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Abstract

Edge computing seeks to shift computational resources, applications, and services away
from cloud servers toward the network’s edge. This model promises to achieve low
latency, creating a suitable environment for IoT applications, which are significantly
latency-sensitive and produce a large volume of data. The edge infrastructure is charac-
terized by various resource-constrained, heterogeneous devices distributed in a dynamic
network. Applications in edge computing will continue to use lightweight container tech-
nology, which enables fast deployment and scalability with low overhead. Challenges
arise for existing state-of-the-art container orchestration platforms when deployed in
edge environments, as these are designed for cloud computing, assuming a reliable and
resource-rich infrastructure. The de facto standard to deploy and operate containerized
applications is Kubernetes due to its robustness, maturity, and rich features. While
some studies evaluated certain aspects of Kubernetes for edge computing infrastructure,
a thorough analysis of the orchestration platform in-depth and its behavior in edge
environments is still missing.

This paper aims to fill that gap, break down Kubernetes at the process level and
evaluate its suitability for edge infrastructure in terms of availability, performance,
scalability, and fault tolerance. Multiple experiments are designed to analyze the re-
quirements mentioned above, which execute orchestration operations on Kubernetes.
The behavior of the cluster is evaluated against various edge computing infrastructures.
These include setups where the resources of the machines are gradually constrained,
the number of nodes is continuously scaled, and the devices are heterogeneous and
geographically distributed. A monitoring tool is designed to collect different metrics of
Kubernetes and the cluster’s network during one experiment run. Collected experimen-
tal results present limitations and shortcomings of Kubernetes when the infrastructure
is resource-constrained, and the network presents issues.
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Kurzfassung

Edge Computing zielt darauf ab, Rechenressourcen, Anwendungen und Dienste von
Cloud-Servern an den Rand des Netzwerks zu verlagern. Dieses Modell verspricht
eine niedrige Latenz und schafft eine geeignete Umgebung für IoT-Anwendungen,
die erheblich latenzempfindlich sind und große Datenmengen produzieren. Die Edge-
Infrastruktur ist durch verschiedene ressourcenbeschränkte, heterogene Geräte gekennze-
ichnet, die in einem dynamischen Netzwerk verteilt sind. Anwendungen im Edge-
Computing werden weiterhin die Lightweight-Container-Technologie verwenden, die
eine schnelle Bereitstellung und Skalierbarkeit mit geringem Aufwand ermöglicht.
Für bestehende hochmoderne Container-Orchestrierungsplattformen ergeben sich Her-
ausforderungen, wenn sie in Edge-Umgebungen bereitgestellt werden, da diese für
Cloud-Computing entwickelt sind und eine zuverlässige und ressourcenreiche Infras-
truktur voraussetzen. Der De-facto-Standard für die Bereitstellung und den Betrieb
containerisierter Anwendungen ist Kubernetes aufgrund seiner Robustheit, Reife und
umfangreichen Funktionen. Während einige Studien bestimmte Aspekte von Kubernetes
für Edge-Computing-Infrastrukturen bewerteten, fehlt noch eine gründliche Analyse
der Orchestrierungsplattform und ihres Verhaltens in Edge-Umgebungen.

Diese Masterarbeit hat das Ziel, diese Lücke zu schließen, Kubernetes auf Prozessebene
aufzuschlüsseln und seine Eignung für Edge-Infrastrukturen in Bezug auf Verfügbarkeit,
Leistung, Skalierbarkeit und Fehlertoleranz zu bewerten. Mehrere Experimente dienen
der Analyse der oben genannten Anforderungen, die Orchestrierungsvorgänge auf
Kubernetes ausführen. Das Verhalten des Clusters wird anhand verschiedener Edge-
Computing-Infrastrukturen bewertet. Dazu gehören Setups, bei denen die Ressourcen
der Maschinen schrittweise eingeschränkt werden, die Anzahl der Knoten kontinuierlich
skaliert wird und die Geräte heterogen und geografisch verteilt sind. Ein Überwachungstool
soll während eines Experimentlaufs verschiedene Metriken von Kubernetes und dem
Netzwerk des Clusters erfassen. Gesammelte experimentelle Ergebnisse zeigen Ein-
schränkungen und Mängel von Kubernetes, wenn die Infrastruktur ressourcenbeschränkt
ist und das Netzwerk Probleme bereitet.
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1 Introduction

1.1 Domain Overview

The Internet is rapidly evolving toward the future Internet of Things (IoT), which has
the potential to connect billions, if not trillions, of devices. Most of these devices will be
located at the Internet’s edge and may provide new applications, altering many aspects
of traditional industrial production and our daily lives [37]. The edge IoT devices can
be any type of sensors and chips with different capabilities. Numerous applications
can be developed to enable smart homes, smart healthcare, smart transportation, smart
buildings, and smart cities.

The current cloud computing infrastructure favors several large-sized distributed data
centers. These data centers provide most of the computation, storage, and networking
resources. For IoT devices and applications, the centralized cloud computing approach is
not efficient enough to handle the data generated by the edge [40]. Possible shortcomings
could be latency, bandwidth, security, or availability [53]. These issues are addressed by
edge computing, which brings computation and data storage at the network edges closer
to the sources of data. It has the potential to reduce latency and bandwidth charges,
optimize availability, and preserve data privacy and security [52].

Both, cloud and edge computing, require fast and reliable application support in
different computing environments. To meet this requirement, container technologies
provide a lightweight, standalone, executable package of software that includes code
and all dependencies required to run an application. Compared to physical or virtual
machines, containers are simple to deploy, support multiple architectures, and are easy
to expand and migrate [61]. Managing containers deployed in computing environments
is a complex task, but available container orchestration platforms make it seamless.

A container orchestration platform is an arrangement of methods and operations that
developers can use to select, deploy, monitor, and control the configuration of hardware
and software resources for application deployment [47]. Kubernetes [30] is an automated
container-orchestration platform widely adopted in cloud computing. It has become the
de facto standard due to its robustness, maturity, and rich features [41].

1.2 Problem Statement and Motivation

The orchestration for edge computing infrastructure can be significantly different from
that of traditionally centralized cloud applications [40]. Edge nodes can be mobile, and
in dynamic networks, sudden changes can happen at any time, making the orchestration
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1 Introduction

of edge services more problematic [53]. Issues can also arise from edge use cases that
consist of thousands of heterogeneous nodes with limited CPU cores and memory [65].

Because the Kubernetes orchestration platform is a cloud-focused technology, it relies
on consistent reliability and reachability of the underlying infrastructure, which does
not hold for the edge [5]. Studies from academia and industry have addressed the
performance of Kubernetes for edge computing by evaluating different aspects [1, 18,
23]. Some proposed new solutions more dedicated to the edge [7, 21, 50], but a complete
one is still lacking. Despite the progress made, a thorough analysis of the components
of Kubernetes, their performance in edge scenarios, and an evaluation of shortcomings
are missing.

Therefore, the motivation to break down Kubernetes at the process level and analyze
its behavior in edge environments arises. By understanding the performance of a
Kubernetes cluster in more detail when resources are limited and heterogeneous and
the network contains problems, we can identify the challenges and limitations faced
by the system in edge environments and can reason if Kubernetes is suited for edge
computing.

1.3 Objectives

The edge infrastructure is characterized by resource-constrained devices, heteroge-
neously distributed within a dynamic network, but requires features like high availabil-
ity, performance, scalability, and fault tolerance [60]. The goal of the thesis is to evaluate
if native Kubernetes meets the previously mentioned requirements when deployed in
an edge environment.

The Kubernetes cluster should be highly available and operate without failing, con-
sidering that resources are limited and network problems occur. The performance of the
system should not be harmed when the devices have heterogeneous infrastructures and
are geographically distributed. The scalability of the cluster plays a vital role because a
large number of resource-constrained nodes are required to keep up with the perfor-
mance requirements of an IoT application. Thus, Kubernetes should be able to support
a considerable number of worker nodes. Additionally, as microservice architectures
characterize applications on edge, the system should support the scaling of multiple con-
tainers. Kubernetes should overcome network problems of edge infrastructures, such as
bandwidth limitations, latency issues, and unpredictable disruptions. The orchestration
platform should have the ability to continue operating uninterrupted despite the failure
of nodes in edge environments. It should recover from failing scenarios fast without
interrupting the deployed applications.

To summarize, the thesis aims to perform different experiments on a Kubernetes
cluster deployed in an edge environment, analyze its behavior in-depth, and evalu-
ate the system’s suitability for edge computing infrastructure in terms of availability,
performance, scalability, and fault tolerance.
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1.4 Contributions

1.4 Contributions

The thesis contributes to the refinement of existing research toward the evaluation of the
Kubernetes orchestration platform for edge computing. A monitoring tool is designed
for watching the performance of Kubernetes at the process level and collecting data
from the cluster’s network. Multiple experiments are performed against a Kubernetes
cluster deployed in edge infrastructures, which allows us to analyze and evaluate
if the system meets the edge requirements. By running the experiments in various
edge-similar environments, the Kubernetes cluster is assessed against different edge
characteristics, and possible shortcomings can be identified. Finally, an extended analysis
of the orchestration platform deployed on edge-like infrastructures is provided.

Additionally, other developers who would like to contribute to the existing research
can easily reproduce the performed experiments and configured edge environments.

1.5 Thesis Organization

This thesis consists of five chapters. The following chapter, Background, describes essen-
tial concepts relevant to this thesis. It focuses on edge computing concepts, Kubernetes
architecture, and related work. Chapter 3, Methodology, presents the system methods
used for carrying out the research. The edge environment setups, monitoring tool
design, and experiment configurations are detailed. Chapter 4, Analysis, formalizes the
results of the experiments and evaluates the shortcomings and limitations of Kubernetes
for the edge. Finally, the last chapter depicts the conclusions drawn from this thesis and
provides an outlook on future work.
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2 Background

To better understand the experiments to be performed, this chapter focuses on the
background knowledge starting with the presentation of the edge computing concept.
Section 2.2 introduces the essential theory of the Kubernetes orchestration platform.
The architecture of the system, communication in the cluster, high-availability clusters,
and fault tolerance property are described in this section. The last section will present
related work relevant to this thesis.

2.1 Edge Computing

Edge computing shifts computational data, applications, and services away from cloud
servers toward the network’s edge. Content providers and application developers can
use edge computing systems to bring services closer to users [59]. Some use cases of
edge computing are video analytics, autonomous vehicles, smart homes, and smart
cities.

2.1.1 From Cloud to Edge Computing

Cloud computing made a significant breakthrough and revolutionized the IT sector,
offering possibilities to handle increasing demands for storage and infrastructure [48]. It
enables convenient, on-demand network access to a shared pool of computing resources,
such as networks, servers, storage, applications, and services [9]. The resources are
provisioned rapidly and released with little management effort or service provider inter-
action. Cloud service providers, such as Amazon Web Services (AWS), Google Cloud
Platform, or Microsoft’s Windows Azure, are companies that offer cloud computing
resources and services to their customers [31]. Customers can access cloud services
through the Internet via a web browser, while data and software programs are stored in
the data centers of the cloud servers [45].

Cloud computing architecture presents some limitations for the following contempo-
rary IoT approach. The decentralized model of IoT connects billions of smart devices,
which are incredibly latency-sensitive and produce a vast volume of data [64]. Cloud
computing data centers are located far from IoT devices, unable to handle the data and
communication needs. Because data is increasingly generated at the edge of the network,
it would be more efficient to process the data at the edge [63]. For these reasons, the
need for a new computing paradigm arises called Edge Computing.
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2 Background

Figure 2.1: Edge computing architecture

2.1.2 Edge Computing Concepts

Edge computing aims to bring computational resources and services of cloud computing
closer to the end-user at the edge of the network. Figure 2.1 presents the architecture of
edge computing. The first layer is represented by IoT devices that produce data based
on the environment and access services deployed in the edge layer. These devices are
sensors and actuators from various technologies such as autonomous cars, wearables,
and smart homes. The edge layer is the middle layer in the edge computing architecture
and is represented by edge devices. This layer includes a variety of devices, such as
routers, routing switches, or access points that perform computations for the IoT nodes
and communicate with the cloud. The top layer is defined by the cloud environment,
which has significantly higher resources than devices from the edge layer. Data gathered
from IoT devices and processed at the edge is sent to the cloud layer [42].

The decentralized model of edge computing, which connects various devices to
process data, has many distinguishing characteristics that make it unique:

• Dense Geographical Distribution: Edge computing offers numerous computing
platforms at the edge of the network, bringing cloud-like services closer to the
user. The dense geographical distribution of the devices provides a solution to
process the data locally faster, with better accuracy, and on a large scale [44].

• Mobility Support: As devices on the edge of the network are mobile, the edge
computing paradigm requires mobility support. Network problems and instability
occur when users travel across different edge networks. Additionally, new chal-
lenges such as enhancing low latency and guaranteeing service continuity arise
with user mobility [39].
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2.1 Edge Computing

• Location Awareness: Mobile users can access computational resources and services
closest to their physical location, as edge computing offers location awareness. The
location of electronic devices can be identified using various technologies such as
GPS or wireless access points [25].

• Resource-Constrained Devices: Edge devices can be represented by routers, rout-
ing switches, or access points with limited computational resources. Challenges
arise when deploying computationally intense applications which generate large
data sets on resource-constrained devices [32].

• Low Latency Communication: Edge computing concepts bring the computing
resources and services closer to users. This improves latency utilization by reducing
the long-distance connections between the end-users and the server, making the
edge more suited for IoT applications with high real-time requirements [40].

• Heterogeneity: End devices, servers, and networks are primarily heterogeneous.
Varied platforms, architectures, infrastructures, computing and communication
technologies are used by edge computing elements [19]. The main factors of
end device heterogeneity are derived from software, hardware, and technology
variations. Different APIs, custom-built policies and platforms contribute to edge
server heterogeneity. Different communication technologies characterize network
heterogeneity [25].

• Context Awareness: Context-aware information received from mobile devices can
be used in edge computing to adapt to changes and take offloading decisions
dynamically. The health status of end devices, network load, and user location
are possible context-aware information that can be used to offer more sensitive
services to environmental and application changes [15].

2.1.3 Orchestration for Edge Computing

Containers are lightweight, executable application components that include application
code and all libraries and dependencies needed to run the code in any environment [24].
Because containers became recognized as small, resource-efficient, and portable vir-
tualization options, many IT companies started using them to run their applications.
Developers use container orchestration platforms to automate container deployment,
scaling, and managing [20]. IT companies and open-source communities developed sev-
eral container orchestration platforms such as Kubernetes [30], Docker Swarm [10], and
Apache Mesos [4]. These are designed primarily for cloud computing infrastructures
and assume robust and resource-rich resources.

Orchestration platforms for edge computing need to consider the distributed design
of edge devices [18]. Moreover, as these devices are resource-constrained, container
orchestration tools require to be lightweight and to install only the minimal software
packages. Additionally, edge nodes are physically widespread in a local or wide area
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network. Ideally, orchestration platforms should be aware of the location of the nodes
and schedule the containers accordingly [61]. There exist some preliminary orchestration
platforms designed for edge computing that are lightweight, such as KubeEdge [28],
K3s [22], and Microk8s [33]. For the purpose of this thesis, we will only focus on
Kubernetes, as it is currently the de facto industry standard, and we aim to evaluate its
suitability for edge computing.

2.2 Kubernetes

Kubernetes [30] is an open-source container orchestration platform that automates
the deployment, management, and scaling of containerized applications. It offers a
comprehensive set of features to build highly available, scalable, and fault-tolerant
clusters [49, 51].

2.2.1 Architecture

The architecture of Kubernetes is depicted in figure 2.2. A Kubernetes cluster consists
of nodes, which are worker machines that run containerized applications. A node
can be a virtual or physical machine. At least one worker node exists in every cluster.
The worker nodes host the pods. Pods are the smallest deployable units that can be
created and managed in Kubernetes. A pod is a group of one or more containers
with shared storage and network resources and a specification for how to run the
containers. All the containers in a pod have the same IP address and port space. The
communication between the pods is enabled by a container network interface add-on,
such as flannel [14], which dynamically configures networking resources for the pods.

The worker nodes and pods in the cluster are managed by the control plane, also
referenced as the master. The master is responsible for global decisions about the cluster
and detecting and responding to cluster events. It consists of several components, such as
apiserver, etcd, scheduler, and controller manager. The apiserver exposes a REST
interface and serves as the frontend to the cluster’s shared state through which all other
components communicate. The apiserver can be reached by developers and operators
to deploy and manage applications in the cluster. They can interact with the cluster
using kubectl [27] command-line tool. Etcd is a consistent and highly-available key-
value store that Kubernetes uses to store all cluster data. The scheduler is responsible
for scheduling pods to cluster nodes according to different factors. The scheduling
algorithm filters out nodes that are incapable of running one newly created pod and
then ranks the capable nodes. The node with the highest-ranking points is selected to
run the pod. The controller manager uses the apiserver to monitor the cluster’s state
and is responsible for steering the cluster to the desired state. It implements multiple
independent control loops, such as node controller and replicaset controller. Each
one runs as a background watch-loop and constantly watches the apiserver for changes.
The node controller is responsible for noticing and responding when nodes go down.
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2.2 Kubernetes

Figure 2.2: The components of a Kubernetes cluster

The replicaset controller maintains the correct number of pods running in the cluster.
Each worker node runs several components required to orchestrate containers, such

as kubelet, container runtime, and kube-proxy. Kubelet is an agent that runs on each
node, communicates with the master’s apiserver component, and manages the running
pods. It ensures that the containers described in the pod specification provided by
the control plane are running and are healthy. If kubelet cannot complete a task,
it informs the control plane, which then decides what actions to take. The kubelet
component requires a container runtime, such as Docker [11], to perform tasks like
pulling images and starting and stopping containers. The kube-proxy is responsible
for local networking, such as handling routing and load-balancing traffic on the pod
network.

A Kubernetes cluster can be created using available tools, such as kubeadm [8]. First,
one control plane is initialized and started, then additional control planes or worker
nodes can join the cluster. The hardware resource recommendations for machines in
a Kubernetes cluster are 2 GiB memory for every node and 2 CPUs for each master
node [8].

2.2.2 Cluster Communication

The control plane and the worker nodes communicate through the apiserver component
from the control plane and kubelet and kube-proxy from the worker [43]. To keep the
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2 Background

communication private and ensure that one component is talking to another trusted
component, Kubernetes uses TLS certificates.

The communication between apiserver and kubelet is the primary communication
path. Thus kubelet listens on the apiserver component for updates, obtains the
latest configurations, and executes tasks to synchronize the running state and desired
state. Additionally, it maintains a reporting channel back to the control plane. The
communication path between apiserver and kube-proxy is part of the Kubernetes
Service concept. Kube-proxy maintains network rules that allow communication to
pods from network sessions inside or outside the cluster.

2.2.3 High Availability Cluster

A Kubernetes cluster can be configured as a single-master or multi-master cluster, also
called high availability cluster [51]. Configuring multiple control planes which have
access to the same worker nodes avoids having a single point of failure. The apiserver,
controller manager, etcd, and scheduler components are present on each master node.

The entry point of a high availability cluster is a load balancer that forwards the re-
quests to the apiserver components. The load balancer implements the communication
with all control plane nodes on the apiserver port. It also allows incoming traffic on
its listening port. Worker nodes and end-users reach out to any master’s apiserver
through the load balancer.

The controller manager and the scheduler implement a leader election algorithm to
avoid conflicts. Only one component of each will be active. Kubernetes identifies a set
of candidates that can become leaders. All these candidates race to declare themselves
the leader. The candidate that wins becomes the leader and constantly renews its lease
time to indicate its eligibility to hold the position. The other candidates periodically
make new attempts to become the leader. If the present leader fails, a new leader can be
identified immediately.

The multiple etcd components create an etcd cluster. Each control plane holds a
copy of the data store. An etcd cluster needs a majority of nodes, also called a quorum,
to agree on updates to the cluster state. When a cluster has n nodes, the quorum is
(n/2)+1. To manage replicated logs and ensure the strong consistency of the data store,
etcd uses the Raft [38] consensus algorithm.

2.2.4 Fault Tolerance

Kubernetes is designed to be robust and resilient to failures [51]. It implements features
to auto recover in failure scenarios. Node disruptions can commonly happen due to
various reasons such as hardware failure or the node cannot communicate with the
cluster due to network errors.

By default, kubelet components post the node status to the apiserver every 10s. The
node controller of the controller manager syncs the status of the nodes every 5s. The
default amount of time Kubernetes allows a running node to be unresponsive before
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marking it unhealthy is 40s. If a node is considered unhealthy, kube-proxy removes
the endpoints of the pods inside the failed node, making them inaccessible. If the
node’s status remains unhealthy for longer than the default pod eviction timeout of
five minutes, then the node controller triggers the eviction for all pods assigned to
that node. All pods from the failed worker are terminated, and new ones are created
and scheduled on the available workers. If the node is unreachable, the apiserver
cannot communicate the decision to terminate the pods to the kubelet component until
the communication is established. Meanwhile, the pods scheduled for deletion may
continue to run on the partitioned node.

A disruption of the containers within a pod can occur frequently. Kubernetes detects
such failures using container probes. A probe is a diagnostic executed periodically by
the kubelet component on a container. Kubelet executes code within a container or
makes a network request to perform a diagnostic. The liveness probe indicates whether
the container is running. If the liveness probe fails, the kubelet kills the container, and
it will be restarted.

2.3 Related Work

This section reviews related work from academia and industry, which focus on Ku-
bernetes and edge computing. A few studies propose some architectural changes to
Kubernetes to improve its suitability for edge computing. Furthermore, some open-
source projects implement lightweight orchestration platforms which can be used as
an alternative to Kubernetes. Other studies focus on evaluating the performance of the
Kubernetes orchestration platform.

2.3.1 Rearchitecting Kubernetes for the Edge

The suitability of Kubernetes for edge solutions is evaluated in [21]. The paper analyses
the strongly consistent key-value store etcd used by Kubernetes and proposes the use
of an eventually consistent approach.

First, the reason why etcd can be a bottleneck in a Kubernetes cluster is described.
Etcd uses the Raft consensus protocol to maintain consistency, requiring a majority
quorum. Due to the overhead of maintaining strong consistency with more nodes,
etcd is not horizontally scalable. When breaking down the Kubernetes requests to a
single-node etcd cluster for some basic operations, the results show that approximately
30% of the requests are writes. Even though quorum writes within the etcd cluster are
sent in parallel, the overall latency is dictated by the slowest node in the quorum. This
issue is worsened in large clusters reducing the suitability of Kubernetes for the edge.

Secondly, [21] presents a benchmark of etcd’s performance at scale, and a discussion
of how this affects the availability. Results show that the latency of write requests
increases with the increase of the number of nodes in a cluster, while the latency of
read requests stays comparatively low. When looking at the effect of increasing the
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node counts, large etcd cluster sizes, independent of request type, cause considerable
throughput reduction.

Last, a rearchitecture of Kubernetes is proposed using eventual consistency instead
of strong consistency. Using Conflict-Free Replicated Datatypes (CRDTs) for eventual
consistency, reads and writes to a single node will be performed without immediate
communication with other nodes. The conflicts from the stored data introduced by
possible concurrent writes will be resolved upon syncing with other nodes in a lazy
rather than eager manner. This will improve performance at large scales due to no
requests between the data store nodes. The suggested data store can be distributed more
widely over the Kubernetes cluster in an edge environment.

This research demonstrates that for larger etcd cluster sizes, offering higher avail-
ability, the latency of a write request significantly increases, and throughput decreases
similarly. Proposing an eventual consistent approach instead enables higher perfor-
mance, availability, and scalability. This will make Kubernetes more suitable for edge
environments.

Another improved design of Kubernetes is described in [7]. The authors propose
a custom scheduler for Kubernetes designed for usage in a 5G edge infrastructure.
The paper presents an extension of previous work described in [6], where an initial
scheduling algorithm that integrates real-time information about the edge nodes in the
cluster is proposed.

The study briefly describes the scheduling algorithm in Kubernetes and analyzes its
shortcomings. The time spent scheduling and rescheduling a pod can quickly increase
with service disruptions up to a minute in case node death occurs. Because the existing
scheduler does not consider the current health of the nodes, a custom scheduler is
proposed. The node score computation takes input data regarding the status of the
nodes. The scheduling algorithm dynamically adapts to cluster changes, and distributes
the workload based on the actual node status. Compared to the previous work, the new
algorithm is more sensitive to environmental and application changes.

The custom scheduler is evaluated against the default Kubernetes scheduler in a fully
functioning 5G and edge computing network. Results show that the scheduling time is
reduced for the custom scheduler. Additionally, the custom scheduler can allocate up to
60 pods, while the default scheduler causes all the devices to overheat and shut down.

The proposed custom scheduler presents some improvements compared to the default
one for edge environments where resources are constrained. The solution balances not
only memory and CPU usage of the worker nodes, but also multiple network- and
infrastructure-specific parameters.

Similar research is described in [50], which proposes an extension of the Kubernetes
scheduler to enable the scheduling of pods based on the current status of the network
infrastructure. The proposed scheduling algorithm is evaluated using a smart city
container-based application.

The scheduler extender is called by the Kubernetes default scheduler as a final step
when making scheduling decisions. It implements an additional filtering endpoint.
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Each node is labeled with a strategically placed Round Trip Time (RTT), and each
pod configuration file specifies a target location. The node selection is based on the
minimization of RTT depending on the target location for the pod. Furthermore, the
network-aware scheduler uses a bandwidth requirement label to determine if the best
candidate node has adequate bandwidth to support the given service.

The evaluation of the network-aware scheduler is performed on smart city services
which implement unsupervised anomaly detection. The results show that the proposed
scheduler can significantly improve the default scheduler by reaching a 80% reduction
in network latency. The authors conclude that the proposed network-aware scheduler
presents a solution that opens the way toward proper resource provisioning in smart
city ecosystems.

2.3.2 Kubernetes Distributions for the Edge

KubeEdge [28, 62] is an open-source, flexible, and lightweight edge computing platform.
It is built upon the functionality of Kubernetes and extends containerized application
orchestration to devices placed at the edge. It enables networking, application deploy-
ment, and metadata synchronization between cloud and edge. It also supports MQ
Telemetry Transport (MQTT), which gives developers the ability to write custom logic
and enable resource-constrained device communication. Because of the strong integra-
tion of Kubernetes with KubeEdge, operators can use common Kubernetes commands
to deploy applications.

The architecture of the KubeEdge components is depicted in figure 2.3. KubeEdge
consists of a cloud component and an edge component. The cloud part implements
an EdgeController, which manages edge nodes and pods and is the bridge between
EdgeCore and Kubernetes apiserver. The DeviceController is also part of the cloud
component and is accountable for device management. The cloud part implements a
CloudHub responsible for watching changes at the cloud side and notifying the EdgeHub
implemented in the edge part. On the edge part, the EdgeHub is responsible for interact-
ing with the CloudCore and implements functions such as reporting edge-side device
status changes to the cloud. Edged is an agent that runs on each edge node and manages
the lifecycle of pods. It facilitates the deployment of containerized applications at the
edge node. DeviceTwin is in charge of storing device information and syncing it with
the cloud. MetaManager is the message processor between Edged and EdgeHub and is
in charge of saving and retrieving metadata to and from a lightweight database. The
EventBus is a client which interacts with MQTT servers and offers publish and subscribe
capabilities to other components. The ServiceBus is an HTTP client implementing
similar functionality as the EventBus.

Another Kubernetes distribution that is small, lightweight, and more suited for
low-end application areas like IoT is MicroK8s [33]. The system is open-source and
implements functionality to automate deployment, scale, and manage containerized
applications. MicroK8s also offers the features provided by the Kubernetes core com-
ponents, but fewer resources are required for them. All basic Kubernetes components
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Figure 2.3: The components of KubeEdge (taken from [29])

are by default enabled to make the cluster available. Further add-ons such as DNS or
ingress require to be activated separately. MicroK8s implements Dqlite [12] as a high
availability data store instead of etcd. The MicroK8s system is provided by snap [54], a
package manager that runs applications in a sandbox.

K3s [22] is lightweight Kubernetes distribution designed as an orchestration platform
for resource-constrained devices or IoT appliances. The system is packed as a single
small binary, making the installation process faster and making it possible to run a
production Kubernetes cluster on very resource-limited devices.

Figure 2.4 illustrates the architecture of K3s. The K3s server and agents, equivalent to
master and workers, encapsulate all the components in one single process. This enables
K3s to automate and handle complex cluster processes such as certificate distribution.
K3s uses the flannel add-on to enable the communication between the pods. The server
and the agents implement the basic components of Kubernetes. In addition, the server
also contains a supervisor component and Kine [26], while the agents also contain a
tunnel proxy. Tunnel proxy on agents communicates with the supervisor component
on the server for configuring the pods and passes the information to the kubelet. Kine
provides an etcd API shim that accepts etcd requests, translates these to SQL queries,
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Figure 2.4: The components of K3s (taken from [22])

and sends them to the available database backend. This feature allows K3s to support
different database engines. The default storage mechanism is based on SQLite [55].

2.3.3 Evaluation of Kubernetes

The availability achievable by Kubernetes under its default configurations is examined
in [1]. For this purpose, different failure experiments of a microservice-based deployment
are performed and availability metrics analyzed.

The research presents different availability metrics collected during to experiment to
evaluate Kubernetes. The reaction time describes the duration from introducing the
failure until the system detects this and issues a failure event. The repair time is the
interval between the reaction time and the repair of the failed pod. The recovery metric
represents the duration from the reaction time until the service is available. The last
metric, outage time, illustrates the duration of time when the service is not available.
The microservice deployment used for the experiments is a video streaming application.
Pod failure and node failure scenarios are evaluated. Each scenario is simulated by an
administrative operation internal to Kubernetes and a trigger external to Kubernetes.

The analysis of the results shows that for both experiments, the availability metrics are
significantly higher when external sources trigger the failure. The authors argue that the
reaction time is higher because it depends on the update period of status by kubelet. The
repair and recovery time are higher because of the graceful termination of the application
container, whose duration depends on container runtime configuration. Furthermore,
the outage time for externally triggered node failure exceeds 5 minutes. The paper
concludes that the high availability requirements when a microservice application is
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deployed with the default Kubernetes configurations are not satisfied.
Another research that focuses on the evaluation of Kubernetes for edge-similar sce-

narios is described in [23]. The authors analyze Kubernetes in the fog computing
model. Limitations of Kubernetes and further research ideas to adapt the orchestration
platform to the fog environments are presented. Additionally, the paper demonstrated
the feasibility of deploying containerized IoT applications with Kubernetes in the fog
computing environment.

After reviewing the architecture of the Kubernetes orchestration platform, multiple
limitations can be identified. The centralized model of Kubernetes does not suit the
decentralized needs of IoT applications. The authors argue that the scheduling imple-
mentation has multiple shortcomings. The algorithm does not consider pod priority,
only node score, meaning that a global optimum solution cannot be made. Moreover, a
pod can enter the status unallocated because the filtering process cannot find a node
suited for the pod. The system does not consider redistributing already deployed
containers across other nodes to use the capacity better. Another shortcoming of the
scheduler is that only CPU and memory utilization rates are considered for scheduling
a pod, but latency and bandwidth usage rates are not. The authors propose a design of
a scheduler extender that implements an improved strategy to overcome the limitations
mentioned above.

The research experiments with an IoT application that requires real-time low latency
services to evaluate the feasibility and industrial practicality of using Kubernetes in a
fog computing model. The cluster consists of one master node and four worker nodes
deployed on raspberry pi 3 devices. The results show that the distribution of containers
in various pods on multiple Kubernetes nodes does not affect the application’s operation.
The authors conclude that Kubernetes shows potential for the fog computing model,
but further research needs to address the presented limitations to adapt the Kubernetes
to the fog environment.

An evaluation of Kubernetes is also presented in [5]. The paper compares the
performance of lightweight Kubernetes distributions, such as MicroK8s and K3s, to
native Kubernetes. The described experimental approach evaluates the overall cluster
lifecycle of Kubernetes.

The authors aim to measure the resource and time consumption of all platforms
during a complete cluster lifecycle. This includes starting, stopping, and adding nodes.
Moreover, metrics for creating, running, and deleting deployments for each platform
are also evaluated. A small web server application with three replicas is used for
the deployment. Data is collected using the netdata monitoring tool. Each cluster is
composed of one master node and three worker nodes. Results show that K3s consumed
similar resources as Kubernetes, although it was more performant when starting new
nodes and adding nodes to the cluster. MicroK8s presents a higher resource and time
consumption for all lifecycle steps. The paper concludes that replacing native Kubernetes
with a lightweight distribution can be beneficial only in particular areas like Fog, Edge,
and IoT computing, where the number of nodes varies over time.
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This chapter presents the system of methods used to evaluate Kubernetes for edge
computing infrastructure. Section 3.1 covers the infrastructure provisioning and configu-
ration prior to the execution of experiments. The second section describes the different
setups for simulating an edge computing scenario. In section 3.3, the monitoring tool
for gathering metrics is presented. The last section provides information regarding the
experiment configurations and workflow.

3.1 Infrastructure Setup

The edge infrastructure is emulated using virtual servers, also called instances, in
Amazon’s Elastic Compute Cloud (EC2) on the Amazon Web Services (AWS) platform.
Instance types consist of varying combinations of CPU and memory capacity. Table 3.1
presents the instance types used for the experiments and their resources. The instances
are based on Ubuntu 18.04 LTS operating system. T3 instances are a newer generation
of T2 instances and implement better CPU and networking performance. The hardware
resource recommendations presented in chapter 2.2 of 2 GiB memory for every node and
2 CPUs for each control plane node are fulfilled by t3.small and t2.medium instances.
Our experiments aim to stretch the limits of Kubernetes and use instances that do not
meet these requirements, such as t2.micro and t2.small, which are feasible devices for
edge computing.

Figure 3.1 depicts the infrastructure provisioning and configuration setup for the
experiments. The infrastructure is managed using Terraform [57], an open-source
infrastructure as a code software tool. Declarative configuration files define the desired
state of infrastructure. Terraform uses these files and the AWS Cloud Control Provider
plugin to create the resources.

Besides the EC2 instances, other resources are needed to generate a fully working

Instance vCPU Memory (GiB)

t2.micro 1 1
t2.small 1 2
t3.small 2 2
t2.medium 2 4

Table 3.1: Amazon EC2 Instance Types
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Figure 3.1: Infrastructure provisioning and configuration

edge environment. The security group controls incoming and outgoing traffic for the
instances. A private subnet defines a range of IP addresses in a Virtual Private Cloud
(VPC), used to network between multiple instances. A VPC peering connection is a
networking connection between two VPCs. This resource is implemented to enable the
communication of instances located in different regions. The route table is associated
with each subnet and contains a route that directs Internet-bound traffic to the internet
gateway. An internet gateway enables the communication between instances and the
Internet.

The process of configuring the infrastructure is automated using Ansible [3]. Ansible
playbooks define lists of tasks executed against the hosts from the inventory file.
Terraform generates the inventory file after the infrastructure is created. The infras-
tructure configuration process involves installing a Kubernetes cluster and setting up
the monitoring tool. The Kubernetes cluster is initialized using the kubeadm [8] tool.
Docker [11] is used as a container runtime platform. The communication between the
pods is enabled using the pod network add-on flannel [14]. Additionally, the needed
libraries for the monitoring tool are installed, and the files required to monitor the
metrics are transferred to each node. A detailed presentation of the monitoring tool
follows in section 3.3.

Using the infrastructure provided by AWS allows the simulation of different edge
computing environments. Additionally, it provides control over the setup and makes
the experiments reproducible for others. Terraform and Ansible support the creation
of the infrastructure and the automation of configurations.

3.2 Edge Computing Environments

Edge computing devices are generally resource-constrained, heterogeneous, and highly
distributed than cloud resources [17]. In this work, we configure different edge environ-
ments on various EC2 instances to evaluate the Kubernetes orchestration platform. Table
3.2 summarizes the configurations for single-master clusters deployed in one region,
which are detailed in the following paragraphs. The AWS region used is the us-east-1,
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t2.micro t2.small t3.small t2.medium
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1. 2W 1M 2W 1W
2. 4W 1M 4W 2W
3. 6W 1M 6W 3W
4. 8W 1M 8W 4W

Table 3.2: Edge computing environments for single-master cluster configurations.
M stands for master node and W stands for worker node.

and the nodes are distributed across six availability zones.

Resource Limitation Environments with resource-constrained devices are configured
to simulate edge scenarios. The behavior of the Kubernetes system when resources
are limited can be evaluated by gradually decreasing the resources and running the
same experiment. A single-master cluster with five homogeneous workers is deployed
on t2.micro, t2.small, and t2.medium instances. For one experiment configuration, the
t2.micro instances are replaced by t3.small instances because the control plane fails and
is not available anymore when t2.micro instances are used. This limitation is described
in more detail in chapter 4.

Heterogeneity Various hardware setups of end devices constitute the heterogeneity of
edge computing. Two scenarios of edge environments with heterogeneous nodes are
configured to evaluate the performance of Kubernetes when the nodes have different
resources. The first scenario focuses on the size difference between the master and
worker nodes. One setup contains one control plane of size t2.small and five worker
nodes of size t2.micro. In the other setup, the master node is t2.micro, and the workers
are t2.small. The second scenario consists of a t2.small control plane and homogeneous
or heterogeneous workers. The homogeneous workers are of size t2.small. In the
heterogeneous setup, two workers are t2.micro, two are t2.small, and one is t2.medium.

Node Increase To meet the performance requirements of an IoT application, the need to
deploy multiple nodes on edge arises because resources are limited. Edge environments
with a continuous increase in the number of nodes are created to analyze the operation
of Kubernetes with larger cluster sizes. A single-master cluster is configured with 5,
10, 15, and 20 heterogeneous workers. The master node has the size t2.small. The five
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Figure 3.2: Cross-region multi-master cluster configuration

workers’ setup consists of the following instances: two t2.micro, two t2.small and one
t2.medium. The same worker combinations are deployed when scaling the cluster with
five more nodes.

Node Distribution Computing resources in an edge environment are not located in
the same data center but distributed over a specific area. Therefore, the EC2 instances
are deployed in different regions to simulate the distribution of nodes and evaluate
the performance of Kubernetes. The selected regions are us-east-1, ap-southeast-1,
and eu-west-1. High availability clusters with multiple control planes are configured
in the multi-region environment. Figure 3.2 presents the cluster setup in three AWS
regions consisting of three control planes and 15 worker nodes. The control planes are
initialized on t2.small instances. Each region contains five workers of different sizes: two
t2.micro, two t2.small and one t2.medium. Within one region, nodes are deployed in
different availability zones. The load balancer for the apiserver components is located
in the us-east-1 region, in the same availability zone as the first control plane. The
load balancer is an HAProxy [16] server and implements the round-robin algorithm.
Requests are forwarded to each apiserver component in turn. The inter-regional
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communication is realized by a VPC peering connection. Network delay is implicitly
introduced in the system by the cross-region deployment. The RTT between us-east-1
and ap-southeast-1 is around 230 ms, the one between us-east-1 and eu-west-1 is
around 70 ms, and the RTT between ap-southeast-1 and eu-west-1 is approximately
180 ms. No network delay occurs in the communication between nodes and components
in the same region. For the two region setup, the eu-west-1 region is excluded. The
cluster consists only of two masters and ten workers.

3.3 Monitoring Tool

The tool for monitoring the cluster and gathering metrics plays an essential role in
the evaluation of Kubernetes on edge. This section presents the requirements and
implementation of the monitoring system.

3.3.1 Requirements

Gaining a deeper understanding of the behavior of Kubernetes deployed on edge
environments heavily depends on the initial design decisions. The following list captures
the requirements that are needed to achieve these goals:

R1 Process Level To understand the Kubernetes cluster in detail, the control plane
and worker components presented in section 2.2 should be monitored. Breaking
down the cluster at the process level per node will provide deeper insights into the
orchestration platform. For each Kubernetes component, metrics for the resources
used by the main process and each child process should be collected.

R2 System Load The tool should be able to monitor the load on the system while
the experiment is running. Analyzing the system’s load will show if Kubernetes
components can perform well in edge environments characterized by constrained
resources, heterogeneity, and an increased number of nodes. Metrics such as
CPU load, memory utilization, opened ports, child processes created, and threads
started should be gathered.

R3 Network Traffic The network on edge presents instability and problems. To
evaluate the performance of a Kubernetes cluster under these conditions, the
monitoring tool should collect network metrics. The data traffic should be tracked
per process. Additionally, metrics such as the number of packets sent and received
for the cluster communication and data and packet rates during the experiment
should be collected.

R4 Monitoring Automation The process to monitor the cluster should be automated.
Executing only one command should trigger the start of the monitoring tool on
multiple Kubernetes nodes. Another command should be used to stop the metric
collection and download the data to the storage.
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Figure 3.3: Monitoring tool for one Kubernetes node

R5 Experiment Automation Experiments should be able to trigger the automatic setup
and configuration of the monitoring tool. Additionally, after each experiment, the
monitoring tool should automatically clean up the memory used so that the next
run can start with no dependencies from the previous runs.

3.3.2 System Implementation

The monitoring system implements four different bash scripts, as presented in figure
3.3. The tool can be scaled to multiple Kubernetes nodes. Additionally, the system is
generic because it can collect metrics of various experiments on different infrastructures
without requiring modification.

System load metrics per Kubernetes process are collected using two different bash
scripts. On a control plane node, metrics of apiserver, controller manager, etcd,
flannel, kubelet, kube-proxy, and scheduler are gathered. On a worker node, the
tool collects system load metrics for the following processes: flannel, kubelet, and
kube-proxy. For each component, the resources of the main process and each child
process are monitored. The first script uses the top [58] command in batch mode to log
metrics for Kubernetes processes every 200 ms. From this log file, CPU utilization and
resident memory size metrics are generated. The other bash script follows metrics for
open ports, threads, and child processes for each Kubernetes main and child process.
The values are collected in CSV format every 100-150 ms. With these functionalities, the
monitoring tool fulfills the requirements R1 and R2.

Network traffic metrics are gathered using nethogs [35] and tcpdump [56] command-
line tools to implement requirement R3. Nethogs monitors and logs network traffic
bandwidth per process. The generated log is used to compute the data traffic in
the cluster over the experiment time. The tcpdump tool collects the packet data of a
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network. This data is used to generate the number of packets sent or received by the
Kubernetes cluster. Additionally, the average packet rate and the data rate of the cluster
communication during the experiment are computed.

Multiple Ansible playbooks automate the monitoring process and integrate the tool
in the experiment runs. Thus the requirements R4 and R5 are fulfilled. First, nethogs
is installed on every node. The other required command-line tools are installed per
default with the Ubuntu operating system. Then the scripts for the monitoring tool are
transferred to each node. When the setup is ready, a playbook implements the start
of the monitoring system. Another playbook stops all the monitoring processes and
downloads the data to the storage. Last, the memory is cleaned up by deleting the logs
and CSV files generated during the experiment run.

The data from the storage is processed after the experiment with Python [46] scripts
that generate aggregated results and data plots using Pandas and Matplotlib libraries.

3.4 Experiment

Different experiments are configured and performed against edge environments to reach
the objectives defined in section 1.3. The end-to-end process of running experiments on
one infrastructure is automated using Terraform and Ansible.

3.4.1 Configurations

A deployment of a simple Nginx server is created with one replica for each experiment.
Depending on the experiment, the replica size is increased respectively. The configu-
ration file of the Kubernetes deployment is presented in figure 3.4. The version of the
Nginx server is 1.14.2. The application is started and running during the experiments,
but no load is placed on it. We make this design decision because the research focuses
on the orchestration operations of Kubernetes, not on the operation of the deployed
application. The experiment configurations are detailed in the following paragraphs.

Scalability A scalability experiment is configured to evaluate if Kubernetes responds
quickly and efficiently to demand in edge infrastructure. The Nginx [36] deployment is
scaled in a 30 pods step up to 180 pods. The scaling step is configured to 30 pods because
we want to analyze the cluster’s behavior when the number of pods increases gradually
but does not lead to failure scenarios for the smaller instances. The deployment is
scaled to 180 pods because such a large number of pods is feasible in an edge scenario.
The experiment does not scale the deployment to more than 180 pods because of the
limitations that occur for a homogeneous setup with t2.micro instances and five worker
nodes. These are presented in more detail in chapter 4. When scaling from one to 30
pods for the first pod scale, the worker nodes also pull the container image for the
application from the Docker registry. In addition to the metrics from the monitoring
tool, the scheduling time needed to distribute new pods to the workers is analyzed. The
experiment is performed in all types of edge environments described in section 3.2.
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apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment

spec:
selector:
matchLabels:
app: nginx

replicas: 1
template:
metadata:
labels:
app: nginx

spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Figure 3.4: Deployment configuration of an Nginx server

Node failure Node failure is emulated to analyze how Kubernetes recovers from failing
scenarios in edge infrastructure. The failure is replicated by disabling the Docker and
kubelet services on one node. The same outcome occurs when shutting down the
network interface or terminating the EC2 instance. The time value which allows a
running node to be unresponsive before marking it unhealthy is set to 20 seconds. The
grace period for deleting pods on failed nodes, also referenced as eviction time of pods,
is configured to 40 seconds. These default parameters are changed to improve the
reaction of Kubernetes to a failed node and reduce downtime of the pods from this node.
Metrics from the monitoring tool and the recovery time are collected. Two experiments
are configured. For the first one, 20 pods are deployed on each worker node, and one
worker node is failed. The number of pods deployed per worker is limited to 20 pods
because the memory of the smallest instance should not be exhausted when preparing
the experiment and when the pods from the failed node are evicted. The experiment is
executed on all environment types. In the second failure experiment, a master node is
failed in a multi-master cluster setup, and the response of the cluster is analyzed.

Deployment stress To evaluate the reliability and availability of the cluster, an experi-
ment to stress the overhead of deployment is configured. An Nginx server is deployed,
updated to version 1.16.1, scaled to four pods, and deleted. These steps are repeated
seven times. This experiment is designed to analyze multiple orchestration operations
for one lightweight deployment. The metrics from the monitoring tool are gathered.
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The experiment is performed in resource-constrained environments and heterogeneous
setups.

Network emulation To emulate network problems, which are likely to occur on the
edge, delay or packet loss is added to the cluster’s network using the NetEm [34] tool.
NetEm is a Linux traffic control extension that allows users to add characteristics to
packets outgoing from a selected network interface, such as delay or packet loss. The
values added are heterogeneously distributed between the nodes, which is similar to
an edge scenario. For example, introducing a network delay of 50 ms between the
control plane and one worker node requires adding 30 ms to the network interface
of the master node and 20 ms to the worker’s interface. The values from different
experiments increase gradually to better understand the cluster’s behavior with such
network problems. Network delays in the following intervals are introduced: 10-50
ms, 50-150 ms, and 150-250 ms. The packet loss percentage added to the network is
1-5%, 5-10%, and 10-25%. All previously described experiments are executed with and
without network emulation.

The node failure and deployment stress experiments are repeated five times for each
edge environment and network emulation. The scalability experiment is repeated three
times. The process of running each experiment is automated using Ansible playbooks
and bash scripts.

3.4.2 Workflow

The workflow for running an experiment on one infrastructure setup with different
network emulations is presented in figure 3.5. A bash script implements the automation
of the end-to-end process by triggering Terraform commands and Ansible playbooks.
External configurations of the bash script define the edge environment that should be
provisioned and the experiment that should be performed.

The experiment execution starts with infrastructure provisioning. After the EC2
instances and additional resources are configured, a Kubernetes cluster is initialized.
Then the monitoring tool is set up on every node, and the files which implement the
experiment are transferred. The experiment is performed against a cluster with no
network emulation first. Then additional runs introduce network delay or packet loss
within the cluster. The initial cluster state required for the experiment is prepared. For
example, the preparation of the Node Failure experiment includes creating a deployment
and scaling the deployment such that each worker has 20 pods running. Before the
experiment is performed, the monitoring tool is started. The Kubernetes processes and
cluster network are monitored during the experiment run, and metrics are collected.
After the experiment is done, the monitoring process is stopped. The collected data
is archived and fetched from each node, and the memory occupied by the monitoring
files is cleaned up. If the required number of datasets is not collected yet, the cluster
is prepared for a new experiment. Otherwise, the experiment is cleaned up. This
process includes deleting the Kubernetes resources and network emulation if needed.
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Figure 3.5: The workflow of experiment run (UML activity diagram)

The workflow will continue to run the experiment on a different network configuration.
When data from all experiment runs is collected, the infrastructure is destroyed.
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This chapter presents the analysis of results from the experiments grouped in four
different categories. The first section describes the cluster’s behavior when constraining
the resources. Section 4.2 illustrates the system’s performance when increasing the
number of workers. In section 4.3, more profound insights into a high availability cluster
deployed in multiple regions are provided. The last section evaluates the heterogeneity
characteristic of the edge infrastructures for Kubernetes.

The analysis results are divided into experiment-specific results and patterns identified
for all experiments. Each section is divided into three more subsections: Experiment
Performance, System Load, Network Traffic. The first subsection describes experiment-
specific outcomes. The System Load subsection presents patterns for memory utilization,
CPU utilization, started threads, and open ports for each Kubernetes component of the
node. The last subsection details patterns resulting from the network data and packets.

Throughout this chapter, the controller manager component of Kubernetes, described
in section 2.2, will be referenced as controller for simplicity reasons. The data rate and
packet rate metrics follow the same pattern, as they are correlated. In some cases, only
one result will be presented. Line and bar charts illustrate the mean value, including
the standard deviation of the value. Heat maps present the percent change of values
compared to an initial value. The CPU load is normalized to the number of vCPUs,
thus the value represents the load with respect to the maximum potential. Furthermore,
during the experiment run, the monitoring tool presented in section 3.3 also induces
some overhead on each node as it is running to collect metrics.

4.1 Resource Limitation

Edge computing devices are resource-constrained [52], and therefore Kubernetes needs
to perform as intended even when resources are a limiting factor. This requirement is
evaluated by gradually decreasing the capability of resources for a cluster and running
the same experiment. The cluster is composed of one control plane and five worker
nodes. Following EC2 instances are compared: t2.micro, t2.small, and t2.medium. For
the failure experiment, t2.micro is replaced by t3.small. Memory and CPU resources of
these instance types are presented in section 3.1.

4.1.1 Experiment Performance

Figure 4.1a depicts the scheduling time when scaling the deployment for different
homogeneous infrastructures. The scheduling time is significantly higher for more
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(a) Schedule time of pods (b) Recovery time with network delay

Figure 4.1: Performance of experiments with resource limitation

resource-constrained devices. The time required to schedule increases for t2.micro when
the deployment is scaled to a higher number of pods. These outcomes highlight a lower
performance when the resources are more limited and more load is placed on the cluster.

Furthermore, for t2.micro, the system fails to scale from 150 to 180 pods. As the
number of pods deployed per worker increases, the resources on the worker node are
occupied by the running containers, and no more pods can be deployed. The kubelet
component on the workers fails to report the status, and each node is considered
unhealthy. When the pod eviction starts, the cluster is not responsive anymore.

When introducing packet loss, the cluster for t2.micro fails to scale from 120 to 150
pods, presumably because the resending of packets consumes resources, and kubelet
cannot perform the required operations. This behavior also occurs with a network delay
higher than 50 ms. An increase in delay could lead to TCP timeout and abort of requests
which exhausts the memory.

In node failure experiments, the t2.micro instances are replaced by t3.small. For
t2.micro, the cluster does not recover when a worker containing 20 pods fails. The
scheduler and controller of the master node fail the liveness probe, meaning that
the components enter a broken state and cannot perform additional operations. After
the components are restarted, the liveness probe fails again. The master node enters
an infinite loop and cannot perform further tasks, presumably because of its CPU and
memory limitations.

Further results from the recovery experiment between infrastructures and network
delays are presented in figure 4.1b. The cluster composed of t2.small instances needs
significantly more time to recover from node failure than the other infrastructures.
With network delay, an increase in recovery time can be observed. Similar behavior
occurs when adding packet loss, and therefore the results are not shown. A decrease in
resources and network problems harms the availability of the deployed application in a
node failure scenario because the cluster needs more time to recover the pods from the
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Figure 4.2: Deployment experiment time with resource limitation

failed node.
The run time of the deployment experiment is illustrated in figure 4.2. The value

increases when resources are more constrained, highlighting that the system is slower
when the cluster is configured with small instances. Additionally, the standard deviation
for t2.micro instances is very high, indicating that the Kubernetes cluster presents
instability on more resource-limited devices during the experiment.

More resource-constrained nodes impact the performance and availability of the
system. Scaling the deployment to a high number of pods affects the scheduling time
when resources are limited. Additionally, the experiments indicate some limitations for
t2.micro infrastructure as a control plane and a worker.

4.1.2 System Load

Results from the analysis show that the Kubernetes control plane components do not
span any child processes. Kubelet on worker spans a few child processes, which have a
low execution time and do not put any load on the system. For this reason, the child
processes metric will be excluded from the analysis. Additionally, the components
flannel and kube-proxy, part of master and worker nodes, did not impact the system
load and are left out of this chapter as well.

Figure 4.3 presents the CPU utilization, memory utilization, and the number of
threads used by the control plane component. As depicted in figure 4.3a, more
resource-constrained instances consume higher CPU for the operations. The CPU
load of apiserver and etcd components on a t2.micro control plane are lower than on a
t2.small. Because the apiserver is responsible for the communication with the workers
and the etcd updates the state of the cluster, the decrease of the CPU values might occur
because the workers’ performance is lower on the t2.micro instance. Comparing the
memory usage in figure 4.3b, the sum of the values for t2.micro is smaller by 30% than
for the other instances. This result indicates that the control plane could not be initial-
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(a) CPU utilization (b) Memory utilization (c) Threads

Figure 4.3: System load for master with resource limitation

(a) CPU utilization (b) Memory utilization

Figure 4.4: System load for master with scaling deployment

ized correctly on the t2.micro instance because of memory restrictions. Consequently,
some experiments failed for t2.micro, as presented in subsection 4.1.1. Analyzing the
threads used by the Kubernetes components from figure 4.3c, the minimum threshold
to perform the operations is represented by t2.micro and t2.small instances because
these instances have limited resources and do not meet the recommended hardware
requirements mentioned in section 2.2. The threads sum increases by 15% for t2.medium.
With more resources, the control plane can use the infrastructure better and start more
threads to support the performance.

Figure 4.4 depicts the system load for master on t2.small when scaling the deployment.
The results for the other infrastructures are similar and therefore not shown. The CPU
utilization for scaling from one pod to 30 pods has a high standard deviation because
the container image does not exist on the workers and is pulled during the experiment,
as mentioned in section 3.4. This introduces instability in the experiment runs. For the
other scale intervals, a small increase in the CPU load of the controller component can
be observed when more pods are deployed. Comparing the memory utilization from
figure 4.4b, the values of etcd slightly increase by around 3-5 MB when 30 more pods
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(a) CPU utilization (b) Memory utilization (c) Threads

Figure 4.5: Load of kubelet component on worker with resource limitation

are deployed, which is expected because etcd stores the cluster state. The increase in
the deployment replica does not put much system load on the cluster in terms of CPU
and memory utilization of the control plane.

Figure 4.5 presents the load of the kubelet component on the worker nodes for differ-
ent infrastructures and with scaling deployment. The CPU consumption of kubelet is
higher for more resource-limited instances, such as t2.micro and t2.small, indicating that
the system is working more intensively to perform the operations. A constant increase
in CPU usage is observed when increasing the number of pods for all infrastructures.
This result is expected because more pods are deployed per worker node. Similar to
the master results, the memory utilization of kubelet decreases by 25% for t2.micro
compared to the other instances, as depicted in figure 4.5b. The results also show
that the kubelet memory usage gradually increases when scaling the deployment for
t2.small and t2.medium. For t2.micro, the memory usage decreases when the number of
pods per worker increases, highlighting that the pods and containers deployed on the
worker consume most of the memory, and less memory is left for kubelet to perform
its tasks. This leads to failure when trying to scale the deployment to 180 pods on
t2.micro instances. Comparing the number of threads used by kubelet in figure 4.5c,
more resources are needed to perform the experiments on t2.micro and t2.small, which
correlates with the higher CPU load, implying that the system is more stressed when
resources are limited. With more pods per worker, kubelet starts more threads to
perform the required operations. This pattern does not occur for t2.medium, and the
standard deviation of threads is lower than for other infrastructures. This outcome
highlights that the worker node is more stable when more resources are available.

The results from adding network delay in the cluster are presented in figure 4.6.
Adding delay caused the apiserver and etcd CPU usage for t2.small and t2.medium
to decrease, presumably because the Kubernetes operations are performed slower, and
the cluster is not working so intensively. The results for t2.micro are not shown because
this pattern did not occur. For t2.micro, the values are similar when network delay is
introduced. This outcome implies that the t2.micro instance always works intensively to
perform the Kubernetes operations, and the network delay is not noticed.

In comparison, figure 4.7 shows the CPU load when adding packet loss. The CPU
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(a) t2.small (b) t2.medium

Figure 4.6: CPU utilization on master with network delay

(a) t2.small (b) t2.medium

Figure 4.7: CPU utilization on master with packet loss

usage for apiserver and etcd increases when packets are lost for t2.small, suggesting
that Kubernetes struggles to handle network problems. For t2.medium, this behavior
can be observed with more considerable packet loss, such as 10-15%. For t2.micro, the
CPU overhead is similar when packets are lost, indicating again that the control plane
works more intensely to perform the tasks. The results for t2.micro are not shown.

Constraining the resources of the Kubernetes nodes increases the load on the system
in terms of CPU utilization, memory utilization, and started threads. The scaling of
deployment resulted in more load on the worker nodes. When more pods are deployed,
the CPU and memory utilization on the worker nodes grows realistically. Furthermore,
experiments for t2.micro presented some limitations of Kubernetes for small devices.
The cluster could not be initialized correctly on such instances because of memory
limitations leading to failures when scaling to a high number of pods or recovering
the deployment’s state in a failure scenario. Network delay causes the orchestration
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(a) Master (b) Worker

Figure 4.8: Network data with resource limitation

platform to perform slower, while packet loss leads to more computation overhead for
some components.

4.1.3 Network Traffic

Figure 4.8 presents the sent and received data traffic within the cluster. The communi-
cation within the cluster is implemented by the apiserver component of the control
plane and the kubelet components of the workers. The master node sends over four
times more data than it receives, according to figure 4.8a, because it communicates the
specification of the pods to be attached to multiple workers. More data is received than
sent on the worker nodes, correlating with the traffic on the master. The data traffic
increases when the resources are lower because the experiment takes longer and more
health checks are sent through the system.

Results for the packets sent and received within the network by the control plane
are illustrated in figure 4.9. The total number of packets sent is higher than received,
and more packets are sent when resources are more limited, which corresponds with

(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.9: Network packets for master with resource limitation
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(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.10: Network packets for worker with resource limitation

(a) t2.micro (b) t2.small

Figure 4.11: Data rate for master with scaling deployment

the results from data traffic. Analyzing the average packet rate from figure 4.9b and
data rate from figure 4.9c, the values decrease when the resources are more constrained.
This outcome implies the cluster communication is reduced because CPU and memory
are limiting factors, making the Kubernetes operations less performant. Moreover, the
data and packet rates are two times higher for the t2.medium instance in comparison
to t2.micro and t2.small. This outcome results presumably because t2.medium has two
vCPUs, while the other instances only have one, as presented in section 3.1.

The network packet results for the worker nodes follow the same pattern between
infrastructures as those from the control plane and are illustrated in figure 4.10. On a
worker node, more packets are received than sent.

Figure 4.11 depicts the data rate on master for t2.micro and t2.small when scaling the
deployment. The value for scaling from one pod to 30 pods is lower and has a high
standard deviation because the container images are pulled during the experiment. This
process increases the time it takes to scale the pods and reduces the overall data rate, as
the control plane is waiting for the workers to start the containers successfully. The data
rate decreases for t2.micro for more than 30 pods when the deployment is scaled, as
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(a) Network delay (b) Packet loss

Figure 4.12: Data rate for master with network emulation and resource limitation

presented in figure 4.11a. The decrease is very abrupt, implying a significant decrease in
performance when the load on the system is higher. Scaling from 120 to 150 pods on
t2.micro has a high standard deviation because the cluster is not stable. Scaling from
150 to 180 failed on t2.micro, as mentioned in subsection 4.1.1. According to figure
4.11b, the values for the t2.small cluster are smaller with less than 12% for scaling to
more than 90 pods, then values for scaling from 30 pods to 90. For t2.medium, the data
rate is similar for different pod scales, around 1100 for sent and 250 for received data
rate, and therefore the results are not shown. These outcomes highlight that only very
resource-limited devices, such as t2.micro, struggle to perform well when many pods
are deployed.

The outcome of adding network delay and packet loss for data rate on the master
node can be observed in figure 4.12. The heat map depicts the percent change of the
values compared to the normal infrastructure. A normal infrastructure is one where
network delay and packet loss are not added to the experiment. The initial data rate
values of the control plane are presented in the normal column of the heat map. The
data rate decreases when network delay is introduced, showing that the system is not
working so intensively. With a network delay of 10-50 ms, the data rate values are lower
with less than 6%. Introducing a higher delay causes the data rates to decrease more.
For delays between 50-150 ms, the received values decrease up to 26% and the sent
values up to 21%. For delays between 150-250 ms, the received values are lower with
less than 40% and the sent values with less than 32%. The gradual decrease in data rate
when more network delay is introduced is more significant for t2.medium, indicating
that delay has a higher impact on more performant clusters.

Adding packet loss causes an increase in traffic for t2.micro and t2.small, according to
figure 4.12b, likely because lost packets are sent again. For packet loss between 1-5%,
values increase up to 15% for t2.micro and t2.small, which is much higher than for other
loss intervals. This result is contradictory, and we could not identify a reason for it. For
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t2.medium, this pattern does not occur when packet loss is introduced. The data rate for
a cluster with t2.medium instances is higher for some experiments and lower for others.
This finding is counter-intuitive, and we could not find a cause for this. The behavior
of the Kubernetes cluster when the network contains packet loss requires additional
investigation.

The performance of the cluster network decreases when the resources are more limited.
Scaling the deployment impacts the performance of the t2.micro cluster significantly,
while clusters with more resources perform well when the load on the system increases.
Network delay harms the communication within the cluster, making the Kubernetes
operations slower. In comparison, packet loss induces the retransmission of packets,
which can negatively impact the system.

4.2 Cluster Increase

A cluster with many nodes is feasible in an edge scenario [40]. Multiple resource-limited
nodes are needed to support the performance of an IoT application. This characteristic
is analyzed by continuously increasing the number of workers in a single-master cluster.
The master node is a t2.small instance, and the worker nodes are heterogeneously
composed of t2.micro, t2.small, and t2.medium instances.

4.2.1 Experiment Performance

The scalability experiment presented in section 3.4 demonstrates limitations for t2.micro
as a worker node. The orchestration platform presents failures when scaling from 150
to 180 pods in a five worker cluster. The resources for the t2.micro worker nodes are
exhausted, and the pods cannot be started, similar to the result for a homogeneous
configuration with t2.micro described in subsection 4.1.1. The t2.micro worker nodes are
considered unhealthy because they failed to report their status. When the pod eviction
process starts, the failed pods are scheduled and started on the other worker nodes with
resources of type t2.small and t2.medium. With the default configurations of Kubernetes,
the scaling from 150 to 180 pods in a five worker cluster takes more than 6 minutes
because the default pod eviction time is 5 minutes and results in the unresponsiveness
of the t2.micro worker nodes.

Similar behavior occurs when scaling from 120 to 150 pods in a five worker setup and
adding a network delay of 150-250 ms or packet loss over 5%. For t2.micro workers,
additional computations to abort requests or resend packets stretch the memory further,
leading to the impossibility of kubelet to perform the operations. The pods from the
unresponsive t2.micro workers are evicted after the default time and started on other
workers.

Figure 4.13 illustrates the recovery time for different numbers of workers. When the
number of workers increases, the recovery time is faster because fewer pods are evicted
per node, and the workers are more performant. This outcome is expected because the
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Figure 4.13: Recovery time with cluster increase

same load is distributed over multiple workers.
Small cluster sizes with resource-constrained devices and network problems can result

in the impossibility of supporting the application load. For this reason, scaling the cluster
size can positively impact the performance. The cluster becomes more performant when
the load is spread across more workers even though the resources are constrained.

4.2.2 System Load

Figure 4.14 depicts the CPU and memory utilization and the number of ports opened by
the control plane. The load on the CPU increases when the master node controls more
workers. This pattern occurs when scaling the cluster to 15 workers. The increase is
more significant for apiserver because the component needs to communicate with more
nodes, and for etcd, because data about more workers is stored. The CPU utilization
is higher with 15% for the apiserver and 5-10% for the etcd when five more workers
are initialized. Values from 15 and 20 worker clusters are similar as if the resources of
the node limit the control plane operations. Regarding the memory utilization from

(a) CPU utilization (b) Memory utilization (c) Open Ports

Figure 4.14: System load for master with cluster increase
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(a) CPU utilization (b) Memory utilization

Figure 4.15: Load for kubelet component on worker with cluster increase

figure 4.14b, the values for the apiserver and etcd components increase only by 1-3%
and also present a standard deviation. Therefore the memory utilization is considered
similar when the number of workers increases. The apiserver and etcd components
only impact the CPU load when the cluster is scaled. Figure 4.14c compares the number
of networking ports opened for each component on the master node. First, Kubernetes
requires hundreds of ports for performing the operations. For a five worker setup,
the orchestration platform opens around 175 ports. Second, the ports opened by the
apiserver increase with more workers because data packets need to be received from
and sent to more nodes. When increasing the cluster size with five more workers, the
apiserver component opens 15 new ports. These outcomes highlight that resource
usage on the control plane increases when the number of workers increases.

Results from increasing the scale of one deployment on master and adding network
delay and packet loss are similar to those described in subsection 4.1.2. Therefore, these
are not shown.

The load that kubelet puts on the workers in terms of CPU and memory utilization is
presented in figure 4.15. When the cluster size increases, the kubelet CPU consumption
decreases because the same load is distributed across more workers, and fewer pods are
deployed per node. Similar to the result from subsection 4.1.2, the increase of replicas for
one deployment gradually increases the CPU usage of kubelet. Comparing the memory
utilization of kubelet, clusters with 15 and 20 workers consume 5-7 MB more memory
than the other clusters. The difference is minimal, and therefore the memory values are
considered similar for different cluster sizes and when scaling the deployment.

Even though scaling the cluster will better distribute the load of the deployed ap-
plication, the control plane resources might get exhausted as more load is placed on
the master when the number of workers increases. Considering that the master is also
resource-constrained, this will likely impact the overall cluster performance, availability,
and reliability.
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(a) Master (b) Worker

Figure 4.16: Network data with cluster increase

4.2.3 Network Traffic

Figure 4.16 depicts the data traffic on the master and worker nodes. The labels on the
bars in figure 4.16b represent the number of pods deployed per worker node. The data
traffic continuously increases by 20-25% for the control plane when five more workers
are initialized. The apiserver needs to communicate with more nodes, which puts
more load on the network and can harm the system. Data traffic on the worker nodes
decreases when the number of workers increases, which is expected because the load is
distributed across multiple nodes. The values are two times higher for a five worker
cluster than for ten workers because 30 pods are deployed per node, not 15. The decrease
is not so abrupt for the other cluster setups because the load difference is smaller.

The network packet traffic for the master when increasing the number of workers is
presented in figure 4.17. Figure 4.17a shows that more packets are sent and received in
a five worker setup. This outcome is because the experiment time is longer, and more
health checks are sent in the cluster. For the other cluster sizes, the number of packets
increases by 10-15% when the number of workers increases. Analyzing the data and

(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.17: Network packets for master with cluster increase
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(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.18: Network packets for worker with cluster increase

packet rates, the values for the five workers setup are much lower. This results because
the longer experiment run introduces idle time. The data and packet rates for 10, 15,
and 20 workers increase linearly by 5-10%. These results highlight that the control plane
needs to communicate more with an increase in the number of workers, which can
negatively impact the cluster because more load is put on the network.

Results for network packet traffic on worker nodes from figure 4.18 show that the
number of all packets sent and received by one worker in a five worker setup is
significantly higher. This outcome occurs because the experiment time is longer and
therefore correlates with the control plane results. The number of all packets decreases
gradually for the other infrastructures. Additionally, data and packet rates decrease by
15-20% when five more workers are initialized. Because fewer pods are deployed per
worker, the communication with the control plane is decreasing.

Figure 4.19 illustrates the data rate on the master node for 10 and 20 worker clusters
when scaling the deployment. The value for scaling from one pod to 30 is lower because
the container image is missing from the workers and needs to be pulled. The data rate

(a) 10 Workers (b) 20 Workers

Figure 4.19: Data rate for master with scaling deployment

40



4.2 Cluster Increase

(a) Network delay (b) Packet loss

Figure 4.20: Data rate for master with network emulation and cluster increase

decreases for scale intervals over 30 pods by a small value, under 5%, in a ten worker
cluster when more pods are deployed per node, as presented in figure 4.19a. This
outcome highlights a potential decrease in performance when the load on the system is
higher. The same behavior occurs for the 5 and 15 worker clusters, and for this reason
the results are not shown. The data rate for 20 workers set up is similar for different
pod scales as depicted in figure 4.19b. Because the load is distributed, the increase in
pods does not affect the performance.

The data rate results after adding network delay and packet loss are presented in
figure 4.20. The data rate decreases when network delay is introduced for 5, 10, and
15 worker clusters. The decrease implies that the system is performing slower when
requests are delayed. This pattern only occurs for a 20 worker cluster when a delay of
150-250 ms is added. In some experiments with delay, the data rate increases up to 20%
when 20 workers are initialized, which is unexpected and questions the performance
and reliability of Kubernetes when the communication needs are higher for large cluster
sizes. Network delay between 150-250 ms has a higher impact on cluster sizes with
fewer nodes. The percent change of the received and sent data rates for five workers is
above 30%, while the change for the other infrastructures is between 12-20%. This result
occurs presumably because the delay between the nodes is heterogeneously distributed,
and the communication of the control plane is distributed to more nodes.

Figure 4.20b shows that the data rate generally increases when packet loss is added.
This outcome happens because lost packets are retransmitted, similar to the results
presented in subsection 4.1.3. The data rate is higher for the five workers cluster when
more packet loss is introduced, reaching the highest percent change of around 20%
when adding 10-15% packet loss. For the other infrastructures, the value increase does
not follow a pattern for sent and received data rates. For 15 and 20 worker clusters, the
sent data rate values are higher for 1-5% packet loss and then decrease when more loss
is added, which is counter-intuitive, and we could not find a reason for this. The percent
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change for the received data rate when 10-15% packet loss is added decreases by around
5% when five more workers are initialized. This is because loss is heterogeneously
distributed between the nodes and the control plane communicates with more workers.

The load on the network increases when the cluster size is larger because the control
plane communicates with more workers. The high need for communication of the
master node combined with network problems, such as delay or packet loss, can harm
the performance and availability of the cluster. At the same time, scaling the cluster and
distributing the load over more worker nodes decreases the communication needs from
the worker’s perspective.

4.3 Multi-Master Cluster

In edge computing, failing scenarios appear more often than in cloud computing because
resources are constrained, and network problems occur [25]. Initializing multiple master
nodes in one cluster increases the availability of the system [2]. The results of multi-
master clusters are analyzed and compared to single-master clusters with the same
number of workers. The configuration of the multi-master cluster is described in more
detail in section 3.2. The first setup consists of two masters and ten workers. The second
setup consists of three masters and 15 workers. The master node is a t2.small instance,
and the worker nodes are a combination of t2.micro, t2.small, and t2.medium instances.
Furthermore, the clusters are deployed in two or three regions to simulate more edge-
like scenarios. Each region contains one master and five workers. The cross-region
deployment introduces network delay between nodes deployed in different regions.
The load balancer for the apiserver components is the entry point of a multi-master
cluster and is configured in the us-east-1 region. The RRT from the load balancer to
nodes and components from the ap-southeast-1 region is around 230 ms and to the
ones from the eu-west-1 region is approximately 70 ms. The eu-west-1 region is not
included in the two-master cluster. The metrics presented for the control plane are from
the one node where the controller and scheduler are the leaders. The concepts of a
high availability cluster with Kubernetes are detailed in subsection 2.2.3. Additionally,
in the plots from this section M is abbreviated for master and W for worker.

4.3.1 Experiment Performance

Figure 4.21a presents the scheduling time of different pod scales for single- and multi-
master clusters. Scheduling time for a cluster with more masters is higher than for a
cluster with one master. This outcome highlights that the strong consistency require-
ments of the etcd components from different control plane nodes consume resources
that harm the scheduler’s performance. Additionally, the time it took to schedule the
pods is higher with a two-master configuration than when three masters are available.
This result occurs because the average network delay for the communication of the
leader scheduler component with the apiserver components is higher in a two-master
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(a) Schedule time of pods (b) Recovery time

Figure 4.21: Performance of experiments with multi-master cluster

setup. As presented in section 3.2, the load balancer server is configured in the region
us-east-1. The leader scheduler for the presented experiment is also located in the
us-east-1 region. The scheduler accesses the apiserver through the load balancer,
which redirects the request to one of the control planes in a round-robin matter. Thus,
for the two-master cluster with control plane nodes initialized in the us-east-1 and
ap-southeast-1 regions, the average RTT of the communication between the scheduler
and apiserver is 115 ms. In comparison, the average delay for the three-master setup is
100 ms, and therefore the scheduler operates faster.

Evaluating the performance to recover from a failing worker node from figure 4.21b,
recovery time is higher for a multi-master cluster than for a single-master cluster with
the same number of workers. This outcome is probably because the operations on the
control plane are slower due to consistency reasons and the network delay introduced
by the multiple regions. Furthermore, according to the documentation of etcd [13],
high latencies can cause frequent elections or heartbeat timeouts for an etcd cluster
with default configurations. Thus, a decrease in performance can be expected for the
cross-region multi-master cluster. When comparing the multi-master setups, recovery
time with 15 workers is lower because the system load is distributed across more nodes,
and fewer pods are evicted per worker.

The pod eviction and recovery time of a cluster when one worker fails and the network
contains packet loss is presented in figure 4.22. For both evaluation metrics, the values
increase when packet loss is added. Additionally, the pod eviction time exceeded the
configured value of 40 seconds. These patterns did not occur in a single-master cluster,
putting under question the reliability and fault tolerance of a multi-master Kubernetes
cluster for edge computing.

When running the experiments with higher packet loss, such as 5-10% and 10-15%,
the leader of the scheduler and controller changes more often than with small or no
packet loss. With network problems, the leader component fails to renew the lease time
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(a) Eviction time of pods (b) Recovery time

Figure 4.22: Failure experiment results for multi-master cluster with packet loss

and loses the position as a leader. An often change of leader can put the cluster in
jeopardy and harm the system’s performance because orchestration operations have to
wait for a leader component to be functional again.

Evaluating the results from the experiments of failing one control plane node shows
that a two-master cluster does not tolerate any master loss. This outcome is expected
because the etcd cluster loses the quorum. For an etcd cluster with n members, the
quorum is (n/2)+1. Adding a master node to a cluster with an odd number of masters
worsens the system’s fault tolerance because the same number of nodes can fail without
losing quorum, but there are more nodes that can fail. The cluster could recover without
failures when one master node failed in a three-master setup. For a cluster to be highly
available, at least three control plane nodes are required.

The often change of leader election when the network is not stable implies the need
for a multi-master cluster on edge to increase the availability and fault tolerance. This
requirement can impact the performance of the control plane because etcd is strongly
consistent. Moreover, the distribution of edge devices, which induces network delay
and packet loss, harms the operations of the orchestration platform.

4.3.2 System Load

Figure 4.23 presents the system load on master with different cluster configurations. For
the controller and scheduler components, the CPU load is slightly lower for multi-
master clusters than single-master, likely because of the high network delay introduced
by the cross-region deployment. The CPU utilization for apiserver decreases by 50%
when the same number of workers is configured but more master nodes are initialized.
This is because the load balancer distributes the tasks to more apiserver components
in a round-robin matter, thus the load on one control plane decreases. Comparing the
apiserver of a two-master and a three-master cluster, the apiserver CPU load is higher
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(a) CPU utilization (b) Memory utilization (c) Open Ports

Figure 4.23: System load for master with multi-master cluster

with 40% for a three-master cluster. Even though the load is distributed across more
components, the communication needs significantly increase because the entire cluster
size increases. The CPU usage of etcd when comparing the single- and multi-master
clusters with the same number of workers decreases for the two-master setup slightly
and is similar for the three-master cluster. The small decrease is presumably because
of the network delay introduced by the regions. For the three-master setup, even with
network delay, which is making the system slower, the etcd component continues to
have a high CPU load because it needs to reach a consensus within the cluster. For
multi-master clusters, etcd uses 20% more CPU load when more masters are deployed,
which is expected because more synchronization is required.

The memory utilization presented in figure 4.23b decreases for apiserver in multi-
master setups with the same number of workers because the load balancer distributes the
tasks. The apiserver memory usage increases for a three-master cluster compared to a
two-master setup, corresponding with the results of the CPU load. The etcd component
uses, on average, 20% more memory in a multi-master environment with the same
number of workers, which is expected because of the strong consistency requirements,
and the overall cluster size is higher. The etcd values also present a standard deviation,
and therefore the increase is not high.

According to figure 4.23c, fewer networking ports are opened in a multi-master
environment for apiserver, and more ports are opened for etcd. When multiple
masters are configured, the load balancer is the entry point for the communication of
the worker nodes with the master, reducing the number of ports needed for one control
plane. The number of ports opened by the apiserver in a multi-master cluster is around
98. In contrast, in a single-master setup with ten workers, the apiserver component
opens 106, and with 15 workers, the number of opened ports is 121. For etcd, more
networking ports are opened because the etcd components from different control planes
communicate to ensure data store consistency. When initializing one more master node
etcd opens seven more ports.

The load for the kubelet component on the worker nodes is illustrated in figure 4.24.
The CPU utilization decreases in a multi-master setup, indicating that the worker nodes
are slower, presumably because of the network delay introduced by the deployment
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(a) CPU utilization (b) Memory utilization

Figure 4.24: Load for kubelet component on worker with multi-master cluster

across more regions. The CPU load also decreases when the number of workers increases
because fewer pods are deployed per node. Evaluating the memory utilization from
figure 4.24b, values for cluster setups with the same number of workers are similar.
The memory values slightly increase when more workers are initialized, similar to the
results presented in subsection 4.2.2. The increase is minimal, and the values are within
the standard deviation of the setups with ten workers and likely not relevant.

Figure 4.25 presents the results from introducing packet loss to the network for a
cluster with two masters deployed in two regions. For both master and worker nodes,
the CPU usage of the Kubernetes components decreases gradually when the packet loss
percentage increases. The same results occur for a three-master setup deployed in three
regions and are therefore not depicted. This pattern did not occur in a single-master

(a) Master (b) Worker

Figure 4.25: CPU utilization for 2 regions cluster with packet loss
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setup. With only one master, the CPU load increases for some control plane components,
as described in subsection 4.1.2, and the kubelet CPU utilization is similar for the
worker nodes when packet loss is added to the network. For the experiments on a
single-master cluster, the network contains either delay or packet loss. In this scenario,
the cross-region deployment implicitly introduces a delay within the network. This
outcome highlights that network problems of both types decrease the performance of
Kubernetes significantly.

In a multi-master cluster, the control plane node performs additional operations to
ensure the strong consistency of the data store. These operations require resources
and can harm the performance of other master components because the nodes are
resource-constrained. The operation of the worker nodes is not influenced when more
masters are configured. The cluster distribution over more regions introduces network
delay, which causes the orchestration platform to operate slower. The decrease in the
system’s performance when the network presented problems of both types, delay and
packet loss, questions the suitability of Kubernetes for edge computing.

4.3.3 Network Traffic

The network data traffic for the control plane and worker nodes is presented in figure 4.26.
Compared to the apiserver component, which is the only one receiving and sending
traffic in a single-master cluster, the etcd receives and sends most data. Furthermore,
when increasing the number of master nodes, the data traffic for etcd doubles, which is
to be expected because more synchronization is required. Comparing the data traffic
for apiserver between single- and multi-master clusters, the values are lower when
more master nodes are deployed because the load balancer distributes the requests to
multiple components. The data sent and received by the kubelet component on the
worker node is similar when the number of workers is the same and decreases when

(a) Master (b) Worker

Figure 4.26: Network data with multi-master cluster
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(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.27: Network packets for master with multi-master cluster

(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.28: Network packets for worker with multi-master cluster

more workers are initialized because the load is distributed across more nodes.
Figure 4.27 illustrates the number of packets and data and packet rates for the control

plane in a multi-master cluster. Results from the single-master experiments are not
presented because the metrics are not comparable since etcd in the multi-master cluster
receives and sends the majority of packets. The number of packets and the data and
packet rates are higher in a three-master cluster than in a two-master cluster. For a three-
master setup, 35% more packets are sent and received, and the data and packet rates
double than in a two-master setup. This result highlights the increase in communication
and network load when more master and worker nodes are deployed, which can harm
the orchestration operations in large clusters. Moreover, because multiple resource-
constrained devices are connected in edge computing, and the network is dynamic, the
increase in network load can easily lead to exhaustion of resources and failure scenarios.

The average network packet traffic for one worker node is presented in figure 4.28.
Fewer packets are sent in a three-master setup than in a two-master setup because more
worker nodes are initialized, and less load is distributed per worker. The total number
of packets sent and received in the system decreases by 20-30% for multi-master clusters
for setups with the same number of workers. This result is unexpected because the
same experiment is executed, and the number of pods deployed per worker is the same.
Additionally, the execution time of the experiments for multi-master configurations
is longer than for single-master clusters, which implies that more health checks are
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(a) Master (b) Worker

Figure 4.29: Data rate for 2 regions cluster with packet loss

sent from one worker node. Therefore, the total number of packets is expected to be
higher for multi-master setups. This outcome might indicate a change in the cluster
communication from the worker side when more than one control plane is deployed,
which makes the setups not comparable.

The data and packet rates for cluster configurations with the same number of workers
decrease for cross-region multi-master clusters, as depicted in figures 4.28c and 4.28b.
The system is slower because of the network delay introduced by the distributed regions.
When comparing the multi-master setups, data and packet rates for a three-master
cluster are higher by approximately 20%. The sum over all packets sent and received
by all worker nodes is similar for both multi-master configurations, but the experiment
time for a three-master setup is lower. Therefore, the same packet traffic over a smaller
time interval explains the increase in data and packet rates. Additionally, the increase
of data and packet rates implies an increase in performance which is likely caused
because more control plane nodes are initialized, and multiple apiserver components
are available.

Figure 4.29 shows the data rate in a two-master cluster deployed in two regions when
packet loss is added. The data rate decreases continuously and abrupt with the increase
of packet loss probability in the network. This outcome implies that the orchestration
platform is slower and correlates with the results presented in subsection 4.3.2 for CPU
load when packet loss is added. The pattern did not occur when experimenting with
a single-master cluster deployed in one region, as described in subsections 4.1.3 and
4.2.3. Packet loss, together with network delay, significantly decreases the cluster’s
performance. The same results are obtained with a three-master configuration deployed
in three regions and are therefore not presented.

The network in multi-master clusters is exposed to increased traffic because of the
synchronization needs. The etcd components on the control planes continuously
communicate to ensure the strong consistency of the data store. The network data from
the perspective of the worker nodes is not changing when more masters are initialized.
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The distribution of the cluster nodes within multiple regions harms the performance
of the Kubernetes operations because requests are delayed. Additionally, packet loss
and network delay significantly slow the network communication and jeopardize the
cluster’s performance and availability.

4.4 Cluster Heterogeneity

A characteristic of edge computing is that the devices are heterogeneous [53]. The
behavior of Kubernetes when this characteristic holds is evaluated with two different
scenarios, as presented in section 3.2. First, the master node is bigger or smaller than
the worker nodes. The setup of the workers is homogeneous, composed of five nodes.
The instances used are t2.micro and t2.small. The second scenario experiments with the
control plane as t2.small instance and five workers homogeneous or heterogeneous. The
homogeneous configuration consists of t2.small workers, and the heterogeneous cluster
contains two t2.micro and t2.small nodes and one t2.medium node.

4.4.1 Experiment Performance

Figure 4.30a depicts the execution time of the deployment experiment when the control
plane has more or fewer resources than the worker nodes. The time value is higher
and more unstable for a t2.micro master node because fewer resources are available to
perform the operations, and because of the limitations for t2.micro presented in section
4.1 and section 4.2.

The recovery time for homogeneous and heterogeneous cluster configuration is
presented in figure 4.30b. The time to recover the state when one worker failed is longer
for a heterogeneous setup. This outcome is expected because starting the evicted pods
on t2.micro worker nodes takes longer.

(a) Deployment experiment time (b) Recovery time

Figure 4.30: Performance of experiments with cluster heterogeneity
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The values of the scheduling time of pods are the same between homogeneous
and heterogeneous infrastructures because the control plane is initialized on the same
instance type, t2.small. The results for the scheduling time when the master is bigger
or smaller than the workers are the same as those presented in subsection 4.1.1 for the
corresponding master node instance. The scheduling of the pods takes longer on the
t2.micro control plane than on t2.small. The findings are not shown because they are
similar to previous ones.

The performance of the Kubernetes orchestration operations is harmed in a hetero-
geneous setup, as the cluster waits for the smaller devices to finish their computations.
The t2.micro instance for a control plane or a worker node limits the experiments and
decreases the performance of the system.

4.4.2 System Load

Figure 4.31 presents the CPU and memory utilization on the control plane when the
size of its node is larger or smaller than the size of the workers. The CPU load for
controller, kubelet, and scheduler are similar between the infrastructures. Apiserver
and etcd CPU values slightly decrease when the control plane is smaller than the worker
nodes. The decrease is minimal and the standard deviation higher, making the result
insignificant. The memory usage for the t2.micro control plane is lower, correlating with
the results described in subsection 4.1.2. Because of memory constraints, the control
plane is not initialized correctly on the t2.micro instance.

The system load on the worker nodes when the cluster has a bigger or a smaller
control plane node is illustrated in figure 4.32. The value for the CPU utilization of the
kubelet component is smaller only by 0.5% and has a standard deviation of around
0.3 when the master node has a smaller size. Therefore, the CPU load for kubelet is
considered similar for both configurations. The memory utilization of kubelet between

(a) CPU utilization (b) Memory utilization

Figure 4.31: System load for master with cluster heterogeneity
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(a) CPU utilization (b) Memory utilization

Figure 4.32: Load for kubelet component on worker with cluster heterogeneity

the cluster configurations is lower for the t2.micro instance by almost 30%. The outcome
highlights the same memory limitations of t2.micro for a worker node as those presented
in subsection 4.1.2.

The control plane system load is similar between the infrastructures for homogeneous
and heterogeneous clusters. The master node does not present any limitations when
the workers are initialized on distinct devices, and therefore the results are not shown.
The worker node values are not comparable because the workers consist of different
instances.

Different sized master and worker nodes highlight similar limitations for t2.micro, as
presented in previous sections. The heterogeneity of the cluster configurations did not
affect the Kubernetes orchestration platform in any specific way in terms of system load.

4.4.3 Network Traffic

The network data traffic when the master has more or fewer resources than the workers
is presented in figure 4.33. The data traffic increases by 7-10% when the control plane is
smaller than the workers. This is expected because the experiment time is longer for a
t2.micro control plane, and more health checks are sent.

Figure 4.34 shows the number of packets and data and packet rates when the size
of the master node is different from the size of the workers. The number of packets
transmitted in the cluster is higher by 10% when the control plane is a t2.micro instance.
This result correlates with the outcome from network data and is expected. The data and
packet rates are significantly lower for the t2.micro master node than for the t2.small,
highlighting a decrease in performance. Additionally, the standard deviation is higher
when the master node has fewer resources than the workers, implying network instability.
The t2.micro instance as a control plane negatively impacts the cluster’s communication.

Network packet results presented in figure 4.35 for the worker nodes correlate with
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(a) Master (b) Worker

Figure 4.33: Network data with cluster heterogeneity

(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.34: Network packets for master with cluster heterogeneity

(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.35: Network packets for worker with cluster heterogeneity

the ones from the master node. One worker sends and receives 10% more packets when
the master has fewer resources. The average data and packet rates are over 30% lower
for t2.small workers than for t2.micro. Even though t2.small has more resources than
t2.micro, the system is slower because the master node operations introduce a bottleneck
and harm the performance of the entire cluster.
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Figure 4.36: Network data with cluster heterogeneity

(a) Number of packets (b) Average packet rate (c) Data rate

Figure 4.37: Network packets for master with cluster heterogeneity

The network data on the master node when the workers are homogeneous or hetero-
geneous is illustrated in figure 4.36. The heterogeneous configuration sends and receives
slightly more traffic, presumably because the experiment time is longer and more health
checks are transmitted. Because the standard deviations of the sent and received values
for both setups overlap, we can conclude that the network data traffic of the Kubernetes
cluster is not affected by the heterogeneity of this configuration. The data traffic for
the workers is not comparable because the workers are composed of different sized
instances, and therefore the results are not shown.

Figure 4.37 presents the metrics for network packets on the master node with homo-
geneous or heterogeneous workers. The number of packets is slightly higher for the
heterogeneous cluster, correlating with the results from data traffic. In contrast, the
packet and data rates are lower by 22-27% for the heterogeneous setup than for the
homogeneous one. This outcome occurs because the t2.micro worker nodes are slowing
down the cluster’s performance.

The network limitations that arise when the cluster is configured with one t2.micro
master and t2.small workers imply that the control plane should have sufficient resources
to perform the operations. Additionally, small worker nodes in heterogeneous setups
can decrease the performance of the entire cluster.
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This chapter summarizes the results of the analysis of Kubernetes in edge computing
and presents the shortcomings and limitations of the orchestration platform to meet
specific requirements. Additionally, possible future extensions of the experiments and
edge environments that contribute to this research field are described.

5.1 Results

The goal of the thesis was to evaluate the suitability of Kubernetes in edge computing
infrastructure in terms of availability, performance, scalability, and fault tolerance. The
orchestration platform was deployed in various edge environments, and specific experi-
ments were performed against the Kubernetes cluster. A monitoring tool designed by
us collected different system and cluster metrics and allowed us to assess if Kubernetes
meets the requirements mentioned above.

The availability requirement could not be fulfilled for some experiments due to
resource-constrained devices, such as t2.micro. The cluster was not operable after trying
to schedule a high number of pods. The worker nodes could not be reached because the
memory on the small devices was exhausted. Moreover, in a high availability setup with
multiple control plane nodes, the leader of the controller and scheduler components
changed very often when network problems occurred. Thus, the leader components
were no longer available, and the orchestration operations could only be performed after
a new leader was elected.

The performance of Kubernetes was harmed when deployed in edge infrastructures
characterized by limited, heterogeneous devices and unstable networks. Constraining
the resources led to higher operation time, more load on the system, and slower
network communication. The performance was significantly low for t2.micro instances
as the cluster could not be initialized correctly because of memory limitations. In a
heterogeneous setup, the performance of the experiments was dictated by the most
limited worker nodes because the cluster waited for them to finish their operations.
Additionally, the system performed slower when the network contained variable delay
or packet loss was introduced in the network of a cluster deployed in distributed regions.

Scaling the number of worker nodes in a cluster showed that the need for communi-
cation increases, which put more load on the control plane and the cluster’s network.
As the devices are resource-limited, the increase in worker nodes could exhaust the
resources of the control plane. Similarly, scaling the number of master nodes resulted in
additional communication between the etcd components to ensure data store consis-
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tency which harmed the performance of the orchestration operations. Moreover, scaling
the number of pods in a deployment resulted in more load on the system, which led to
very small worker nodes failing because of memory limitations.

The requirement of Kubernetes to be fault-tolerant also presented different shortcom-
ings. The cluster could not recover from a failing worker node when the control plane
was initialized on a very small machine, such as t2.micro. Furthermore, the cluster
needed more time to recover the pods from a failed worker when resources were limited,
and the network presented instability.

Evaluating the results, we can conclude that native Kubernetes is not suited for edge
computing infrastructure. The heavyweight design of the container orchestration plat-
form requires too much memory on the resource-constrained edge devices, which leaves
less or no resources left for computation and operations. Furthermore, because native
Kubernetes is designed primarily for cloud computing technology and assumes consis-
tent reliability and reachability of the infrastructure, the network instability introduced
by mobile and dynamic edge nodes leads to different shortcomings of the cluster. Thus,
Kubernetes fails to meet various system requirements such as availability, performance,
scalability, and fault tolerance.

5.2 Future Work

Future work should continue to examine Kubernetes at the process level in different edge
computing infrastructures and extend the experiments performed on the orchestration
platform.

First, future studies should experiment with edge infrastructures that include more
than 20 worker nodes, as this would likely occur in edge infrastructures. Moreover,
our experiments resulted in unexpected data and packet rates when the cluster was
configured with 20 workers and the network contained delay. For this reason, a more
thorough analysis of a cluster with a large number of workers could find some answers
for the unexpected results and evaluate Kubernetes for edge computing better.

Second, the experiments performed in this thesis on high availability clusters were
designed only for two- and three-master configurations. The performance of the control
plane was harmed because of the operation of etcd. A focused study on high availability
clusters would therefore be well motivated. It could concentrate on scaling the number of
master nodes and analyzing the system load of etcd and its impact on the other control
plane components. Moreover, the study could also analyze the network communication
within the cluster when the number of control plane nodes increases.

Next, the experiment configurations could be extended in future work by deploying an
application that is feasible for an edge scenario, such as an IoT application. Additionally,
researchers could experiment with increasing the load on the deployed IoT application
and evaluate if the performance requirements are met.

Last, the experiments designed by us introduced network delay or packet loss in
the cluster’s network. Adding packet loss was counter-intuitive for some experiments,
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such as the behavior of a setup with t2.medium instances or a higher increase in data
rate with a lower packet loss probability. Therefore, the Kubernetes cluster, when the
network contains packet loss, requires additional investigation. Moreover, results from
adding packet loss in the cross-region cluster where network delay was implicit were
different and unexpected. Future work could experiment with adding both, delay and
loss, to the network and analyze if the same behavior occurs.

A more thorough evaluation of the Kubernetes components deployed in edge environ-
ments could identify more limitations and shortcomings. By understanding these, the
most promising next step would be to rearchitect the Kubernetes orchestration platform
and adapt it to edge computing.
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