is the case, because the start and end timestamps from the experiment
workflow are the only time mining is allowed, which coincidentally is where 97% of
the CPU expenditure happens. Additionally, as the VM L nodes are multi-core, each
core is executing the algorithm in parallel, hence why the mean CPU time per node is
a factor of the mining duration.

Finally, whereas the mining duration sinks logarithmically, so does the cumulative
CPU time of all nodes grow as each additional node will dedicate its whole CPU
resources. This of course constitutes a substantial increase in total computational
resources. A single node will need on average 293s to mine all transactions and
consume 820s of CPU time, whereas a 9 VM L will do it in 43s and consume a total of
2076s.

37

4. Blockchain Evaluation

Figure 4.6.: CPU time on VM L network

4.1.4. Energy consumption

Figure 4.7 shows the power consumption during the test runs for both measurement
devices: Raspberry Pi 4b and Udoo x86. We have used the total energy expenditure
for the device during the experiment run. Similarly to the CPU time graph, the total
power consumption seems to be correlated to the mining duration and mean CPU
time. This makes sense as adding new miners to the network increases the overall
hash power, which decreases the time needed to mine blocks, where the bulk of the
resource expenditure is. Overall, both devices seem to have consumed a similar amount
of energy.

38

4. Blockchain Evaluation

Figure 4.7.: Average power consumption

Additionally, we can take a look at the values when idle and under load to determine
the exact overhead of mining:

Device Idle Under load Overhead
Raspberry Pi 4b 5674mW 7616mW 1942 mW
Udoo Board x86 3435mW 9305mW 5807mW

Table 4.4.: Device list

Interestingly, the Udoo has a much lower idle power consumption compared to the
RP 4b, which in turn leads to a much larger overhead during mining. Moreover, based
on the overhead you can determine the energy expenditure only for the mining process.

39

4. Blockchain Evaluation

4.1.5. Energy waste

We define wasted energy as energy expenditure that either does not bring benefit to
the individual miner or the network as a whole.

Figure 4.8 shows two types of energy expenditure: energy expenditure that has
resulted in the successful mining of a block, and energy expenditure that has not.
In this context, the latter can be seen as a waste as it does not allow the miner to
propose a new block, nor gives him the full mining reward. As a side note, in Bitcoin
[46] this energy expenditure is a complete waste as stale blocks do not give a reward.
In Ethereum [10] this is not entirely true as an uncle block could still give a mining
reward. In the graph we only consider winning blocks for simplicity. In conclusion,
with increasing the network size, the overall energy expenditure drops, but depending
on the relative hash power of the device, only part of this energy will successfully lead
to the creation of a block.

Figure 4.8.: Power wastage

40

4. Blockchain Evaluation

4.2. Geth PoA network

For the Proof-Of-Authority network we can reuse the already existing test setup with
slight changes to the test parameters:

Period Gas limit Transactions Network size Physical device
2s 0x47b760 5000 1..10 RP, Udoo

Table 4.5.: PoA test parameters

As there is not search puzzle to solve there is no difficulty parameter. Instead a
period defines the minimum time window between sealed blocks. We have chosen 2s,
as this matches our best block frequency from the PoW test.

4.2.1. Performance and energy consumption

Executing the test setup on the PoA network leads to the results in figure 4.9. One can
make a couple of observations:

• the mining duration has much less variance compared to PoW

• parameters are much more consistent when scaling the network

• the average CPU time a order of magnitude lower

The pprof tool then produces the following output:

Listing 4.2: pprof output PoA

Showing nodes accounting for 0.34s, 0.94% of 36.26s total
flat flat% sum% cum cum%
0.16s 0.44% 0.44% 0.22s 0.61% clique.(*Clique).FinalizeAndAssemble
0.07s 0.19% 0.63% 0.07s 0.19% clique.(*Clique).Finalize
0.03s 0.083% 0.72% 0.04s 0.11% clique.(*Clique).Seal

In PoA the consensus algorithm amounts to 0.94% of the total CPU time in compari-
son to 97% in PoW. This is a reduction from 800s of CPU time in the worst case in the
PoW network to approximately 340ms. Therefore, PoA performs not only much more
consistently in the limited scaling we have done, but also expends less energy due to
the missing mining overhead.

41

4. Blockchain Evaluation

Figure 4.9.: PoA performance

4.3. Hyperledger Fabric

In Hyperledger Fabric the Block frequency and Block size are also defined in the initial
channel configuration as BatchTimeout and BatchSize. Moreover, Fabric parameters
are more granular supporting setting the maximum amount of messages, prefered and
absolute bytes per batch.

Listing 4.3: Batch settings

Batch Timeout: The amount of time to wait before creating a batch
BatchTimeout: 2s

Batch Size: Controls the number of messages batched into a block
BatchSize:

Max Message Count: The maximum number of messages
to permit in a batch
MaxMessageCount: 10

Absolute Max Bytes: The absolute maximum number of bytes allowed for
the serialized messages in a batch.
AbsoluteMaxBytes: 99 MB

Preferred Max Bytes: The preferred maximum number of bytes
allowed for the serialized messages in a batch. A message

42

4. Blockchain Evaluation

larger than the preferred max bytes will result in a batch
larger than preferred max bytes.
PreferredMaxBytes: 512 KB

On the Hyperledger Fabric network consisting of 5 peers, one of which was running
on the Udoo x86, and 3 orderers we achieved the results in table 4.6. For 1500
transactions, which consisted of a wallet creation, we achieved an average 34.6 tps with
a power consumption of 33 mWh. Please note, that the achieved throughput is due to
our setup limitations which are explained in detail in appendix A.1.2.

Transactions Duration Throughput Power consumption
2000 57.7s 34.6 tps 33mWh

Table 4.6.: HF Performance

Generally, the performance of Hyperledger Fabric varies greatly depending on the
hardware, chosen database, transaction sizes as well as network configuration. Papers
vary highly with throughput measurements ranging from 150 tps [47] to over 9000
tps[45].

43

5. Conclusion

In this thesis we analyzed the existing literature on the energy consumption of
blockchain protocols and afterwards we ran experiments on small scale private net-
works. In this chapter we will summarize our findings and draw conclusions.

5.1. Summary

5.1.1. Global energy consumption

In Chapter 2 we examined the current reports on blockchain power consumption. We
have summarized the discussed blockchains in table 5.2. Data is based on July 2022
from Coinmarket [15] and Digieconomist [6]. Hyperledger Fabric and Clique are not
part of the table as they are used in private networks, so estimates on their global power
consumption are not possible.

Blockchain Consensus Market size Est. power consumption
Bitcoin(BTC) PoW $378,019,397,370 131.26 TWh

Ethereum(ETH) PoW $130,365,178,156 55.23 TWh
Energy Web(EWT) PoA $220,112,982 7.5 KW[48]

Table 5.1.: Blockchain protocols summary

Most studies use an estimation approach, first proposed by Vranken(2017) [68] and
Krause and Tolaymat (2018) [42]. The formula and further info can be found in Chapter
2. Actual energy figures from mining operations are not publicly available.

PoW blockchains have seen the highest market share of 87% [33]. The figures for
Bitcoin and Ethereum point to an annual energy consumption that is greater than
the majority of countries [44]. However conclusions on the environmental impact of
blockchain systems should be done carefully, as a large set (76%) use renewables in
their mining operations [48].

44

5. Conclusion

Researchers agree that non-PoW blockchains have orders of magnitude lower energy
consumption [58][48]. Additionally, the EU Commission [48] further argues that the
energy consumption difference between PoW and non-PoW is so large, that it is
questionable whether comparisons between them are useful at all.

5.1.2. Experiment results

Our experiments we have mainly tested the Ethereum PoW network, with side tests on
Ethereum PoA and Fabric CFT. Our highlights include:

• Difficulty and gas limit directly impact the performance, CPU utilization and
energy consumption of the Proof-Of-Work network

• Decreasing block frequency substantially, either by reducing the difficulty or
increasing the hashpower in comparison to the difficulty, drastically increases
the rate of uncle (stale) blocks. A high percentage of stale blocks represents a
significant throughput decrease, as well as additional energy waste.

• By switching Ethash with Clique we have reduced the amount of CPU time from
97% to 0.94%. This comes more in-line with the expected 99.5% energy decrease
in Ethereum 2.0 [30]

Finally, in the following table we have summarized our energy measurements:

Network setup Network size Throughput(tps) Energy consumption
Raspberry Pi 4b(PoW) 1 11.03 440.64 mWh
Raspberry Pi 4b(PoW) 5 51.23 94.00 mWh
Raspberry Pi 4b(PoW) 10 109.94 40.48 mWh

Udoo x86 (PoW) 1 15.73 405.11 mWh
Udoo x86 (PoW) 5 72.30 83.14 mWh
Udoo x86 (PoW) 10 111.05 51.97 mWh
Udoo x86 (PoA) 1 113.64 24.66 mWh
Udoo x86 (PoA) 5 106.09 25.51 mWh
Udoo x86 (PoA) 10 111.51 24.07 mWh

Udoo x86 (Fabric) 5 34.6 33 mWh

Table 5.2.: Blockchain protocols summary

45

5. Conclusion

5.2. Have your cake and eat it too

Having already discussed the estimates of global blockchain power consumption and
having performed experiments on smaller networks, let’s come back to the thesis title.
Based on what we have analyzed so far, the operation of a large scale "public permis-
sionless blockchain" that has both a "low energy consumption" and "high throughput"
should be technically feasible. Especially, the Ethereum 2.0 [63] has promised to allevi-
ate the high energy costs of PoW as well as drastically improve blockchain performance
and scalability.

Hyperledger Fabric and Energy Web provide alternatives, but they do not really
fit the aformentioned use case. Fabric is highly performant, but it’s permissioned
consensus makes it unscalable to a global level [70]. Energy Web provides the same
functionality as Ethereum for a fraction of the energy costs, but its permissioned PoA
does not fully fit the "public permissionless blockchain" image of Bitcoin or Ethereum.

The authors personal opinion on the matter is that the direction, in which blockchains
are heading are mostly based on economical and not technical principles. One such
example is Bitcoin [46], which is extremely outdated and slow by current blockchain
standards. Still, it is the biggest blockchain market by a huge margin [15], and likely
to stay like this for the foreseeable future. Therefor we believe, that the first movers
advantage largely defines the financial success of a blockchain. For example, Bitcoin
was the first decentralized currency and Ethereum [10] was the first to utilize Smart
Contracts [10]. Bitcoin and Ethereum are still the de facto biggest players on the market.
Therefore, as an answer to the question "Can you have your cake and eat it too?", the
author answers - in theory yes, but whether or not this will become the new standard
is outside of his competencies.

5.3. Future Work

In this thesis we have focused entirely on Ethereum, PoW and PoA, and Hyperledger
Fabric, however, there are various other blockchain protocols that can be examined.
Such examples are hybrid-consensus models, DAG-models and pBFT blockchains [70].
Once as Ethereum 2.0 has released, in 2023 or later [63], it should be a prime candidate
for in-depth analysis of its energy costs.

Other expenditures on energy like networking, memory and disk usage become
negligible once compared with the majority of the energy costs in PoW generated from
mining, thus it would make sense to focus on those aspects of blockchain networks,
especially non-PoW protocols.

46

A. Reproducability

This appendix contains short descriptions on how the different tool are used in order
to aid reproducability. Please refer also to the accompanying repository.

A.1. Networks

In the repository both networks are in different directories and operate completely
independently.

A.1.1. Geth network

For detailed information please consult the readme.md.

Requirements

• geth version 1.10.16-stable-20356e57 or newer

• golang version go1.17.6 linux/amd64 or newer

The test network deployment is generally automated with scripts. You can modify
constants.sh and transaction_test.sh to change the addresses, which peers are enabled
and what the test parameters are.

The setup is distributed, e.g each geth process runs on a different VM. Synchronisa-
tion is done through bash scripts. The client that sends transactions and manages the
miners is a Java Application with the Web3j library.

The general workflow of the test is then the following:

1. Generate certificates for each of the peers

2. Generate a new genesis file or import an existing one (the geth tool puppeth can
be used to generate one)

3. Initialize each peer with the genesis block

4. Start all peers

47

https://gitlab.lrz.de/cm/2021-stefanvladov-mt-code

A. Reproducability

5. Connect each of them with the addPeer() command

6. Send transactions to the designated passive peer

7. Start mining

8. Verify continuously whether all transactions are part of a block

9. When confirmed stop mining and output test information to csv

10. Stop all the peers, depending on config, a CPU profile is generated on exit

11. Connect to each of the peers and download the CPU profile

A.1.2. Fabric network

For detailed information please consult the readme.md.

Requirements

• docker and docker-compose on each VM that runs a Fabric node

• Hyperledger Fabric binaries on the orchestrator PC

The test network deployment is generally automated with scripts. You can modify
the configtx.yaml and crypto-config.yaml for the initial Fabric settings.

scripts/00_enviromental_variables.sh contains the settings for the script automation.
The setup is also distributed. All of the docker containers are defined in the docker-

compose.yaml, which is then distributed to each of the VMs. Afterwards on each VM
the specific containers can be run. The client that sends the transaction is a nodejs
application with the Fabric SDK.

The general workflow of the test is then the following:

1. Generate cryptographic configuration for each peer and orderer

2. Create genesis block

3. Start network

4. Create channel and join peers to channel

5. Deploy chaincode for test

6. Execute transactions

48

A. Reproducability

7. Measure performance

8. Stop network and remove containers

As mentioned in the main body of the thesis the achieved performance was much
lower than the theoretical one. The reason is that transactions are sent synchronously
in Fabric. The process starts when a transaction is submitted and ends when the
transaction is commited to the state database [38]. There is no async sending or
batching like in the Geth network, where all transactions can be asynchronously
dumped without problems. Therefor to send a higher load of transactions, parallelism
is required on the side of the client. Due to time constraints we were not able to develop
a setup that sufficiently loads the HF network.

A.2. Data Collection

The following are the tools used for data collection.

A.2.1. pprof

The pprof tool can be used on one of the download CPU profile to extract the amount
of time spent in each goroutine(go function). For example the following command
outputs the goroutines descending based on their cumulative time on the CPU:

go tool pprof -text -cum cpuprofile_node1-1.profile

A.2.2. Monsoon PowerTool

The Monsoon PowerTool is used to operate the High Voltage Monsoon Power Monitor
[35]. With this software we can set the input voltage for our physical devices and
record the current and power. Generally, we run the power tool during the entire test
session, and then based on timestamp extract the relevant timespans that we want to
investigate.

49

List of Figures

1.1. Comparison of bitcoin energy consumption in TWh [5] 1

2.1. DAG size growth [16] . 8
2.2. Mining with Ethash . 10
2.3. Distribution of mining rewards for modified Ghost. Blocks colours

correspond to miners. On the right is the total mining reward for this
branch . 11

2.4. Hyperledger Fabric Network Overview 16
2.5. Market capitalization and est. bounds of the top 5 PoW blockchains [58] 19
2.6. Market share on consensus algorithm[33] 20
2.7. PoS energy consumption comparison [53] 22

3.1. Ethereum network overview . 25
3.2. HF network overview . 28

4.1. Hierarchy of bottlenecks overview [57] 30
4.2. Devices comparison . 33
4.3. Performance of VM L network . 33
4.4. Block distribution . 34
4.5. Raspberry Pi 4b network performance . 35
4.6. CPU time on VM L network . 38
4.7. Average power consumption . 39
4.8. Power wastage . 40
4.9. PoA performance . 42

50

List of Tables

2.1. Mining devices . 21

3.1. Device list . 23

4.1. PoW test parameters . 32
4.2. Normal OS stats . 36
4.3. Under load stats . 36
4.4. Device list . 39
4.5. PoA test parameters . 41
4.6. HF Performance . 43

5.1. Blockchain protocols summary . 44
5.2. Blockchain protocols summary . 45

51

Bibliography

[1] 3rd Global Cryptoasset Benchmarking Study with Apolline Blandin. Newsroom –
Compass. Oct. 5, 2020. url: https : / / compassmining . io / education / 3rd -
global-cryptoasset-benchmarking-study-with-apolline-blandin/ (visited
on 07/09/2022).

[2] Amazon.de: Low Prices in Electronics, Books, Sports Equipment & more. url: https:
//www.amazon.de/-/en/ref=nav_logo (visited on 07/12/2022).

[3] Bangladesh Population. url: https://www.worldometers.info/world-population/
bangladesh-population/ (visited on 07/12/2022).

[4] A. Barger, Y. Manevich, H. Meir, and Y. Tock. A Byzantine Fault-Tolerant Consensus
Library for Hyperledger Fabric. Number: arXiv:2107.06922. July 14, 2021. arXiv:
2107.06922[cs].

[5] Bitcoin Devours More Electricity Than Many Countries. url: https://www.statista.
com/chart/18632/estimated-annual-electricity-consumption-of-bitcoin/
(visited on 07/12/2022).

[6] Bitcoin Energy Consumption Index. Digiconomist. url: https://digiconomist.
net/bitcoin-energy-consumption/ (visited on 07/12/2022).

[7] BITMAIN. Cryptocurrency Mining Hardware & Solutions | BITMAIN. url:
https://www.facebook.com/Bitmain (visited on 07/12/2022).

[8] Blockchain network — hyperledger-fabricdocs main documentation. url: https://
hyperledger- fabric.readthedocs.io/en/release- 2.2/network/network.
html (visited on 06/22/2022).

[9] Blockchain Technology Market Size Report, 2022-2030. url: https://www.grandviewresearch.
com/industry-analysis/blockchain-technology-market (visited on 07/11/2022).

[10] V. Buterin. “Ethereum: A Next-Generation Smart Contract and Decentralized
Application Platform.” In: (), p. 36.

[11] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance.” In: (), p. 14.

[12] Clients - ethernodes.org - The Ethereum Network & Node Explorer. url: https://www.
ethernodes.org/ (visited on 07/03/2022).

52

https://compassmining.io/education/3rd-global-cryptoasset-benchmarking-study-with-apolline-blandin/
https://compassmining.io/education/3rd-global-cryptoasset-benchmarking-study-with-apolline-blandin/
https://www.amazon.de/-/en/ref=nav_logo
https://www.amazon.de/-/en/ref=nav_logo
https://www.worldometers.info/world-population/bangladesh-population/
https://www.worldometers.info/world-population/bangladesh-population/
https://arxiv.org/abs/2107.06922 [cs]
https://www.statista.com/chart/18632/estimated-annual-electricity-consumption-of-bitcoin/
https://www.statista.com/chart/18632/estimated-annual-electricity-consumption-of-bitcoin/
https://digiconomist.net/bitcoin-energy-consumption/
https://digiconomist.net/bitcoin-energy-consumption/
https://www.facebook.com/Bitmain
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/network/network.html
https://www.grandviewresearch.com/industry-analysis/blockchain-technology-market
https://www.grandviewresearch.com/industry-analysis/blockchain-technology-market
https://www.ethernodes.org/
https://www.ethernodes.org/

Bibliography

[13] Command-line Options | Go Ethereum. url: https://geth.ethereum.org/docs/
interface/command-line-options (visited on 07/03/2022).

[14] Cryptocurrency Market Capitalization. url: https : / / www . slickcharts . com /
currency (visited on 06/26/2022).

[15] Cryptocurrency Prices, Charts And Market Capitalizations. CoinMarketCap. url:
https://coinmarketcap.com/ (visited on 07/12/2022).

[16] DAG size calculator and calendar. minerstat. url: https://minerstat.com/dag-
size-calculator (visited on 06/30/2022).

[17] Digital Currencies and Energy Consumption. url: https://www.imf.org/en/
Publications/fintech-notes/Issues/2022/06/07/Digital-Currencies-and-
Energy-Consumption-517866 (visited on 07/11/2022).

[18] Docker Documentation. Docker Documentation. July 1, 2022. url: https://docs.
docker.com/ (visited on 07/03/2022).

[19] Dogecoin. url: https://dogecoin.com/ (visited on 07/11/2022).

[20] L. Eichhorn. “Exploring Latency Boundaries of Blockchains in Edge Computing
Networks Using Emulation.” Technical University Munich, 2021.

[21] EIP-225: Clique proof-of-authority consensus protocol. Ethereum Improvement Propos-
als. url: https://eips.ethereum.org/EIPS/eip-225 (visited on 07/10/2022).

[22] Energy efficiency directive. url: https://energy.ec.europa.eu/topics/energy-
efficiency / energy - efficiency - targets - directive - and - rules / energy -
efficiency-directive_en# (visited on 07/13/2022).

[23] Energy Web. Energy Web. url: https://energyweb.org/ (visited on 07/10/2022).

[24] Ethash. ethereum.org. url: https://ethereum.org (visited on 06/30/2022).

[25] Ethereum (ETH) Ethash | Mining Pools. url: https://miningpoolstats.stream/
ethereum (visited on 07/11/2022).

[26] Ethereum Difficulty Chart - ETH Difficulty. url: https://www.coinwarz.com/
mining/ethereum/difficulty-chart (visited on 07/09/2022).

[27] Ethereum Energy Consumption Index. Digiconomist. url: https://digiconomist.
net/ethereum-energy-consumption/ (visited on 07/11/2022).

[28] Ethereum upgrades (formerly ’Eth2’). ethereum.org. url: https://ethereum.org
(visited on 07/11/2022).

[29] ethereum/go-ethereum. original-date: 2013-12-26T13:05:46Z. July 3, 2022.

53

https://geth.ethereum.org/docs/interface/command-line-options
https://geth.ethereum.org/docs/interface/command-line-options
https://www.slickcharts.com/currency
https://www.slickcharts.com/currency
https://coinmarketcap.com/
https://minerstat.com/dag-size-calculator
https://minerstat.com/dag-size-calculator
https://www.imf.org/en/Publications/fintech-notes/Issues/2022/06/07/Digital-Currencies-and-Energy-Consumption-517866
https://www.imf.org/en/Publications/fintech-notes/Issues/2022/06/07/Digital-Currencies-and-Energy-Consumption-517866
https://www.imf.org/en/Publications/fintech-notes/Issues/2022/06/07/Digital-Currencies-and-Energy-Consumption-517866
https://docs.docker.com/
https://docs.docker.com/
https://dogecoin.com/
https://eips.ethereum.org/EIPS/eip-225
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en#
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en#
https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-directive_en#
https://energyweb.org/
https://ethereum.org
https://miningpoolstats.stream/ethereum
https://miningpoolstats.stream/ethereum
https://www.coinwarz.com/mining/ethereum/difficulty-chart
https://www.coinwarz.com/mining/ethereum/difficulty-chart
https://digiconomist.net/ethereum-energy-consumption/
https://digiconomist.net/ethereum-energy-consumption/
https://ethereum.org

Bibliography

[30] E. Foundation. Ethereum’s energy usage will soon decrease by ~99.95%. url: https:
//blog.ethereum.org/2021/05/18/country- power- no- more/ (visited on
07/13/2022).

[31] U. Gallersdörfer, L. Klaaßen, and C. Stoll. “Energy Consumption of Cryptocurren-
cies Beyond Bitcoin.” In: Joule 4.9 (Sept. 16, 2020), pp. 1843–1846. issn: 2542-4351.
doi: 10.1016/j.joule.2020.07.013.

[32] Glances - An Eye on your system. url: https://nicolargo.github.io/glances/
(visited on 07/03/2022).

[33] Global ranking of consensus mechanisms | Unblocktalent. url: https://www.unblocktalent.
com/topics/building- blocks/consensus/consensus- ranking/ (visited on
07/12/2022).

[34] Görli Testnet. Görli Testnet. url: https://goerli.net (visited on 07/10/2022).

[35] High Voltage Power Monitor | Monsoon Solutions | Bellevue. Monsoon Solutions.
url: https : / / www . msoon . com / high - voltage - power - monitor (visited on
07/02/2022).

[36] History and Forks of Ethereum. ethereum.org. url: https://ethereum.org (visited
on 07/04/2022).

[37] Hyperledger Besu. Hyperledger Foundation. url: https://www.hyperledger.org/
use/besu (visited on 07/11/2022).

[38] Hyperledger Fabric SDK for Node.js. fabric-sdk-node. url: https://hyperledger.
github.io/fabric-sdk-node/ (visited on 07/12/2022).

[39] Hyperledger Indy. Hyperledger Foundation. url: https://www.hyperledger.org/
use/hyperledger-indy (visited on 07/11/2022).

[40] Increasing ETH’s Gas Limit: What we can safely do today. Ethereum Research. Oct. 16,
2020. url: https://ethresear.ch/t/increasing-eth-s-gas-limit-what-we-
can-safely-do-today/8121 (visited on 07/04/2022).

[41] M. Jakobsson and A. Juels. “Proofs of Work and Bread Pudding Protocols(Extended
Abstract).” In: Secure Information Networks. Ed. by B. Preneel. Boston, MA: Springer
US, 1999, pp. 258–272. isbn: 978-1-4757-6487-1 978-0-387-35568-9. doi: 10.1007/
978-0-387-35568-9_18.

[42] M. J. Krause and T. Tolaymat. “Quantification of energy and carbon costs for
mining cryptocurrencies.” In: Nature Sustainability 1.11 (Nov. 2018). Number: 11
Publisher: Nature Publishing Group, pp. 711–718. issn: 2398-9629. doi: 10.1038/
s41893-018-0152-7.

[43] Linzhi Corp. 2019 ETC Summit, E1400 Ethash Architecture Overview. Oct. 6, 2019.

54

https://blog.ethereum.org/2021/05/18/country-power-no-more/
https://blog.ethereum.org/2021/05/18/country-power-no-more/
https://doi.org/10.1016/j.joule.2020.07.013
https://nicolargo.github.io/glances/
https://www.unblocktalent.com/topics/building-blocks/consensus/consensus-ranking/
https://www.unblocktalent.com/topics/building-blocks/consensus/consensus-ranking/
https://goerli.net
https://www.msoon.com/high-voltage-power-monitor
https://ethereum.org
https://www.hyperledger.org/use/besu
https://www.hyperledger.org/use/besu
https://hyperledger.github.io/fabric-sdk-node/
https://hyperledger.github.io/fabric-sdk-node/
https://www.hyperledger.org/use/hyperledger-indy
https://www.hyperledger.org/use/hyperledger-indy
https://ethresear.ch/t/increasing-eth-s-gas-limit-what-we-can-safely-do-today/8121
https://ethresear.ch/t/increasing-eth-s-gas-limit-what-we-can-safely-do-today/8121
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1007/978-0-387-35568-9_18
https://doi.org/10.1038/s41893-018-0152-7
https://doi.org/10.1038/s41893-018-0152-7

Bibliography

[44] List of countries by electricity consumption. In: Wikipedia. Page Version ID: 1089576754.
May 24, 2022.

[45] T. Nakaike, Q. Zhang, Y. Ueda, T. Inagaki, and M. Ohara. “Hyperledger Fabric
Performance Characterization and Optimization Using GoLevelDB Benchmark.”
In: 2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). 2020
IEEE International Conference on Blockchain and Cryptocurrency (ICBC). May
2020, pp. 1–9. doi: 10.1109/ICBC48266.2020.9169454.

[46] S. Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System.” In: (), p. 9.

[47] Q. Nasir, I. A. Qasse, M. Abu Talib, and A. B. Nassif. “Performance Analysis
of Hyperledger Fabric Platforms.” In: Security and Communication Networks 2018
(Sept. 9, 2018), pp. 1–14. issn: 1939-0114, 1939-0122. doi: 10.1155/2018/3976093.

[48] New Thematic Report: Energy Efficiency of Blockchain Technologies. EUBlockchain. url:
https://www.eublockchainforum.eu/news/new-thematic-report-energy-
efficiency-blockchain-technologies (visited on 07/08/2022).

[49] C. T. Nguyen, D. T. Hoang, D. N. Nguyen, D. Niyato, H. T. Nguyen, and
E. Dutkiewicz. “Proof-of-Stake Consensus Mechanisms for Future Blockchain
Networks: Fundamentals, Applications and Opportunities.” In: IEEE Access 7
(2019). Conference Name: IEEE Access, pp. 85727–85745. issn: 2169-3536. doi:
10.1109/ACCESS.2019.2925010.

[50] Peercoin whitepaper - whitepaper.io. url: https://whitepaper.io/document/139/
peercoin-whitepaper (visited on 07/02/2022).

[51] Peers — hyperledger-fabricdocs main documentation. url: https://hyperledger-
fabric.readthedocs.io/en/release- 2.3/peers/peers.html (visited on
07/11/2021).

[52] Petition: Ban the mining of and trade in "proof of work" cryptocurrencies within the UK.
Petitions - UK Government and Parliament. url: https://petition.parliament.
uk/petitions/601629 (visited on 07/11/2022).

[53] M. Platt, J. Sedlmeir, D. Platt, J. Xu, P. Tasca, N. Vadgama, and J. I. Ibañez.
“The Energy Footprint of Blockchain Consensus Mechanisms Beyond Proof-of-
Work.” In: 2021 IEEE 21st International Conference on Software Quality, Reliability and
Security Companion (QRS-C). 2021 IEEE 21st International Conference on Software
Quality, Reliability and Security Companion (QRS-C). ISSN: 2693-9371. Dec. 2021,
pp. 1135–1144. doi: 10.1109/QRS-C55045.2021.00168.

[54] pprof package - net/http/pprof - Go Packages. url: https://pkg.go.dev/net/http/
pprof (visited on 07/03/2022).

55

https://doi.org/10.1109/ICBC48266.2020.9169454
https://doi.org/10.1155/2018/3976093
https://www.eublockchainforum.eu/news/new-thematic-report-energy-efficiency-blockchain-technologies
https://www.eublockchainforum.eu/news/new-thematic-report-energy-efficiency-blockchain-technologies
https://doi.org/10.1109/ACCESS.2019.2925010
https://whitepaper.io/document/139/peercoin-whitepaper
https://whitepaper.io/document/139/peercoin-whitepaper
https://hyperledger-fabric.readthedocs.io/en/release-2.3/peers/peers.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/peers/peers.html
https://petition.parliament.uk/petitions/601629
https://petition.parliament.uk/petitions/601629
https://doi.org/10.1109/QRS-C55045.2021.00168
https://pkg.go.dev/net/http/pprof
https://pkg.go.dev/net/http/pprof

Bibliography

[55] Proof-of-stake (PoS). ethereum.org. url: https : / / ethereum . org (visited on
07/11/2022).

[56] Raft Consensus Algorithm. url: https://raft.github.io/ (visited on 06/22/2022).

[57] M. Schäffer, M. di Angelo, and G. Salzer. “Performance and Scalability of Private
Ethereum Blockchains.” In: Business Process Management: Blockchain and Central
and Eastern Europe Forum. Ed. by C. Di Ciccio, R. Gabryelczyk, L. García-Bañuelos,
T. Hernaus, R. Hull, M. Indihar Štemberger, A. Kő, and M. Staples. Vol. 361.
Series Title: Lecture Notes in Business Information Processing. Cham: Springer
International Publishing, 2019, pp. 103–118. isbn: 978-3-030-30428-7 978-3-030-
30429-4. doi: 10.1007/978-3-030-30429-4_8.

[58] J. Sedlmeir, H. U. Buhl, G. Fridgen, and R. Keller. “The Energy Consumption
of Blockchain Technology: Beyond Myth.” In: Business & Information Systems
Engineering 62.6 (Dec. 1, 2020), pp. 599–608. issn: 1867-0202. doi: 10.1007/s12599-
020-00656-x.

[59] Sharding. ethereum.org. url: https://ethereum.org (visited on 07/11/2022).

[60] Solidity — Solidity 0.8.15 documentation. url: https://docs.soliditylang.org/
en/v0.8.15/ (visited on 07/02/2022).

[61] Y. Sompolinsky and A. Zohar. “Secure High-Rate Transaction Processing in
Bitcoin.” In: Financial Cryptography and Data Security. Ed. by R. Böhme and T.
Okamoto. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 507–527. isbn:
978-3-662-47854-7.

[62] The Beacon Chain. ethereum.org. url: https://ethereum.org (visited on 07/11/2022).

[63] The Merge. ethereum.org. url: https://ethereum.org (visited on 07/11/2022).

[64] The Ordering Service — hyperledger-fabricdocs main documentation. url: https:
//hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_
service.html (visited on 07/11/2021).

[65] Updating a channel configuration — hyperledger-fabricdocs main documentation. url:
https://hyperledger- fabric.readthedocs.io/en/release- 2.2/config_
update.html?highlight=batch%20size (visited on 06/22/2022).

[66] Using Blockchain Technology in Environmental Conservation. url: https://earth.
org/using-blockchain-technology-in-environmental-conservation/ (vis-
ited on 07/13/2022).

[67] Using the Fabric test network — hyperledger-fabricdocs main documentation. url:
https://hyperledger- fabric.readthedocs.io/en/latest/test_network.
html (visited on 07/03/2022).

56

https://ethereum.org
https://raft.github.io/
https://doi.org/10.1007/978-3-030-30429-4_8
https://doi.org/10.1007/s12599-020-00656-x
https://doi.org/10.1007/s12599-020-00656-x
https://ethereum.org
https://docs.soliditylang.org/en/v0.8.15/
https://docs.soliditylang.org/en/v0.8.15/
https://ethereum.org
https://ethereum.org
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.3/orderer/ordering_service.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/config_update.html?highlight=batch%20size
https://hyperledger-fabric.readthedocs.io/en/release-2.2/config_update.html?highlight=batch%20size
https://earth.org/using-blockchain-technology-in-environmental-conservation/
https://earth.org/using-blockchain-technology-in-environmental-conservation/
https://hyperledger-fabric.readthedocs.io/en/latest/test_network.html
https://hyperledger-fabric.readthedocs.io/en/latest/test_network.html

Bibliography

[68] H. Vranken. “Sustainability of bitcoin and blockchains.” In: Current Opinion in
Environmental Sustainability. Sustainability governance 28 (Oct. 1, 2017), pp. 1–9.
issn: 1877-3435. doi: 10.1016/j.cosust.2017.04.011.

[69] A. de Vries. “Bitcoin’s Growing Energy Problem.” In: Joule 2.5 (May 2018), pp. 801–
805. issn: 25424351. doi: 10.1016/j.joule.2018.04.016.

[70] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, and D. I.
Kim. “A Survey on Consensus Mechanisms and Mining Strategy Management in
Blockchain Networks.” In: IEEE Access 7 (2019). Conference Name: IEEE Access,
pp. 22328–22370. issn: 2169-3536. doi: 10.1109/ACCESS.2019.2896108.

[71] Web3j. url: https://docs.web3j.io/4.8.7/ (visited on 07/09/2022).

[72] What’s behind China’s cryptocurrency ban? World Economic Forum. url: https://
www.weforum.org/agenda/2022/01/what-s-behind-china-s-cryptocurrency-
ban/ (visited on 07/11/2022).

[73] D. G. Wood. “ETHEREUM: A SECURE DECENTRALISED GENERALISED
TRANSACTION LEDGER.” In: (), p. 41.

57

https://doi.org/10.1016/j.cosust.2017.04.011
https://doi.org/10.1016/j.joule.2018.04.016
https://doi.org/10.1109/ACCESS.2019.2896108
https://docs.web3j.io/4.8.7/
https://www.weforum.org/agenda/2022/01/what-s-behind-china-s-cryptocurrency-ban/
https://www.weforum.org/agenda/2022/01/what-s-behind-china-s-cryptocurrency-ban/
https://www.weforum.org/agenda/2022/01/what-s-behind-china-s-cryptocurrency-ban/

	Acknowledgments
	Abstract
	Contents
	Introduction
	Problem statement
	Thesis Approach and Outline

	Background and Related Work
	Consensus protocols
	Proof of Work (PoW)
	Ethereum

	Proof-Of-Stake (PoS)
	Ethereum 2.0

	Proof-Of-Authority (PoA)
	Clique

	BFT and CFT
	Hyperledger Fabric

	Related Work
	Global energy consumption
	Non-PoW blockchains
	Contribution

	Experiment and Testbed Setup
	Testbed
	Software

	Ethereum Experiment
	Test workflow
	Genesis configuration

	Hyperledger Fabric Experiment
	Test workflow
	Configuration

	Blockchain Evaluation
	Geth PoW network
	Test parameters
	Performance
	System resource consumption
	Energy consumption
	Energy waste

	Geth PoA network
	Performance and energy consumption

	Hyperledger Fabric

	Conclusion
	Summary
	Global energy consumption
	Experiment results

	Have your cake and eat it too
	Future Work

	Reproducability
	Networks
	Geth network
	Fabric network

	Data Collection
	pprof
	Monsoon PowerTool

	List of Figures
	List of Tables
	Bibliography

