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Abstract

Edge computing is a vibrant research field, where applications previously hosted in the
cloud shift parts of their workload towards the network’s edge. This promises decreased
network latencies, especially for rural areas, and allows our current infrastructure to
handle the increasing communication demand of smart applications. Specialized edge
devices integrate low-power hardware accelerators to deal with the higher computation
demand in an energy-efficient way. However, this heterogeneity introduces additional
complexity for developers that want to adopt edge capabilities into their application
design. The dispersed development of edge components leads to a complex landscape
of software libraries, each supporting only a small subset of devices. Innovative orches-
tration approaches abstract the complexity of the edge from the developer and allow
for easy and descriptive deployments. Comparing hardware and software platforms for
the edge proves to be a challenging task, where established benchmarking approaches
are not suitable. This thesis proposes an edge-based, application-focused benchmarking
suite that helps developers evaluate this vast space. Benchmark workloads resemble
realistic applications that consist of multiple, interconnected microservices. These
services get placed using a novel scheduling scheme, where an extensive exploration
of possible deployment options is evaluated. The suite is designed with future edge
developments in mind and allows for the integration of new, custom workloads that uti-
lize new technologies. A descriptive configuration structure simplifies this integration
process and supports custom metrics. The thesis provides a realistic video analytics
pipeline as a sample workload that highlights the different aspects of edge devices.
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Kurzfassung

Edge Computing ist ein dynamisches Forschungsgebiet, bei dem Anwendungen, die zu-
vor komplett in der Cloud gehosted wurden, gewisse Teile an den Rand des Netzwerks
verlagern. Dies verspricht verringerte Netzwerklatenzen, insbesondere für ländliche
Gebiete, und ermöglicht unserer aktuellen Infrastruktur, den steigenden Kommu-
nikationsbedarf zukünftiger, intelligenter Anwendungen zu bewältigen. Spezialisierte
Edge-Geräte integrieren stromsparende Hardwarebeschleuniger, um dises höheren
Rechenbedarf energieeffizient zu bewältigen. Die Heterogenität führt jedoch auch zu
zusätzlicher Komplexität für Entwickler, die Edge-Funktionen in ihr Anwendungs-
design integrieren möchten. Dies führt zu einer komplexen Landschaft an Software-
bibliotheken, von denen jede nur eine kleine Teilmenge von Geräten unterstützt.
Innovative Orchestrierungsansätze abstrahieren diese Komplexität und ermöglichen
einfache und anschauliche Bereitstellungen. Trotzdem erweist sich der Vergleich von
Hard- und Softwareplattformen als eine anspruchsvolle Aufgabe, bei der etablierte
Benchmarking-Ansätze nicht geeignet sind. Diese Masterarbeit umfasst eine Edge-
spezifische, anwendungsorientierte Benchmarking-Suite, die Entwicklern hilft die Leis-
tung verschiedener Ansätze zu bewerten. Benchmark-Workloads ähneln realistischen
Anwendungen, die aus mehreren, miteinander verbundenen Microservices beste-
hen. Diese Dienste werden unter Verwendung eines neuartigen Scheduling-Schemas
platziert, bei dem eine umfassende Untersuchung möglicher Bereitstellungsoptionen
evaluiert wird. Die Suite wurde im Hinblick auf zukünftige Edge-Entwicklungen
entwickelt und ermöglicht die Integration neuer, benutzerdefinierter Workloads, die
neue Technologien verwenden. Eine beschreibende Konfigurationsstruktur vereinfacht
diesen Integrationsprozess und unterstützt benutzerdefinierte Metriken. Die Arbeit bi-
etet eine realistische Videoanalyse-Pipeline als Beispiel-Workload, die die verschiedenen
Aspekte von Edge-Geräten hervorhebt.

v



Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

1 Introduction 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement and Research Goals . . . . . . . . . . . . . . . . . . . 2
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5
2.1 Modern Application Design . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Edge Devices and Accelerators . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Edge Orchestration and Software Platforms . . . . . . . . . . . . . . . . . 10
2.5 Edge Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 General Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.3 Challenges and Improvements in Edge Benchmarking . . . . . . 13

2.6 Object Detection and Tracking . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6.1 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.2 Object Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Workload Specifics 22
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Workload Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Video Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Video Aggregation Service . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Object Detection Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Object Tracking Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vi



Contents

3.7 Workload Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Benchmarking Suite 34
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Benchmark Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Configuration Structure . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Environment Preparation . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Workload Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.4 Executors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Metric Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Metric Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Calculation Decoupling . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.3 Metric Aggregation and File Rotation . . . . . . . . . . . . . . . . 45

5 Evaluation 48
5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1.1 Hasso Plattner Institut Resources . . . . . . . . . . . . . . . . . . 48
5.1.2 Local Edge Deployment . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Workload Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Data Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Accelerator Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.5 Pipeline performance in different scenarios . . . . . . . . . . . . . . . . . 54
5.6 Different Object Detection Procedures . . . . . . . . . . . . . . . . . . . . 55
5.7 Ethernet vs. wireless networks . . . . . . . . . . . . . . . . . . . . . . . . 55

6 Discussion and Conclusion 58
6.1 Metric calculation and dataset problems . . . . . . . . . . . . . . . . . . . 58
6.2 Execution environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Real-Time Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6 Classification and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 63

List of Figures 65

List of Tables 67

Glossary 68

vii



Contents

Bibliography 70

viii



1 Introduction

1.1 Introduction

The cloud paradigm has been established as the predominant approach in computer
science. Originating in the rise of successful, data-driven companies like Amazon,
Google, or Facebook, many companies adopt similar strategies to their IT infrastructure.
Different vendors offer a diverse product portfolio available for usage-based rent.
Applications can operate more flexibly without any upfront investment in hardware.
Capital intense operations on smaller, company-owned data centers suspended and
shifted into the cloud. Cloud vendors centralize resources on a much larger scale and
can hugely benefit from economies of scale [94]. The operation happens on a global
scale allowing data centers located in economically beneficial locations [10]. While
the cloud reduces upfront costs, the centralization in limited locations raises serious
concerns for the future scalability of this computing model. Infrastructure connecting
the data center and the end-user has to handle growing demands. Estimations expect
the total number of Internet users to grow to 5.3 billion people by 2023 [19]. In
combination with recent applications utilizing heavy Artifical Intelligence (AI) and
Machine Learning (ML) workloads, this led to reinforced research into more distributed
paradigms.

Edge computing is such a novel approach, where application workloads are shifted
from centralized providers towards the edge of the network [61]. It utilizes (existing)
hardware located at cellular antennas, routers, or small data centers along the path of
communication from the user to the cloud [1]. This reduces the communication distance
between the user and parts of the application and enables latency-critical or bandwidth
heavy applications [76], such as autonomous vehicles [67] or augmented/virtual real-
ity [86]. Other motivations include the decentralization of current cloud environments
and a more distributed computational load where pre-treatment and possible data re-
duction at the edge prevent overloading the network’s infrastructure. For the increasing
number of mobile and IoT devices [19], such an approach provides an efficient way to
deal with the increasing traffic volume and sudden local load spikes [103]. New and in-
novative technologies (like Azure IoT Edge [53] or AWS Greengrass [52]) are developed
that help to advances the adoption of edge computing in real-world scenarios. However,
their novel nature makes comparisons between different approaches challenging [45].
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1 Introduction

Their heterogeneity limits comparability when employing established benchmarking
procedures used for off-the-shelf computer hardware. Researchers have proposed a
variety of edge-specific benchmark approaches to evaluate the performance of different
workloads across different edge deployments [24, 46, 20, 36, 62, 72]. Despite these
efforts, current techniques paint an incomplete picture of the specific requirements
imposed by the edge [104]. Lastly, these benchmarks focus on particular aspects of edge
computing and lack a realistic edge workload that utilizes the heterogeneous devices at
the edge [104].

1.2 Problem Statement and Research Goals

Based on the shortcomings of current benchmarking approaches, this thesis identifies
three major goals in order to refine existing research:

RG1 Realistic and representative edge workload: Most approaches focus on Central
Processing Unit (CPU) and memory benchmarking as their dominant metric, dis-
regarding new, energy-efficient accelerators (like Google Edge Tensor Processing
Unit (TPU) [39] or the Nvidia Jetson [21] devices) designed for intense computa-
tions at the edge [104]. Thus the workload must integrate arising hardware and
computing trends into its general structure. Despite its significant impact on the
overall performance, networking is at most measured implicitly [104] mandating
an explicit consideration in the workload design. Most benchmarks do not operate
on real-world data, focusing only on specific aspects of the edge [104]. They lack
significance in representing actual edge workloads employed by researchers and
the industries. The workload needs to resemble a realistic mapping of actual edge
applications, compiled of different services representing certain parts of the edge.

RG2 Integration of software platforms and different virtualization techniques: Cur-
rent strategies do not integrate established or emerging software platforms like
Kubernetes [99] or EdgeIO [115] into their approach. These platforms play a
huge role in tackling the still existing challenges of edge computing and play
a substantial role in the performance of the applications. The lack of differ-
ent deployment options and virtualization techniques employed strengthen the
assumption that current benchmarks cannot capture the performance in multi-
tenant environments [104]. The benchmarking suite should integrate different
software platforms and employ distinct virtualization techniques, to capture these
aspects of edge computing. This enables a delimitation of current approaches
regarding their integrated performance in the edge.
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1 Introduction

RG3 Extensible platform with openly accessible component: The considerable re-
search effort in edge computing results in an evolving landscape and arising
trends, resulting in rapidly changing requirements [91]. These changes could
impair the expressiveness of the benchmarking suite in general, so the approach
must be adjusted or extended easily. Individual components must be publicly
accessible and allow other researchers to verify and improve the benchmarking
application.

1.3 Contribution

This thesis proposes an extensible edge benchmarking suite specifically focused on
realistic application workloads. The implemented solution allows developers to ad-
just the environment or integrate new benchmark services based on a comprehensive
configuration. By interpreting the assignment of workload services to edge devices
as a bipartite graph, the benchmarking suite integrates a novel matching scheme and
generates an exhaustive list of workload schedules. This helps developers explore
counter-intuitive deployment options that may perform better in certain edge envi-
ronments. The platform architecture is easily expandable to integrate support for
modern orchestration platforms such as Kubernetes or EdgeIO. The separate metric
system allows the benchmark suite in secluded environments, where the benchmarked
environment may operate in challenging network environments.

On top of the benchmarking suite, this thesis contributes a novel video analytics
pipeline that decomposes the tasks for object tracking into four distinct microservices.
It supports the heterogeneity of edge deployments and utilizes different processor
architectures and hardware accelerators to reach the full potential of the used edge
devices. The explicit communication between the services represents recent software
architecture trends with small, separate services deployed on different nodes. The
modular pipeline architecture enables the replacement of individual services to integrate
future and more advanced approaches.

1.4 Thesis Structure

The remaining thesis consists of five chapters that describe the concepts and technical
details behind the proposed benchmarking suite. Chapter 2 explores modern applica-
tion architectures, details edge computing and existing benchmarking approaches, and
explains the general concepts for the pipeline services. In chapter 3, we describe the
architecture of the employed video analytics pipeline and highlight how this workload
represents state-of-the-art technologies employed by industries and researchers. Next,

3



1 Introduction

chapter 4 shows the overall architecture of the benchmarking suite and describes the
configuration structure, the workload matching, and the metrics system in more detail.
Chapter 5 evaluates our benchmarking suite on two distinct environments and describes
our findings. The last chapter 6 discusses these results, summarizes the thesis, and
gives an outlook for future work in edge benchmarking.
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2 Background and Related Work

2.1 Modern Application Design

The ongoing globalization forces companies to operate in permanent competition
on a global scale. This places increasing stress on traditional business models and
requires companies to adjust to this changing environment [106]. Future economic
success depends on the ability to efficiently operate on a large scale and adapt to
quickly changing circumstances [54]. Agile strategies aim to reflect these requirements
by focussing on incremental improvements in short cycles. This allows businesses
to gain feedback during early product development and fine-tune the approach to
the actual reality [92]. Recent years have seen the establishment of new software
architecture approaches that reflect this need for small-scale changes. Monolithic
applications tend to result in codebases that share functionality between different
modules, which leads to complex dependencies that hinder independent adjustments
without affecting other components [78]. Architectures have shifted to more flexible,
service-oriented concepts where complex applications get decomposed into loosely-
coupled, independent microservices [107]. Each service provides a subset of the overall
functionality and is strictly separate from the other components [78]. They may be
improved or replaced with little to no influence on the other services and allow different
implementations to harness the potential of different programming languages and
libraries to provide the best solution for each subproblem [40]. Global players like
Google or Amazon have facilitated this trend and developed advanced packaging,
networking and, orchestration approaches that help handle the increasing number of
services [54].

Service Communication Microservice architectures result in distributed systems that
coerce the developers to comprehend the used communication channels and the conse-
quent implications on the system [57]. This is in contrast to previous implementations
of distributed systems that utilized complex middleware (like Common Object Request
Broker Architecture (CORBA) [80]) to abstract the actual service location and potential
networking from the developer. The missing explicitness resulted in suboptimal de-
velopment and obscure application behavior [33]. The strong cohesion of individual
microservices, on the other hand, prevents unwanted dependencies between compo-
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2 Background and Related Work

nents and requires the specification of well-defined interfaces for data exchange [57].
This communication employs lightweight communication protocols such as Represen-
tional State Transfer (REST) [32], gRPC [41] or message queuing systems like Apache
ActiveMQ [95]. They ensure interactions between services happens in an efficient and
strict way [54].

Execution Environments Deploying numerous small microservices is a complex
and rather failure-prone task of the development process. Code may work locally
on the developer’s machine but fail upon deployment. Differences in the software
environment (e.g., conflicting library versions or Hardware (HW) capabilities) can
introduce a collection of problems that are notoriously hard to diagnose [73]. While
Infrastructure as Code (IaC) solutions enable the creation of reproducible and consistent
environments, bare-metal execution is too inflexible for today’s applications. A large
number of potential users may overload the system, so the used hardware must
accommodate buffer capacity. For times outside peak load, this hardware tends to idle
but cannot get decommissioned [110]. To counteract this over-provisioning and better
utilize the existing resource, several virtualization approaches have been proposed:

• Virtual Machines: A hypervisor provides virtualized resources on top of bare
metal hardware. Virtual Machines (VMs) execute a complete guest operating
system on top of this hardware. One system can operate multiple VMs that
are logically separated from each other and can integrate different applications,
libraries or, even operating systems.

• Containerization: Software containers are common processes that get executed in
an isolated environment of the operating system. They share the same underlying
kernel and utilize several shielding techniques to separate different containers.
This approach provides more lightweight isolation without the additional over-
head of VMs.

• Unikernels: A novel approach that integrates high-level application code with a
small kernel runtime to produce a specialized unikernel. They only integrate the
required libraries and system calls which reduces their size [71].

Cloud native applications Cloud vendors use these techniques to partition their
hardware into virtual blocks available for rent on a flexible basis. They operate
additional hosted services such as databases or Application Programming Interface
(API) gateways to integrate into a cloud-native application. Figure 2.1 shows an
example for such an architecture, where different microservices and cloud offerings are
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2 Background and Related Work

combined into a unified design. The individual services are implemented using the
most efficient programming language and libraries for their problem. Communication
between the components uses defined interfaces that utilize state-of-the-art protocols.
Service instances can be scaled using the flexible, cost-efficient resources provided by
cloud vendors and scales according to the applications load.

 Application Back End

API Gateway

Business 
Service 2

Business 
Service 1

SQL 
Database 
Service

Other 
Applications

Monitoring
Service

Document 
Database 
Service

Mobile
App

Browser

Web App

Figure 2.1: Cloud Native Application, adapted from [88]

2.2 Edge Computing

The shift towards cloud computing has changed the overall shape of the software
industry [116]. Public cloud providers like Amazon Web Services (AWS), Microsoft
Azure, or Google Cloud Platform (GCP) highlight the absolute economic success and
ongoing adoption of cloud computing. Service-based computation reduces upfront
costs and provides overall economic benefits through flexible, consumption-related
billing [94, 47]. Business models evolve into service-based approaches forwarding this
underlying flexibility to the customer [30]. Developers have adopted this approach as
the predominant type of application deployment and operation [116]. Recent HW trends
lead to a growing number of smart devices integrated into this computing landscape.
They utilize progress in AI, video-processing, automation, and sensor technology and
lead to growing network demands. Emerging applications are estimated to contribute

7



2 Background and Related Work

Multi-access edge

CloudFar Edge Micro Data Centers

Cloudlets

Fog Computing

Geographical Distance
Figure 2.2: Terminologies on the edge spectrum (Courtesy: Dr. Nitinder Mohan)

a big part of future bandwidth demands, with video processing and Augmented
Reality (AR)/Virtual Reality (VR) workloads as dominant contributors. Data gets
consumed in a more distributed and mobile fashion, placing strong demands on the
infrastructure of the future [19]. Such workloads are possible in well-connected locations
with datacenters nearby, yet more remote or less connected areas pose a significant
challenge [76]. Multiple approaches for these challenges have been proposed, including
micro data centers [89], cloudlets [89, 61] or fog computing [113]. Their general motive
is the relocation of data processing tasks along the path of communication towards the
edge of the network, thus shaping the term edge computing [91]. Figure 2.2 shows
different terminologies and their placement along the edge spectrum.

The reduced geographical distance and more distributed execution promise several
benefits addressing upcoming challenges in cloud scenarios:

• Better scalability for the increasing number of smart devices contributing to large
data amounts [116].

• Low latency for latency-critical applications such as autonomous vehicles or
emergency services [91].

• Reduced bandwidth requirements for applications like content delivery networks
or video processing [19].

• Overall improved Quality of Service by eliminating single points of failure in
form of cloud data centers [116].

8



2 Background and Related Work

• Counteracting privacy and security concerns with centralized data silos [90].

• Higher fault tolerance by further geographical distribution [90]

While this shift offers improvements in latency and bandwidth optimization, the
heterogeneity and heavily distributed nature of the edge introduces new technical
challenges and overhead. Current research focuses on improved latency and bandwidth
utilization as the incentive behind edge computing. Yet research has shown that many
applications, initially targeted at the edge, can be operated using improved and simpler
services in the cloud [76].

2.3 Edge Devices and Accelerators

Ongoing research in computation-heavy AI technology (ranging from natural language
processing to large-scale video processing) will influence future applications. They
employ novel techniques that utilize heavy machine learning to achieve a market
advantage [105]. These new applications require substantial computing capacity on top
of existing infrastructure, resulting in the development of new, specialized hardware.
While recent years have seen a shift datacenter workloads CPU workloads to General
Purpose Graphic Processing Unit (GPGPU) processing, their high energy consumption
is not suitable for restricted edge deployments [13]. More constrained edge devices
require original approaches that deliver sufficient computing power while being far
more energy-efficient. Different edge accelerators are developed that speed up the
execution of ML workloads through specialized components [64]. For example, many
modern System on a Chips (SoCs) integrate an extra co-processor specifically targeted
at AI workloads [83, 4]. Other companies, including Google, Intel and Nvidia, develop
optimized, standalone hardware accelerators targeted at edge scenarios [21, 39, 51].
Figure 2.3 gives an overview of such accelerators and groups them by the underlying
technology. The development of new accelerators evolves rapidly and results in a
dispersed field mostly comprised of specific island solutions. Standardized interfaces
or even similar physical properties (e.g., USB pluggable accelerators and integrated
devices) are missing, complicating the integration into current applications. Their
hardware architecture and the underlying software platforms (Operating System (OS)
and Software Development Kits (SDKs)) differ from traditional hardware, rendering
common benchmarking approaches incompatible [102, 64].

9
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GPGPU 
Nvidia Jetson Devices 
BeagleBone AI Boards 

Coral Dev Board 
Intel Myriad

SoC Co-Processor 
Kirin 970 

Snapdragion 865 
Apple Neural Engine 

Helio P90

FPGA/ASIC 
Google Edge TPU 
Research Boards

Figure 2.3: Overview of Edge Accelerators

2.4 Edge Orchestration and Software Platforms

Envisioned edge environments consist of many constrained devices in geographically
distributed locations. The heterogeneous hardware capabilities and configuration
techniques prove difficult for state-of-the-art cloud orchestration platforms such as
Kubernetes [99]. Their implementation assumes strong assumptions present in data
center environments, complicating the integration of loosely coupled edge infrastruc-
tures [14]. Devices are more likely to fail or change connections resulting in constant
rearrangement and service migrations [15, 7]. Federated environments may get oper-
ated by different legal entities, which causes different execution environments, network
policies, or node capacities [77]. Novel work on edge-focused orchestration frameworks
integrates scheduling across ownership boundaries and supports the different hardware
capabilities through more advanced scheduling approaches. KubeEdge adds RPC-based
communication channels and edge multi-tenancy to the Kubernetes framework [108].
Kubefed proposes a similar approach, where Kubernetes multi-cluster environments
get integrated into a common architecture that allows distributed scheduling [59]. ioFog
is the first independent approach that introduces a prediction-based model to place
tasks at sufficiently fitted nodes at the edge-cloud continuum [2]. EdgeIO proposes
a hierarchical multi-cluster architecture and service-level based scheduling that takes
user-defined restrictions into account [115]. It integrates a novel networking component
designed to overcome the limitations of edge devices deployed in restrictive network
conditions such as Network Address Translations (NATs) or firewalls [9].

10



2 Background and Related Work

2.5 Edge Benchmarking

The rapidly evolving edge landscape has sparked interest in the development of
benchmarking systems targeted at the specific characteristics of the edge. These systems
aim to compare the performance of different edge platforms and applications. They
evaluate the benefits and implications of new approaches and can guide future research
directions [104]. This section will give a brief overview of benchmarking techniques,
potential metrics and highlight identified improvements for available solutions.

2.5.1 General Benchmarking

Before moving into edge-specific benchmarks, it is important to understand the general
term “benchmarking”. It is defined as the act of measuring the quality or performance
of a new solution by comparing it to some accepted standard. This reference is called
the benchmark or benchmarking problem and can range from business competitors to
predefined goals [16]. In computer science, benchmarks use a standardized problem
that is used to compare the performance of different environments or devices [75].
There are two major benchmarking categories:

• Synthetic benchmarks: These are artificial programs designed to measure the
raw performance of a computer system or its components. They seldom resemble
real applications and introduce rather arbitrary loads (e.g., copying random files
between disks) [49]. Examples for such benchmarks are 3DMark [101] for GPUs
or CrystalDiskMark [22] used for hard drives. Synthetic benchmarks allow for
easy comparison between systems, though the real-world performance may vary
for actual applications.

• Application benchmarks: Application-focused benchmarks, on the other hand,
integrate realistic workloads that resemble characteristics of typical applications
executed in the benchmark environment [63]. Their results paint a more di-
verse and complete picture of the actual performance of the computer system
as perceived by the end-user. Good examples for such benchmarks are in-game
sequences provided by some 3D engines [56] or the later discussed edge bench-
marking approaches.

Another subdivision of benchmarks decomposes approaches into micro-benchmarks
that target individual system components and macro-benchmarks that focus on the
overall performance of the system. We enumerate and discuss the capabilities of
existing edge benchmarks in section 2.7.

11



2 Background and Related Work

2.5.2 Evaluation Metrics

To calculate performance scores for the evaluated systems, the benchmarking solution
must collect metrics from the employed workload. Aggregated results give developers
a quick overview, while deeper analysis of the raw data helps to identify strengths
and weaknesses of new approaches and guide the direction of further development [5].
Table 2.1 list typical performance metrics that can be aggregated in edge scenarios [8,
31, 5].

Metric Type Metrics
Performance Throughput

Latency
Bandwidth
Packet Loss
Processing Power (FLOPS/IPC)
Memory Speed
I/O Speed
Speedup

Application Rate of failure
Number of concurrent clients
Quality of Service
Computation/Communication ratio
Failure handling/mitigation

Environment Temperature
Energy Consumption
Power Efficiency

Platform Utilization
Overhead
Failed scheduling decisions
Number of resource conflicts
Adaption time

Table 2.1: Performance indicative metrics for edge environments

Performance metrics show the operation speed of the edge devices. They do not
need any complex setups and can get measured directly. Application-level metrics
provide insights into the performance of the benchmark workload but require minor
adjustments to measure them. Environment and platform metrics, on the other hand,
need more sophisticated approaches to allow consistent and reliable measurements.
Benchmarks must be conducted in controlled and well-fitted environments, further

12



2 Background and Related Work

complicating measuring them.

2.5.3 Challenges and Improvements in Edge Benchmarking

In section 2.7 we discuss the individual approaches in more detail, summarized in
table 2.2. While existing benchmarks provide a comprehensive mixture of possible
workloads, they lack the integration of edge-specific accelerators or software platforms.
The majority of existing benchmarks focus on well-established CPU and memory
metrics combined with application-specific metrics. The diverse workloads capture
many possible edge scenarios comprehensively but fail to grasp the heterogeneity
of edge environments. Based on our findings, we identified four major areas of
improvement that should be addressed by future benchmarking approaches [104]:

I-1 Most edge benchmarks only use CPU and memory performance as their primary
evaluation metric for node performance. The influence of edge accelerators,
storage devices, and network connections requires further research.

I-2 Current approaches disregard the performance impact of software platforms
employed at the edge. However, their service orchestration plays a vital role in the
resulting application performance Future benchmarks should support different
orchestrators, service models, and scheduling implementations and compare their
impact on the benchmark performance.

I-3 Application-specific Quality of Service (QoS) metrics (e.g., throughput, failure
ratio, concurrent users) are the most common metric type in current benchmarks.
Other criteria like energy consumption or hardware utilization may provide
further insights into edge performance.

I-4 Most benchmarks do not compare the influence of different virtualization tech-
niques or offloading strategies. Their workload may not be representative of
large-scale, distributed workloads. The focus lies on single application perfor-
mance, while multi-tenant environments could capture a more comprehensive
picture of performance at the edge.

2.6 Object Detection and Tracking

The vision for edge computing includes different computation-heavy applications made
possible through a closer execution near the user. Examples include video surveillance,
smart home, smart city, AR/VR or autonomous vehicles [76]. Most of these applications
utilize heavy ML techniques to capture the user’s environment. For video surveillance
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or autonomous vehicles, this includes the processing of (multiple) video inputs to
identify the location of visible objects (car, people, etc.). Both object detection and object
tracking are crucial aspects of such tasks and are actively researched. In recent years
there has been remarkable progress in the accuracy of these approaches as well as
significant performance speed-ups. This section will give a short overview of current
object detection and object tracking techniques.

2.6.1 Object Detection

Extracting the location and type of objects in a continuous stream of video frames is a
big challenge in computer vision [11]. Research has made significant progress, from
traditional detectors that use few handcrafted image features to approaches that utilize
extensive ML using Convolutional Neural Networks (CNNs) [118]. This subsection
describes the theoretical foundation for neural networks and explores current object
detection approaches based on it.

Neural Networks Neural networks are inspired by the biological structure of the
human brain. They consist of artificial neurons that mimic the behavior of biological
neurons. Each neuron processes an input x ∈ Rd by defining a function f (x) =

℘(wxT + b) with w ∈ Rd being the weight vector and b ∈ R as the bias. The neural
network (see Figure 2.4a1) consists of directed connections between multiple neurons
that take the initial input I and pass it through further (hidden) layers until the output
layer is reached. Each of these links bears an individual weight that influences its
importance for later layers [38]. In a later training stage of the network, they get
optimized using a loss function that models the performance of the neural net based
on the training input [69]. Two common network types are Recurrent Neural Networks
(RNNs) that allow directed circles in the network structure, and Feedforward Neural
Networks (FNNs) that only connect with layers ahead [44].

Convolutional Neural Networks (CNNs) In FNNs, each neuron in a hidden or out-
put layer connects to all neurons in the previous layer. The number of weights is the
multiplication of the number of neurons in each layer. For large input sizes (such
as images), this results in a drastic increase of machine learning parameters, making
meaningful model training impossible Reducing the number of neurons in later lay-
ers reduces this issue, yet the drastic effects on classification performance make it a
non-viable option [44]. CNNs address this problem by introducing two layer types:

1Created with NN-SVG
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(a) Feedforward Neural Network (b) Convolutional Neural Network [48]

Figure 2.4: Architectural Basics of Neural Networks

• Convolutional Layer: Neurons get rearranged into n separate blocks that cover
the whole input still. Correlation between distant inputs (e.g., opposite corners
of an image) is low, the receptive field (input) of each neuron can be reduced to
a smaller m×m part. Neurons arranged in the same block share their weights,
which further reduces the number of parameters. Calculating the output of
each block corresponds to the convolution using a m×m filter and results in a
significantly smaller feature map as output. CNN architectures typically learn
from multiple such filters in parallel [44].

• Pooling Layer: Generating multi-dimensional feature maps using convolutional
layers only partially solves the problem of large input sizes. Pooling layers
address this by replacing an area of inputs from the previous layer with only one
output. Common CNN architectures use the maximum values or averages as the
output of the pooling operation. Additionally pooling layer help to make the
neural net more invariant to small input changes (e.g., small variances in pixel
brightness) [38].

Figure 2.4b shows a typical CNN built from multiple convolutional and pooling
layers followed by one fully-connected layer before the output. Such architectures allow
for much deeper neural networks for large or unknown input sizes and are the basis
for recent progress in object detection [44].

You Only Look Once (YOLO) Initial deep learning approaches for object detection
utilized two separate stages (proposal detection and verification) in their architecture.
While they produced accurate results, their processing speed was fairly low and not
suitable for real-time applications [118]. In 2016 You Only Look Once (YOLO) [84]
abandond this principle, by formulating a regression problem directly from the image
input to bounding boxes [66]. Figure 2.5 show the network architecture consisting
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Figure 2.5: YOLO architecture [84]

of 24 convolutional and pooling layers followed by two fully connected layers. The
approach divides input images into an S× S grid, where a cell detects objects if its
center falls into them. Each cell predicts multiple bounding boxes, confidence, and
class probabilities which get passed through non-maximum suppression to only output
the most probable detection [84].

The network’s performance is significantly faster than previous approaches, reaching
up to 45 fps on a Titan X GPU. A reduced version of the network, called TinyYOLO,
uses only nine convolutional layers and achieves 145 fps throughput [84]. Further
iterations of the initial architecture have improved the detection performance while
keeping a similar throughput [85].

Conclusion The adoption of deep learning for object detection has greatly improved
tracking accuracy and performance. Two-stage approaches like RCNN [37] generate
very accurate results but lack the necessary throughput for real-time applications.
Unified approaches such as YOLO [84] or SSD [68] trade a better throughput for small
accuracy losses which makes them capable of detection in real-time.

2.6.2 Object Tracking

While object detection helps understand single video frames and detect present objects,
applications such as autonomous vehicles require more input than the object’s location.
Tracking approaches address this challenge by extracting the location and the trajectory
of objects in a video stream [6]. Objects that are in motion can introduce a variety of
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Figure 2.6: Basic steps for object tracking [6]

new problems, where light levels suddenly change, objects get occluded, or motion
blurring occurs in the video stream [65]. Additionally, the projection of 3D objects onto
2D video frames causes a loss of information where rotations or object deformations
challenge the tracking approach [114]. Figure 2.6 shows the general steps performed by
current tracking approaches.

Detection + Classification Before the actual tracking algorithm, the initial location
of tracked objects needs to be initialized. This can either be done manually by the
user or automatically using CNNs and ML approaches described in the previous sub-
section 2.6.1 [18]. How often new detections get integrated depends on the tracking
algorithm and the available computing power. For moving objects, this step employs
other detection techniques based on frame differences to disregard non-moving ob-
jects [6, 26]. Many approaches include an additional step, either integrated with the
detection algorithm or as a separate procedure, to classify the detected objects into
different classes [6].

Tracking The following tracking algorithm takes the classified detections as input
and updates their position in future video frames. Current approaches are grouped
into three major categories [6]:

• Point Tracking: These algorithms focus on single feature points of each object.
Typically they first update the object’s positions based on new frame inputs and
correct wrong assumptions in a second step. Examples of these approaches are
Kalman or particle filters.

• Kernel Tracking: Moving objects are calculated with the usage of non-linear
regression. The solution is expressed as a linear combination of samples and
attained using a kernel function. Such approaches (like Kernelize Correlation
Filters (KCF) or mean shift tracking) use the object geometry as the input.

• Silhouette Tracking: Such approaches generate an object silhouette based on the
initial detection. The tracking tries to adapt to the specific object shapes (e.g.,
hands) instead of geometric shapes. Current approaches are based on either
object contours or object shapes.
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Multiple Object Tracking (MOT) The described methods are effective in tracking
the trajectories of single objects. However, most applications need information about
multiple objects, so the tracking approaches must calculate multiple object trajectories.
This Multiple Object Tracking (MOT) has its unique set of challenges, where tracked
objects can temporarily occlude each other and need to be re-identified when they
appear again. Objects can interact with each other and mutually affect each other’s
state (e.g., a person that drives a bike) [18].

2.7 Related Work

This section reviews and classifies current edge benchmarking approaches. Table 2.2
summarizes the most relevant edge benchmarks and highlights the components bench-
marked by their approach. We describe the benchmark workload and highlight missing
aspects for each approach.
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CoAP benchmark [58] + - + - - - - - -
RIoTBench [93] + - + - - - - - -
EdgeBench [24] + - + - - - + - -
Edge AIBench (concept only) [46] - - - - - - - - +
DeFog [72] + - - - + - - - -
Edge accelerator benchmarking [87, 27] + + - - - - - - -
EdgeBench (2) [111] + - + - + - + - -
OpenRTiST [36] + +/- - - + - - - +/-
Scission [70] + +/- - - - - - - -

Table 2.2: Comparison of benchmarks and tested components, modified from [104]

Benchmarking of IoT devices The benchmark can be split into two separate methods
to evaluate constrained off-the-shelf hardware (Raspberry PI, BeagleBone, and Beagle-
Bone Black). First, Imbench [74] is used to measure the performance of each device.
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It computes operation speeds and latencies to determine the overall machine perfor-
mance. The second phase deploys a gateway for the constrained application protocol
(CoAP) on the devices and measures the response latency for repeated requests [58].
The benchmark gives a good overview of the CPU performance of edge devices and
evaluates their gateway performance. It does not consider the distributed execution of
more complex workloads and leave out edge accelerators.

RIoTBench focuses on distributed stream processing system (DSPS) that provides an
intuitive dataflow model for scalable, low-latency streaming applications. The suite
provides 27 distinct micro-benchmarks that address different types of streaming tasks.
They are categorized into data parsing and filtering, statistical and predictive analysis,
pattern detection, visual analytics, and I/O operations. On top of the artificial micro-
benchmarks, the authors have identified four real-world applications representative of
IoT-stream workloads [93]. The actual benchmark focuses on processing performance
in data center environments, where only the data input stems from datasets generated
by edge devices.

EdgeBench evaluates the performance of the commercial edge offering AWS IoT
Greengrass [52] and Azure IoT Edge [53]. The platforms are based on the serverless
computing paradigm and extend current cloud offerings to the edge. Device man-
agement happens in the unified cloud portal and enables easy integration of edge
capabilities. The benchmark provides a speech-to-text decoder, an image recognition
model, and a scalar value generator as workload. The workloads are executed in
the cloud and on constrained edge devices, respectively [24]. Benchmarking focuses
on CPU and memory configurations and disregards potential hardware accelerators
available at the edge.

Edge AIBench proposes a conceptual benchmarking suite primarily focused on AI
tasks. The authors propose four workload types with prospective potential for extensive
edge computing:

• Predicting heart failures of monitored patients in an ICU.

• Identifying people on virtual camera devices emulating surveillance cameras.

• Speech/Face Recognition on smart home devices.

• Road sign recognition for autonomous vehicles.

The benchmark is not fully implemented and lacks qualitative results on edge de-
vices [46].
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IoTBench implements benchmark tasks primarily focused on the edge processing
part of IoT applications. They provide workloads in the area of computer vision
(video summarization, depth estimation, image recognition, localization, and mapping),
speech recognition (Mel-Frequency Cipstal Coefficient, Beamforming), and signal
processing (compressive sensing). While the benchmark measures many low-level
metrics like Million Instruction per Second (MIPS) and L1/L2 cache miss rates, it does
not evaluate the influence of multiple services communicating over the network [62].

DeFog focuses on different deployment options on the edge-cloud spectrum. It can
operate services in cloud-only, edge-only, and mixed environments. The benchmark
provides a diverse mixture of workloads: object classification using ML, speech-to-
text conversion, text-audio synchronization, geo-location-based gaming, an Internet of
Things (IoT) gateway application, and face detection from video streams. The assets
for these tasks are hosted in the cloud and transferred to the service destination upon
scheduling. The IoT gateway is the only workload that executes multiple services
distributed on different devices [72] It misses the integration of edge accelerators and
explicit integration of network connections into more workloads.

Edge accelerator benchmarking Reuther et. al. [87], and Dinelli et. al. [27] propose
the only comprehensive study of edge accelerator performance. They benchmark dif-
ferent accelerators by executing CNN workloads and measuring the device throughput.
Specifically, they compare different pluggable accelerators (Google Edge TPU, Intel
Movidius Compute Stick) with general CPU execution. Their research primarily focuses
on the performance of different accelerators and not on application-based generic edge
benchmarking.

EdgeBench (2) implements an extendable benchmarking suite for functional edge
workflows. The benchmark uses OpenFaaS on top of Kubernetes to execute either
a video analytics pipeline or an IoT hub as predefined workloads. They integrate
cloud database applications such as InfluxDB or Minio as storage backends for the
defined pipelines. It is the only benchmark so far that allows users to integrate custom
workloads based on custom pipeline configurations [111]. The benchmark integrates
distributed execution of multiple services with explicit communication between them
but lacks integration of edge accelerators.

OpenRTiST implements an end-to-end benchmarking approach that utilizes Neural
Style Transfer (NST) to transform a live video stream in the style of a reference painting.
The benchmark takes the camera input from a mobile phone and processes the image
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at different hardware on the cloud-edge spectrum. It focuses on end-to-end metrics for
processing the image and includes network communication only between the phone
and the device executing the neural net [36]. While the benchmark integrates cloud and
cloudlet resources with different GPUs, it lacks additional low-power edge accelerators
and devices for computation.

Scission The benchmark proposes context-aware distribution of deep neural networks
across multiple devices, so the individual layers are scattered across the edge-cloud
continuum. The network layers get split at specified partitioning points determined by
the architecture of the neural net (linear or branching). Eight-teen common networks
get evaluated, determining their optimal distribution on the cloud-edge spectrum [70].
While the approach provides insights into the distributed execution of common CNNs,
the network aspect is only simulated and never explicitly benchmarked.

21
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This chapter describes the architecture and specifics of the proposed object tracking
application that serves as the base workload for the benchmarking suite. Section 3.1
covers the workload-specific requirements stemming from the general research goals,
possible performance metrics and, identified improvements of current edge bench-
marking platforms. The chapter continues with the general architecture of the pipeline
(section 3.2) followed by a detailed explanation of each service. The last section 3.7
details the containerization of the workload and its specific needs for the benchmarking
system.

3.1 Requirements

The quality of the workload determines how representative and thorough benchmark
results are. Achieving the first research goal (RG1) highly depends on the concept for
the real-time video analytics pipeline. Based on the research goal of this thesis as well
as the identified shortcomings of current benchmark approaches, the following list of
requirements serves as a precise specification for the workload design:

R1 Representativeness: The workload must represent common applications considered
for edge computing. It should stress edge devices through heavy computation and
derive the maximum capacity of the benchmarked environment. The workload
should be based on a realistic scenario and utilize realistic data that reflects
relevant edge use cases and challenges.

R2 Modularity and Extensibility: Edge computing is a dynamic field in current research
with unforeseeable developments to be expected in the future. This results in fast-
changing environments that necessitate adjustments of the workload. Therefore,
the workload must use a modular architecture with components that can be
replaced or extended without affecting other parts. Integration of new modules
has to be uncomplicated and should require only a few or no changes at other
components.

R3 Distributed execution: Modern application design involves smaller microservices
that interact with each other over well-defined interfaces. Services are distributed
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across separate machines, and communication facilitates state-of-the-art technol-
ogy. The workload design must mirror similar behavior and force communication
between different modules.

R4 Utilize edge heterogeneity: Edge environments consist of a huge variety of different
devices (e.g. Raspberry PI, BeagleBone or Nvidia Jetson devices). Combined with
pluggable acceleration hardware, this results in a very heterogeneous environment
for the benchmark. Contrary to available benchmarks, the workload must exploit
this computational potential and utilize different accelerators and instruction set
capabilities in its components.

R5 Technological independence: Current benchmarks lack support for emerging soft-
ware platforms at the edge. The workload architecture must support the different
virtualization techniques or service models employed by them. Any assumptions
regarding networking, scheduling, or other technological requirements may not
impair the possibility of executing the workload.

3.2 Workload Architecture

The proposed workload portrays a real-time video analytics pipeline that detects and
tracks objects in a video stream. Figure 3.1 shows the proposed architecture composed
of four interacting microservices (R2 and R3), each responsible for a subset of the
problem.

Video
Source

1

+

Video
Aggregation

2

Object
Detection

3

Object
Tracking

4

Figure 3.1: Architecture of the Tracking Pipeline

The video source 1 takes a video input (e.g. video file or webcam) and ingests them
into the application. Multiple video inputs are fed to the video aggregation service
2 that performs necessary pre-processing steps on the video frames and combines

them into a synchronized stream for later stages. The objects detection service 3
utilizes a CNN to detect objects in the video frames and attaches the detections to the
frame metadata. The detections are forwarded to the object tracking service 4 that
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Figure 3.2: Example deployment of the video analytics pipeline

tracks the movement of detected objects and outputs the resulting bounding boxes to
an external service.

General Procedure Current approaches to multiple object tracking perform object
detection for each video frame. This results in good tracking accuracy but requires
significant computing power, which is not available in edge environments. The em-
ployed tracking algorithms, on the other hand, are much lighter, making them more
appropriate for such constrained devices. The pipeline procedure reduces calls through
the detection service to periodic updates to identify new or reappearing objects. All
remaining frames are forwarded directly to the tracking stage and only get processed
there. The architecture balances accuracy losses from skipping the detection stage
with the throughput gains of only the tracking stage. Depending on the configurable
detection frequency, this speeds up the pipeline considerably but can cause significant
inaccuracies for fast-moving video scenes.

This approach enables diverse deployments that are more representative of actual
edge applications (R1). Figure 3.2 shows an example distribution of the workloads. The
video source(s) is placed near the edge of the environment and closely resembles an
actual IP cam. The aggregation service is deployed near its inputs to decrease network
latencies and decrease the bandwidth for the later stages by performing the necessary
pre-processing. The detection is deployed on a powerful server that offers GPGPU
capabilities for the CNN execution, while the tracking service is executed on a more
constrained device nearer to the user (e.g., edge device operated by the ISP). With such
a configuration, the pipeline can benefit from both the higher computing power of the
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GPU server as well as the lower network latencies of the nearer tracking service.

Communication Technology Formulating the multiple object tracking as a set of
separate microservices requires service-to-service communication. For this, many
applications use REST based HTTP interfaces as the defacto standard. However, recent
years have seen the rise of alternative technologies such as GraphQL [96], Falcor [79]
or gRPC [41] for APIs. To reflect these developments and integrate state-of-the-art
communication approaches (R3), the workload utilizes gRPC. We chose gRPC for
several advantages to more traditional REST based communication schemes:

• Service APIs are specified explicitly and upfront based on Google’s Protobuf [81]
interface definition language (IDL). Extensive tooling enables automatic genera-
tion of client and server code simplifying development.

• API messages use more efficient binary serialization compared to text-based
JSON. In addition, gRPC utilizes the more modern HTTP/2 by default which
results in overall performance benefits when compared to REST.

• gRPC supports many common programming languages, so current services
can be replaced by better fitting implementations in the future (R2). New data
fields or interface methods can be added in a backwards compatible way, further
decoupling the individual workload services.

• More advanced aspects such as message streaming, integrated load-balancing,
or service discovery prepare the communication design for prospective improve-
ments.

3.3 Video Source

The design of the video source reflects common networked cameras used for video
surveillance [112]. This allows for replacing the source with an actual camera device
and perform benchmarks with real inputs.

This camera emulation is based on a Real-time Streaming Protocol (RTSP) [97] server,
hosting a prerecorded video file. RTSP provides commands for the video sink to start
and control the video transmission. It uses the Real-time Transport Protocol (RTP) [98]
to actually send the encoded video stream over the network. RTP allows both UDP and
TCP as underlying protocol and supports common video codecs like MPEG or H264.
The video sink uses the RTSP DESCRIBE command to receive a current configuration for
the requested video stream and can adjust its implementation to it. This enables the
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emulation of different stream characteristics such as bit rate, codecs, or communication
protocols by simply changing the configuration of the RTSP server.

Implementation The RTSP server is implemented in C and based on the GStreamer
library [42] and the associated RTSP plugin [43]. Input files are read using a descriptive
GStreamer pipeline that can be adjusted by the developer (R2). Figure 3.3 shows
the standard pipeline configuration for de-multiplexing an H264 encoded video file,
queueing the individual frames, and encoding them into a RTP stream with custom
payload type. Any auxiliary processing steps or video codec changes are supported by
changing the dynamic pipeline configuration1.

filesrc location=\"%s\" ! qtdemux name=demux demux.video_0! queue !
rtph264pay pt=96 name=pay0

Figure 3.3: GStreamer Pipeline for H264 video

Dataset The video source uses the WILDTRACK multi-camera dataset [17] as pre-
recorded video input. It features seven distinct, overlapping perspectives in front of
the main building of ETH Zurich. The dataset was chosen for its object quantity, the
versatile camera arrangement, and potential for future benchmark workloads (R1 and
R2). Figure 3.4a shows the camera arrangement and visualizes their overlapping areas.
The videos are of high resolution (1920x1080) and high framerate (60 fps) and were
recorded in good weather conditions. Data points for the object location are provided
both per camera as bounding boxes and as a location in the three-dimensional space for
the overlapping area. This makes a versatile dataset that can be used for two distinct
problems. The individual camera perspectives can be used to perform traditional
multiple object tracking, while their complete set serves as input for multi-camera
detectors based on the location. Figure 3.4b shows some screenshots of the dataset.

3.4 Video Aggregation Service

The video aggregation service connects to multiple video sources and extracts static
frames from video streams. In the next step, the frames are resized to a configurable
format needed for the CNN of the later detection stage. Such pre-processing is
envisioned for edge applications, where services near the data source reduce the
transmission size by performing already performing some calculations (R1). The service

1https://gstreamer.freedesktop.org/documentation/tutorials/basic/dynamic-pipelines.html
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(a) Camera Arrangement (b) Dataset Screenshots

Figure 3.4: WILDTRACK Dataset, taken from [17]

attaches an incremental frame number and the current timestamp as metadata before
forwarding the frames using the real-time scheme explained in the next paragraph.

Real-time emulation The pipeline concept requires fast and reliable processing of
the video stream. Decisions for video surveillance or autonomous driving systems
need up-to-date locations of their surrounding. Current MOT benchmark approaches
process the video input in batch format and measure the throughput in from of
Frames Per Second (FPS) [25]. The tracking accuracy only depends on the underlying
algorithm and does not fully reflect the real-time requirements of actual applications.
We propose a real-time inspired emulation scheme that processes the video frames at a
fixed framerate. Limited buffering is applied to handle small variances in processing
speed and smoothen the pipeline sequence. If the static framerate exceeds the pipeline
capacity, the buffer will fill up, and older frames must be discarded and make room
for newer ones. While this affects the quality of service, it allows the pipeline to retain
a reduced form of operation. This is especially useful for constrained edge devices
with low processing capabilities. Even if the available resources do not suffice for full
operation, the pipeline can still operate and generate benchmark results (R1 and R5).

Figure 3.5 visualizes the current implementation of this concept. Two separate worker
threads emulate the real-time behavior for each video source. The first thread connects
to the video source and reads arriving extracts arriving frames from the stream. It
performs the necessary pre-processing and adds them to a shared FIFO queue. The
second thread reads frames from the queue at the specified framerate and generates
a new send task for it. It chooses the following service based on the frame number
and the specified detection frequency. The thread tracks the progress of the previous
task and only starts the new transmission if it is finished. Otherwise, the new task is
skipped, and the next frame is read from the queue. This approach ensures that frames
are sent in order which makes them easier to handle in the later stages. The successful
frames are an ordered subset of all frames that were received from the video source.
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Figure 3.5: Real Time Emulation of the Video Aggregation Service

Implementation and Metrics The implementation uses Python and the OpenCV
library to read video inputs and perform the frame resizing. Custom binaries of
OpenCV integrate FFMPEG and OpenCL support to support common video stream
formats and allow for GPU accelerated pre-processing of frames (R5). The service
measures the overall processing time for resizing and the number of skipped frames as
metrics for benchmarking suite. Early implementations measure network latencies for
gRPC calls, yet the results differed only marginally from the other services processing
time due to the blocking API approach.
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3.5 Object Detection Service
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Figure 3.6: Object Detection Service

The object detection receives the resized video frames as input from the aggregation
service. In the first step, the service ensures the correct image size and generates
an image blob by performing mean subtraction, further image scaling, and channel
swapping specific to the used CNN. The next step inputs the image blob into a pre-
trained object detection CNN and calculates a list of potential detections. The last
step uses non-maximum suppression to determine the best subset of proposals and
filter any overlapping bounding boxes. This also rejects weak detections by removing
any detections below the specified confidence threshold. The generated detections,
inclusive object class, and detection confidence, are then attached to the metadata of
the video frame and forwarded to the tracking service.

Implementation and Metrics As well as the aggregation service, the implementation
uses Python and the OpenCV library. More specifically, it uses the dnn module to
support different CNNs in common formats, including Caffe, DarkNet, PyTorch, and
TensorFlow. Integrating novel CNN architectures requires only minor changes in the
blob generation and the output handling, which results in an easily extensible service
(R2). As of now, only the DarkNet based YOLOv3 network (see subsection 2.6.1) has
been integrated. It was chosen for two major reasons:
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• The CNN achieves over 45 fps when deployed on a single Nvidia Titan GPU,
making it fast enough for real-time detection [84, 85].

• There are different variants of the network that share similar input and outputs but
range in computational complexity. Benchmarking with these different versions
allows for insights into the influence of the performance and accuracy of the
detection stage.

OpenCV can utilize several accelerators for its dnn module, including OpenCL and
CUDA for GPUs and other edge accelerators such as the Intel Movidius Myriad. The
backend for the neural net execution can be changed during runtime based on the
available hardware capabilities. The service measures the combined processing time
for blob generation, CNN calculation, and non-maximum suppression and counts the
number of detected objects before sending them to the tracking.

3.6 Object Tracking Service

As shown in the architectural overview in figure 3.1 the tracking service receives inputs
from both the aggregation and the tracking service. Both inputs include the current
input frame, the frame number, and the frame timestamp. Additionally, frames from
the detection include bounding boxes of newly detected objects used to initialize the
tracking algorithm. This results in dedicated execution paths for both input types:

• Detections: When receiving new objects from the detection, the tracking must
perform two consecutive steps. First, it compares the set of new objects against
the set of tracked objects to find conflicting hypotheses present in both sets. The
tracking service then performs non-maximum suppression to choose the best
candidate for each of these conflicts. This ensures that tracked objects are only
overridden with a new location when the confidence of the detection algorithm
surpasses the tracking confidence. New tracker instances are generated for the
remaining new objects, and the remaining tracked objects are updated based on
the new frame. After the instances were generated or updated, the union of both
sets corresponds to the internal in the tracker.

• Aggregation: For frames from the aggregation no filtering or duplicate detection
is needed. The new frame is passed through all tracker instances and used to
estimate the new location of the object. Each instance returns the estimation
confidence as well as a boolean value that tells if the tracking algorithm can
identify the object in the present frame.
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Object Disassociation These returns help identify objects that are currently not visible
in the frame and must be removed from the set of tracked objects. On the other hand,
objects may only leave the frame or get occluded for a limited time period and reappear
after a reasonably short time. To balance the time between object disappearance and
their disassociation from the internal introduces the possibility of missing objects when
they return quickly. The tracking service counts the number of frames an object is
not tracked successfully. Only if this count passes a specified threshold, the object is
de-registered from the tracker and lost for good.

Implementation Similar to the previous two services, the object tracking service is
based on Python and the OpenCV library. OpenCV provides performant implemen-
tations of common tracking algorithms such as KCF or MedianFlow. The different
approaches can be switched using a simple configuration option which makes the
service more flexible for different scenarios.

The tracking service uses the KCF algorithm by default. It provides comparable
accuracy paired with fast processing speeds, which is well-suited for edge devices.
The service measures the processing time for each frame and the number of tracked
objects in its internal state. The object estimations (bounding boxes) get forwarded to
the benchmarking suite as separate metrics primarily intended for QoS calculations.

3.7 Workload Packaging

The heterogeneous requirements of the edge complicate the building and packaging of
the pipeline services. Devices require distinct instruction set architectures and explicit
support for additional capabilities like SIMD vector extensions or hardware accelerators.
The generated packages must reflect these characteristics and utilize each device to
its full potential (R4). They must include custom compilations of the OpenCV library
where non-free, accelerator-specific code is integrated.

Edge deployments often provide multi-tenant environments that require strong
isolation between services. For this, the workload focuses on the use of docker contain-
ers [28] based on pre-generated images. Other techniques, like VMs, unikernels, or
mixed approaches are generally supported by the pipeline architecture (R6) however,
their integration is out-of-scope for this thesis and left for future iterations. Docker
containers are chosen for their small overhead, making them a good fit for constrained
devices, as well as the existence of good tooling to generate pre-compiled images for
the services. They run directly on the host OS only isolated using advanced (Linux)
kernel features like cgroups [73].
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Multi-arch Images Such docker images bundle needed libraries and service binaries
or scripts needed for their execution. They are based on Dockerfiles that provide a
descriptive format to control the build procedure. The image structure is based on
build layers, where each new layer corresponds to some command in the Dockerfile.
They are coupled to the specifics of their build environment, which is described in the
image manifest. It includes the operating system, the processor architecture, and a list
of image layers.

Executing images built for other processor architectures is generally not possible,
which mandates different images for each architecture. Alternatively, one could use
the experimental support of cross execution through the QEMU hypervisor but incur a
huge performance penalty on the performance.

The better approach is multi-arch images [29], where multiple operating systems and
processor architectures are grouped under one shared image tag. The manifests of the
individual images are stitched together and form a combined image descriptor. During
execution, the docker runtime chooses the correct image, transparently simplifying the
deployment procedure of the pipeline (R4).

Multi-stage Builds Another problem of the image generation is bulk of development
dependencies required for the custom compilation of OpenCV. Those dependencies are
not required when the images are executed and should be deleted after the compilation
finishes. However, through docker’s layered image structure, they still remain in the
image layers. Such large image sizes are suboptimal for edge devices with little storage
space, so the dependencies must not be included in the resulting image.

The build process utilizes multi-stage builds to overcome this problem. Development
dependencies are installed in a separate container, where the needed libraries are
compiled. After compilation has finished, solely the build artifacts are copied to the
real image. While OpenCV still requires its runtime dependencies, this reduces the
image size significantly.

Base Containers While multi-arch images handle different processor architecture,
they cannot integrate transparent support for different hardware accelerators. Generat-
ing "super" images that integrate multiple hardware platforms is possible but causes
larger images even for lightweight devices without specialized hardware. Multiple
accelerators in a device may result in obscure behavior, where the developer cannot
determine which one is actually utilized. An explicit docker image for each supported
accelerator platform provides such insights and enables smaller docker images. Images
are tagged according to their capabilities, so the developer can easily spot the utilized
accelerator. The compilation is handled automatically using a CI/CD pipeline and
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Figure 3.7: Docker Images Technology Support

results in the following four base images:

• CPU-only (Tag: cpu): Minimal compilation of OpenCV that only supports CPU
execution. Architecture-specific capabilities (ARM NEON or x86 AVX) are enabled,
while all other accelerators are deliberately disabled.

• OpenCL (Tag: opencl): Enables the usage of OpenCL using the transparent
API (T-API) of OpenCV. Support for Intel, Nvidia, and AMD GPUs is included,
though each platform requires slightly different approaches for running the
docker container.

• Nvidia CUDA (Tag: cuda): Integrates Nvidia CUDA and CuDNN support which
promises faster execution than OpenCL. The image utilizes Nvidia’s container
runtime nvidia-docker2 which handles necessary device bindings for the GPU.

• Nvidia L4T (Tag: l4t): A more lightweight integration of CUDA and CuDNN
targeted for Nvidia Jetson devices. The image only includes library shims that
are replaced with the device libraries upon execution.

Workload Images On top of the base images, the actual workload images are gener-
ated. Each service supports different technologies, which is shown in figure 3.7. For
completeness, the video source service is included in the figure, even though its image
is based on a separate multi-stage image specific to GStreamer and does not support
any execution environments other than the CPU.
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This chapter details the overall benchmarking suite built around the workload described
in the previous chapter. First, section 4.1 starts with a list of requirements specific
for the tooling of the benchmarking suite. Section 4.2 describes the overall system
architecture and details the flow for a full benchmark execution. The next section 4.3
describes the specifics of the orchestration service employed to execute the benchmark
workload on different devices and in different configurations. In the last section 4.4,
the separate metric and calculation system is outlined.

4.1 Requirements

The tooling around the proposed workload plays a vital role in the adaption of the
whole benchmarking suite. Integrating different software platforms (RG2) as well
as future adjustments for emerging edge technologies (RG3) heavily depends on the
initial design decisions. Following list captures the requirements that are needed to
achieve these goals:

R1 Edge heterogeneity: By nature, most edge environments are heterogenous with lots
of specialized accelerators. Benchmark workloads should fully utilize the edge
hardware by providing device-specific artifacts. The tooling must consider the
specific requirements of the individual services when scheduling the benchmark.
Additionally, the tooling should consider the different capacities of devices and
prevent unreasonable configurations from being scheduled (e.g., running the full
video analytics pipeline on one Raspberry PI).

R2 Exhaustiveness: The formation and capabilities of edge devices vary greatly, mak-
ing benchmarking based on established or predetermined assumptions unfitting.
Large scale edge deployments must constantly balance computing and network-
ing costs and may result in unintuitive benchmark results (e.g., heavy machine-
learning on a near constrained device could be faster than in the far cloud with
high networking costs). The benchmarking suite must evaluate all reasonable
configurations and compare them against each to discover such anomalies.
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R3 Metric integration: To evaluate the performance of the workload, the benchmarking
suite needs to collect and aggregate metrics during the execution. This collection
must happen as resource-saving as possible and may not impact the overall
workload performance significantly. Processing and aggregation need to be as
decoupled as possible and should happen outside the benchmarked environment.
Diverse networking restrictions imposed by different edge deployments (e.g.,
behind NATs or firewalls) should be supported.

R4 Software platform integration: As identified in section 2.5.3 current benchmarking
approaches lack support for emerging software platforms employed at the edge.
The benchmarking suite should support different deployment techniques or
service models present in these platforms as workloads may target multiple
platforms.

R5 Extensibility: The use cases of edge computing and the capabilities of edge
hardware evolve rapidly. The benchmarking suite must support the integration
of new workloads or software platforms in its design. Different metrics should
be covered by an expressive configuration where the integration of novel edge
platforms should only require minimal code changes.

R6 Ease of use: The benchmarking suite should use articulate configuration structures
and well-defined procedures to simplify integration for inexperienced users.
Interactive tooling helps with configuration generation and further reduces the
entry threshold. While all raw data must be recorded and made available, the
benchmarking suite should calculate easy-to-understand figures and aggregations
to provide a quick overview of the results.

4.2 System Design

This section describes the general vision behind the benchmarking suite, gives an
overview of the overall architecture, and shows the interaction between the individual
components. Figure 4.1 represents the architectural overview and the communication
paths between different parts of the system.

Benchmark Vision: Benchmark environments for edge platforms consist of a diverse
mixture of devices. Developers may combine emerging hardware with existing devices
to allow for comparison between them. The benchmark workload described in chapter 3
serves as the initial benchmark workload and points further research in the correct
direction. Custom workloads can be integrated to fathom aspects not targeted by the
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Figure 4.1: Benchmarking Suite Overview

video pipeline. The individual workload services produce custom metrics that get
processed and visualized by the benchmark suite. Metric types are configurable and
allow the developer to integrate custom post-processing procedures specific to the
benchmark workload.

Architecture Description The devices in the benchmark environment have different
characteristics that influence the later scheduling. Multiple devices of similar type (e.g.,
several Raspberry PIs) get grouped into node groups that share common properties
like ISA, computing power, or RAM capacity. Currently, these node groups are based
on the configuration structure described in subsection 4.3.1. Future iterations of the
benchmark suite will include an interactive CLI that helps the developer by probing
the provided devices and generating the node configuration automatically. However,
for complex environments where this interactive process is insufficient, the developer
may revert to editing the configuration file directly.

The configuration includes details about the benchmark workload and generates
multiple runs that cover all meaningful deployment scenarios (R1, R2). Different
scenarios are scheduled automatically and generate metrics specific to the configured
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benchmark workload. An external metric collection service collects them using simple
HTTP requests and logs the raw data for later analysis. Upon completion of a scenario
run, the evaluation calculates aggregations and generates plots of the raw data. They
provide a condensed view of the benchmark run and help the developer explore the
raw data.

The benchmark suite provides a built-in executor that directly connects to the devices
and schedules the services using an SSH connection. Preparations for other edge
software platforms such as EdgeIO or k3s allow for easy integration of them in the
future (R4). The separate metric collection enables more diverse network configurations
where the benchmark workload cannot reach the developer but works well with an
interposed machine.

4.2.1 Benchmark Sequence

The general procedure of scheduling a new benchmark run is shown in figure 4.2. In
the first step, the developer generates the benchmark configuration by manually editing
the configuration file or using the future interactive CLI (R6). Using the environment
preparation described in subsection 4.3.2 he may verify and set up the devices to
prevent any errors in the actual benchmark run. After the initialization finishes, the
actual benchmark procedure is started. The orchestration service generates several
possible deployments (mapping of workload services to node groups) and schedules
sequential runs of each configuration.

For each run, the orchestration controls the separate metric calculation service using
the procedure described in subsection 4.4.3. The benchmark workload produces custom
metrics that are logged by metric calculation and aggregated upon completion (R3).
After each run of a workload mapping, the orchestration demolishes all workload
components and restarts the benchmark procedure from the beginning. When all
possible mappings are benchmarked, the service initiates the plotting procedure at
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Figure 4.2: Benchmarking Flow Chart
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the metric service and exits the application. This eases the developer from much of
the manual work usually involved in comprehensive benchmarking of computing
environments (R6).

4.3 Orchestration

This section describes the benchmark orchestration in more detail. It gives an overview
of the orchestration structure and shows the adaption potential for the developer. Sub-
section 4.3.2 will describe the separate environment preparation, while subsection 4.3.3
describes the generation of the possible deployments. The last subsection details the
built-in SSH executor and describes the concept for the integration of Kubernetes-based
platforms such as k3s.

4.3.1 Configuration Structure

Figure 4.3 shows the relevant parts of the configuration structure in a descriptive format.
The configuration can be divided into three distinct areas, each describing a different
part of the benchmark:

• Software Platform Configuration: The different platforms integrated into the
benchmark suite require different configuration options. While the built-in
ssh executor may only require the username and the path to a key file, other
platforms may require route configuration, deployment template, or secret files to
authenticate against their APIs. Their structure cannot be generalized, so each
one provides its own model (e.g., SSH config in figure 4.5).

• Environment Configuration: Though edge environments are very heterogenous,
most benchmark environments typically include multiple devices of the same
or similar type (e.g., multiple Raspberry PIs). Scheduling the same workload
service on each of them is not necessary, as it would only increase the benchmark
runtime without providing any significant new insight. Thus, these devices
are grouped into NodeGroups with similar characteristics (processor architecture,
capabilities, service capacity). However, the developer may configure multiple
groups for similar nodes that differ in other, not listed regards (e.g., different
network connection).

• Workload Configuration: The workload configuration (Workload) lists the spe-
cific configuration for each workload service. Each item includes the used docker
image and a list of available image tags. The tags correspond to the specialized
images that support certain hardware capabilities (e.g., cuda or opencl for the
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object detection service) so the orchestration knows which services support which
accelerators (Tags). For the same reason, a list of supported processor archi-
tectures is included however, this information is solely used for the workload
matching since the benchmark workload is expected to support multi-arch images
similar to the proposed workload (Arch). Each service supports data mounts for
large files (e.g. the dataset video) provided outside of the container (Mounts and
LocalData). Standard docker port forwarding (Ports) and a custom container
entry point with support for variable templates (Command) can be provided as
well.

The address of the evaluation service is included as a separate option since it cannot be
assigned to any of the described configuration settings.

Executor-Config: ...
Evaluation: evaluation-address
NodeGroups:
- Name: human-readable-name
Arch: ISA
Capabilities: [list-of-capabilities]
Nodes: [list-of-node-addresses]
NodeCapacity: capacitiy-per-node

Workload:
- Name: human-readable-name
Image: docker-image-name
Ports:
- port-binding

Tags: [image-tags]
Arch: [image-architectures]
Command: executable --args {{Evaluation}}
Mounts:
- tmpfile:containerpath

LocalData:
- file-to-distribute

Figure 4.3: YAML based configuration file for orchestration
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4.3.2 Environment Preparation

A fresh benchmark environment typically consists of several devices with varying
preconditions. Some devices may have a fresh OS installation, while others use an older,
already configured one. While this heterogeneity is representative of edge scenarios,
the benchmarking suite needs to establish some common ground on all devices. In
a manual, upstream step, the orchestration ensures the configured requirements are
met and hints the developer towards missing packages or execution environments.
Alternatively, a basic preparation strategy is implemented that installs missing packages
and starts needed services. However, the implementation is still early and cannot handle
complex scenarios like missing root permissions or different package managers.

Future iterations of the benchmark suite will utilize a more established approach
(such as ansible or terraform) to set up the environment. This helps with the integration
of other software platforms as well, where automated initialization procedures are
often provided by the vendor or community. The orchestration only needs to verify its
access to the required services or APIs without any custom initialization procedure.

The separate initialization stage also helps populate the benchmark configuration
described in the previous subsection. In the current implementation, the orchestration
only probes for execution environment supports and network access, yet an interactive
CLI will aid the developer in the future. Based on a simple list of devices, the pipeline
probes for node characteristics and tries to autogenerate node groups. Only if this
process fails or does not detect certain characteristics, the developer must manually
edit the configuration and adjust it to his needs.

4.3.3 Workload Matching

Generating an exhaustive list of mappings that match workload services to node groups
is an essential part of the orchestration service (R2). This list of mappings must adhere
to both processor architecture and node capability restrictions, so only workloads that
can be executed are matched.

The orchestration service interprets these restrictions as edges in a bipartite graph of
workloads and node groups. Workloads are connected to all node groups that support
at least one of their characteristics (tags). In this graph, valid mappings correspond to a
perfect (maximal) matching in the graph as depicted in figure 4.4a.

There are established algorithms such as Hopkcroft-Karp [50] and Kuhn-Munkres [60]
that allow finding one perfect or maximal matching. However, generating all possible is
a much more complex problem. Efficient approaches (e.g., [34]) start from one perfect
matching, generated with the above algorithms, and iteratively generate all possible
matchings through permutations in the graph. The computational complexity for the
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generation of perfect matchings depends on the total number of perfect matchings O(c)
that can be found in the graph. For fully connected graphs, this number converges
towards O(n!) (with n being the number of vertices on one side of the graph), so the
optimization of these approaches becomes less impactful. In typical configurations,
workloads and node groups share a CPU-only execution baseline that results in (almost)
fully connected graphs resulting in the mentioned scenario (compare figure 4.4b). Addi-
tionally, no tested implementation of such algorithms is available for the orchestrations
technology stack, resulting in significant implementation and verification effort. A
much simpler, brute-force recursion achieves similar but static runtime complexity of
O(m!). In common use cases, the extra effort for the efficient approaches results in no
real performance gain, so the orchestration uses the simpler recursion to generate all
perfect matchings. Even if the graph is more sparsely populated, the small number
of vertices (workloads or node groups) can be handled by modern hardware in an
acceptable time. Another advantage of this approach is the ability to handle the unequal
number of vertices for both sides of the graph, which would not be possible with the
efficient approach. After all perfect matchings are generated, a second filtering step
reduces the potential number of schedules by pruning them based on the actual number
of nodes and their configured service capacity. This results in only valid matchings
being output by the procedure.

4.3.4 Executors

The orchestration supports different software platforms through separate executors.
They bundle the platform-specific initialization procedure and the functionality for
connection and workload scheduling into a common interface. The benchmark suite
forwards the generated schedules and hands over the responsibility to the designated
executor. The thesis includes a full implementation of a native, ssh-based executor
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Figure 4.4: Workload Matching as Graph Problem
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as well as preparations for the future integration of Kubernetes-based platforms such
as k3s or microk8s. This subsection describes the native executor and explains the
Kubernetes concept, which can be adapted for other platforms (R4).

Native Executor (SSH) The native executor makes minimal assumptions about the
edge hardware. It only requires the specific execution runtime and some type of
network connection between the devices. The generated performance profile resembles
the potential of the hardware and can serve as the upper standard for comparison
with other platforms. The executor requires little additional configuration, as shown in
figure 4.5 and is easily integrated into all sorts of environments. The current version of
the SSH executor focuses on Docker containers as the only fully supported execution
platform. However, small adjustments allow for the execution of native or unikernel
workloads (R4).

User: username
KeyFile: keyfile-path
Commands:
- command-template: "docker run {{.Image}}:{{.Tag}} {{.Command}}"

RequiredPackages: docker nvidia-docker2 drivers
Runtime: docker

Figure 4.5: SSH Executor Configuration

The initialization procedure can be split into four separate steps. First, it ensures
network and ssh access to each device and checks for superuser privileges. Other nodes
are pinged to ensure networking between them is set up correctly and works for the later
benchmark workload. The device environment is checked for required packages with
missing ones being installed. Lastly, the initialization verifies the successful execution of
commands for the specified runtime (for example, by running the hello-world docker
container). The remaining part of the executor can be divided into two submodules:

• SSH-Client: The module connects to the device by standard ssh connections.
Their functionality is bundled into a separate module that handles authentication
(via private key file or password prompt) and remote executions. To simplify
device access, it expects all devices to share common login details. Remote
commands can either be issued synchronously for setup tasks that require direct
feedback or asynchronously with the continuous command output being logged.
The client integrates the SCP protocol to copy local files to the remote device for
later usage (volume binding) in the benchmark workload.
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• Benchmark Executor: The actual executor receives valid schedules from the
matching module and generates a list of actual benchmark runs. Each run is
prepared by pre-pulling docker images, copying needed files, and generating the
startup command for each workload service. The command templates are based
on data-driven text templates configured by the developer and get populated
using the run configuration. When at least one of the workload services returns
in an orderly fashion (process exits with exit code 0) the executor ends the current
benchmark run by stopping and removing the docker containers and initiating
the aggregation and plot generation at the evaluation.

Kubernetes and other platforms The integration of other platforms uses their stan-
dard API-server to deploy the workload services. Environment setup is entirely
managed by the platform operator, and the initialization is limited to simple API access
checks. Worker nodes are labeled based on their capabilities to allow the scheduling
component to execute the workload on fitting nodes. Different node accelerators are
supported through custom device plugins such as the Nvidia or AMD implementation
provided for their GPUs [100]. Figure 4.6 shows the envisioned extension architecture
for the Kubernetes integration. It uses an existing kubeconfig file to access the Kuber-
netes API-server. The benchmark workload is deployed into a dedicated namespace
and uses a deployment file with similar text templates as in the commands in fig-
ure 4.5. Other than for the native executor, the service communication utilizes standard
Kubernetes networking components. Other platforms may adopt a similar scheme,
where deployments use standard configuration files with replacements of the relevant
container configuration.
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4.4 Metric Collection

The metric collection is a customizable service that receives metrics from the benchmark
workload and generates flexible aggregations and plots for them. As a separate
executable, it can be freely placed and overcome possible performance penalties or
network restrictions for the benchmark workload (R3). This section describes the
different metric options, the concept for the fast metric collection, and the integration
of the aggregation and plots.

4.4.1 Metric Calculation

The metric system expects the provided workload to provide custom metrics that it
pushes to the metric service. Different workloads require flexible handlers so developers
can integrate novel workloads (R5). The metric calculation provides configurable HTTP
endpoints that utilize provided metric modules. Developers can edit or add endpoints
based on the configuration file described in figure 4.7.

Name: service-name
Url: /http-endpoint
Module: metric-module
Fields: [list-of-metric-fields]
CSV:
OutputFile: csv-output-file

Figure 4.7: Metric Configuration

Each metric endpoint takes a plain JSON input that includes the described Fields as
keys. The input is further processed by the specific Module and written to the defined
csv OutputFile. For the thesis, three metric modules have been implemented that cover
the specific metrics of the video analytics pipeline:

• Generic: The generic module takes the JSON input and extracts the metric fields
from it. Values get converted to floating-point and forwarded to the output
routine.

• Motion Object Tracking (MOT): The MOT module receives the current frame
number and an array of tracking hypotheses as bounding boxes. As the first step,
it loads the ground truth annotations for the WILDTRACK dataset based on the
frame number. Next, the module calculates misses (m), mismatches (mme) and
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false positives ( f p) by associating the hypotheses to the ground truth based
on intersection over union (IoU) as distance metric (d). When all hypotheses have
been processed, the module saves these values and forwards them file output.
The MOTA = 1− ∑t(mt+ f pt+mmet)

∑t gt
and MOTP = ∑i,t di,t

∑t ct
metrics are only calculated

in the later aggregation step based on the total number of object g and the number
of valid mappings (c). This subsequent calculation is proposed by the original
authors and ensures more intuitive results of the pipeline [12]. The current imple-
mentation is tightly coupled to the used dataset and the pipeline implementation,
so integrating other tracking approaches requires some adjustments. The WILD-
TRACK dataset only provides annotations for every fifth frame, so the module
skips other inputs.

• Script: The script module allows developers to provide a custom metric script
based on the tengo language [23]. Its intention is for developers to integrate their
own calculation procedures without actually having to dig into the metric system
code. The module loads the script from a configurable file path and creates a new
script instance for it. It binds the previously decoded JSON input to the variable
named input. The script gets executed, and the module reads its results from a
variable name output. This output is handled similarly to the generic module
and is forwarded to the output routine.

4.4.2 Calculation Decoupling

Executing the metric collection as a separate service that receives metrics in a push
fashion allows it to overcome challenging network requirements (e.g., deployment
behind NATs or firewalls) (R3). However, repeatedly calling the metric system can
result in additional overhead for the benchmark workload. Clever placement of the
metric service may minimize latencies and mitigate this problem yet, costly operations
in the metric modules still pose a problem. To minimize this performance impact of
metric pushes, the metric service decouples costly I/O operations and calculations from
the actual HTTP handler. These handlers only parse the message body, add it to a queue
(go channel) and return as fast as possible. A separate thread (goroutine) performs the
actual metric processing defined by the metric module. It stores the intermediate results
and forwards them to file output. This decoupling approach enables the benchmark
suite to reduce its effect on the workload performance (R3).

4.4.3 Metric Aggregation and File Rotation

The described procedure results in a continuous stream of metrics that get output by
the configured metric modules. This raw data is persisted in a machine-readable format
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(CSV), so the developer may perform in-depth analysis on the benchmark runs (R6). Yet,
for an easier structure, this stream needs to be broken into several independent output
files for each benchmark run. Thus, the metric system logs the raw data and generates
aggregated results in a separate subfolder for each run. After a complete benchmark
has finished, the metric collection generates data plots that guide the developer for
further evaluation of the raw data. The metric system implements a set of control
routes used by the orchestration to control the current status of the service.

Figure 4.8 shows this interaction between the two services. When starting a new
benchmark, the orchestration notifies the metric system, which in turn creates a new
output folder based on the current timestamp. A second call follows for each actual
benchmark run, which results in the creation of a new subfolder for the run and
the reset of any state from previous runs. Upon receiving the next call for the end
of the current run, the aggregation module generates a condensed json output that
includes configured calculations of the raw metrics. Currently the service supports
average (AVG), maximum (MAX), minimum (MIN) as well as singular values (FIRST, LAST)
as aggregation outputs. This execution cycle continues until all generated benchmark
runs have finished. Then the orchestration ends the current benchmark and triggers the
integrated plotting script that generates individual graphs per run as well as aggregated
plots where the best performing run is highlighted.
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5 Evaluation

This chapter provides deeper insights into the benchmark performance in two different
edge environments. The first section 5.1 describes the used hardware and the different
capabilities they provided. Section 5.2 evaluates the matching procedure for both
environments by comparing the number of mappings and their distribution. The
next section 5.3 highlights problems with the initial implementation of our pipeline
and proposes a solution used by the following sections. In section 5.4 we compare
the individual performance of different devices when operating the pipeline services.
Section 5.5 utilizes the different generated mappings and highlights interesting device
combinations. The penultimate section 5.6 integrates the less complex TinyYOLO
network into the detection service and compares its performance. The chapter finishes
with section 5.7 where we evaluate the influence of wired and wireless networking on
the pipeline’s performance.

5.1 Experimental Setup

We evaluated the benchmark suite and the workload performance in two separate hard-
ware environments. Benchmark runs on each environment were performed exclusively,
so any reciprocal influence is avoided. Runs were repeated multiple times, at different
times, and across multiple days to balance the influence of any external factors. This
section describes both environments in more detail.

5.1.1 Hasso Plattner Institut Resources

The first testbed is a homogeneous VM infrastructure provided by the Hasso Plattner
Institut (HPI)1. The utilized resources operate on data center hardware for both compu-
tation and networking. A total of 50 virtual machines was provided, comprised of the
following types:

• Small (S): 1GB of RAM and 1 vCore (17 machines)

• Medium (M): 2GB of RAM and 2 vCores (17 machines)

1https://hpi.de
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• Large (L): 4GB of RAM and 4 vCores (12 machines)

• Extra-Large (XL): 8GB of RAM and 8 vCores (3 machines)

The machines were based on Ubuntu 18.04 LTS and provided x86-based vCores without
any additional accelerators. For the benchmarks, we utilized four small, four medium,
four large, and one extra-large machine. However, during the actual benchmark, we
had to remove the small machines from the configuration since they were unable to
execute some of the workload services. This homogeneous environment serves as a
good reference for the more diverse environments targeted by the benchmarking suite.

5.1.2 Local Edge Deployment

The second testbed was a local deployment of several heterogenous devices representa-
tive of edge environments (see figure 5.1). It consisted of the following six devices that
each provided unique processing capabilities:

• Two Raspberry PI 4s with 4GB of RAM and an ARM Cortex A72 quad-core
processor. The processor supports advanced SIMD instructions using ARM
NEON.

• One Nvidia Jetson AGX Xavier Developer Board, featuring an octa-core ARMv8
processor, 32GB of RAM, and a 512 core Volta GPU. The GPU and additional
machine learning and vision accelerators can be utilized using the Linux for Tegra
(L4T) framework.

• One Fujitsu small form factor PC with a six-core Intel 8400T x86 Accelerated
Processing Unit (APU) and 8GB of RAM. The integrated Intel UHD Graphics 630
allows for OpenCL acceleration.

• A workstation PC with 16GB RAM, a six-core Ryzen 2600x x86 processor, and
an Nvidia RTX 2070 GPU. The GPU features both OpenCL and Nvidia CUDA
support.

The devices were connected using standard 1Gbit ethernet connections using a TP-
Link switch. A second benchmark configuration utilized the built-in WiFi support by the
Raspberry PIs and the Fujitsu APU. We installed a fresh installation of Ubuntu Server
20.04 LTS on all devices, with only the Workstation using the Ubuntu 18.04 derivative
ZorinOS 15. The environment depicts the heterogeneous device and networking
approaches present in actual edge environments.
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Switch

APU

Figure 5.1: Edge Environment

5.2 Workload Generation

The benchmark suite includes a novel approach for matching workload services with
node groups (see subsection 4.3.3) An exhaustive distribution of services influences the
overall benchmark quality and allows the developer to find unexpected results in the
scheduling. The generated mappings should be evenly distributed across the available
nodes but must take the configured restrictions into account.

Figure 5.2 shows the generated workload distribution for both benchmark environ-
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ments. The homogeneous HPI resources (similar capacity and number of nodes) result
in an even distribution of workload service (see figure 5.2a). Only node groups that
provide less capacity or nodes (as the XL machine) get a smaller share of workload
services. It also shows the factorial growth of the number of mappings in environments
that impose no restrictions on the workload scheduling. The local testbed shows a
different picture in figure 5.2b. Services are placed according to their defined restric-
tions, which results in much less valid mappings. Utilizing the workstation only for
the detection service highlights this filtering ability based on the capabilities. Processor
architecture restrictions are shown by the source service, where only the Jetson and
the Raspberry PIs are mapped. While the number of mappings decreases drastically,
nodes with several supported technologies (e.g., APU with cpu and opencl) still result
in multiple runs.

5.3 Data Compression

The initial implementation of the video pipeline used the numpy binary format (.np)
to transfer the image between services. During the evaluation, this proved a rather
poor design choice with adverse effects on the pipeline performance for distributed
execution of the pipeline. Scheduling the aggregation service on the PIs or the Jetson
caused a lot more skipped frames than expected (see figure 5.3b).

We improved our initial implementation by integrating an extra step that encodes
the images in the JPEG image format before sending them over the network. While
this introduces additional encoding overhead, as figure 5.3a shows, the new scheme
improves the overall pipeline performance by quite a lot. The smaller gRPC requests
allow the aggregation to operate more efficiently and support scenarios that were
initially planned (see figure 5.3c). This deeper workload analysis helped us identify
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further side effects of our current implementation. The synchronous execution of the
pipeline steps requires the aggregation to wait for the potentially long execution time
of the next services. Services that exceed the default timeout of two seconds result in
request cancellation, which leads to unintended drops in the pipeline performance.
To overcome this problem, we increased the gRPC timeout to ten seconds for our
benchmark runs. We identified these problems late into the thesis and redid the
evaluation only partly. However, the individual performance of the pipeline services is
not affected by the new scheme, which allows us to use existing data for section 5.4 All
other aspects of the evaluation, especially where the pipeline services interact over the
network, are based on the new implementation.

5.4 Accelerator Performance

An essential aspect of the proposed benchmark workload is the utilization of different
accelerator hardware. The workload services export the processing time needed to
perform their subproblem. Figure 5.4 shows the performance of the detection service
on different devices of the benchmark environment. Through the different docker
containers described in section 3.7 all employed accelerators are utilized.

For the local environment (see figure 5.4a), the workstation GPU performs the fastest
for the object detection with roughly 38ms. With a clear delimitation to the workstation,
the APU’s performance comes second, with more than four times the processing time
(CPU: 176ms, iGPU: 227ms). Utilizing the Jetson’s GPU acceleration performs even
slower and takes 258ms per detection. The Jetson GPU and the iGPU of the APU
both have significant spikes for the first frame passed through the neural net, reaching
up to 20s for the Jetson. The ARM-based CPUs of the Jetson and the Raspberry PIs
are far behind, with 1100ms and 2700ms average processing time. Scheduling the
benchmark on the HPI resources paints a different picture for the execution times (see
figure 5.4b). The provided VMs perform worse than similarly equipped machines in
the local environment. The M resources take almost four seconds to process the input,
while the L and XL machines take around two. With only 250ms, the speedup between
the quad-core L machines and the octa-core XL machines is relatively minor.
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Figure 5.4: Individual Detection Performance

The aggregation and tracking service support fewer accelerators but show comparable
device performances to the detection service. As seen in figure 5.5a, the Intel APU
performs the fastest with 5.8ms and 6.1ms for the CPU and the OpenCL execution,
respectively. The Jetson needs more than double the processing time with 12.9ms, and
the PIs are further off with 20.4ms. Further investigation indicates that the aggregation
service depends on single-core performance, with one thread performing most of the
work. For the tracking service (see figure 5.5b), this difference between the devices
becomes more apparent. While the APU still performs quite performant with 41ms
tracking time, the Jetson and the PIs perform drastically slower with 220ms processing
time. Similar to the aggregation service, the work is performed by only one worker
thread which results in these drops for the less powerful ARM devices. Even the
far slower x86-based HPI resources (see figure 5.5c) perform faster with only 175ms

APU-cpu APU-opencl Jetson-cpu PI-cpu
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

P
ro

ce
ss

in
g

T
im

e
(m

s)

(a) Aggregation (local)
APU-cpu Jetson-cpu PI-cpu

0

25

50

75

100

125

150

175

200

225

250

275

300

325

P
ro

ce
ss

in
g

T
im

e
(m

s)

(b) Tracking (local)

M L XL
0

25

50

75

100

125

150

175

200

225

P
ro

ce
ss

in
g

T
im

e
(m

s)

(c) Tracking (HPI)

Figure 5.5: Performance of other Services

53



5 Evaluation

processing time. The small speedup for different VM sizes reinforces our suspicions,
with only one thread performing most of the work.

5.5 Pipeline performance in different scenarios

As described in section 5.2, the orchestration schedules an exhaustive list of benchmark
runs combining different devices for the pipeline. The previous section shows their
impact on the individual service processing time, while these scenarios show the
impact of the different devices on the overall pipeline performance. Figure 5.6a2 shows
the ratio of misses for select local scenarios, while figure 5.6b shows the number of
frames skipped by the real-time emulation at the aggregation. Due to problems with
the dataset in combination with our object tracking implementation, we switched the
envisioned MOTA and MOTP metrics for the pipeline miss ratio. The challenges and
our solutions are discussed in more detail in section 6.1.

The maximum performance of the pipeline is achieved for mappings that utilize the
workstation GPU or the Jetson accelerator for the detection stage. Both the tracking and
the aggregation are scheduled on the APU which offers the best execution performance
for them. The slower detection on the Jetson leads to circa 150 more skipped frames,
which our approach is able to deflect in its architecture. They only result in minor
variances of the pipeline performance, with the root causes explained in more detail in
section 6.3. Other workload mappings result in a much worse pipeline performance
where more frames get dropped by the real-time scheme. Scheduling one or more
services on the Raspberry PIs has an adverse effect on the pipeline performance. The
pipeline skips almost half of the frames in the dataset for these runs. For mappings that
schedule the tracking stage on the Raspberry PIs, this behavior is expected given the
service processing times. Here we also experience unwanted side-effects of the real-time
scheme, where for some cases, skipped frames caused by the tracking service coincide
with the detection frequency resulting in no new object initializations. Scheduling
the detection stage on the PIs results in pipeline runs, where almost three-quarters of
the dataset frames were dropped. This causes a significant reduction in the pipeline
performance, with up to 85 percent of all objects being missed. With the improved
encoding scheme, the aggregation stage no longer influences the pipeline performance
as much as before.

2All figures that show the performance of separate mappings are enumerated in the following order:
(detection-service, tracking-service, aggregation-service)
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5.6 Different Object Detection Procedures

The detection service supports different neural networks through the OpenCV dnn
module. Our current implementation allows for the DarkNet based YOLO networks to
be integrated (see section 3.5). We plugged in the less complex TinyYOLO network to
compare its performance impact to the YOLOv3-320 network. The network trades some
of its accuracy for lower complexity and requires roughly seven times fewer FLOPS per
execution.

When comparing the processing time for the TinyYOLO network in figure 5.7a
with the data in figure 5.4a this results in significant speedup for all devices. The
difference varies in strength, with the Raspberry PIs performing over six times faster
than before. The APU performs almost four times faster on the CPU and double the
speed on the iGPU. For the accelerated execution at the Jetson and the workstation, the
speedup is not that drastic, with execution times of roughly 50 percent. We suspect
the pipeline architecture and especially the only sporadic calls through the detection
service as a possible reason for this. Optimizations for continuous operation of neural
nets cannot be applied while the overhead of using an external executor (data transfer
and translation) still remains. CPU-based execution benefits more from the reduced
complexity, indicating a lower general overhead apart from the neural net.

The faster neural network reduces the number of frames dropped for suboptimal
deployments (see figure 5.7c) that were not able to operate with the normal YOLO
network. However, the poorer detection quality results in a significant accuracy drop,
as seen in figure 5.7b. For the best-performing approaches, the miss ratio rises from 55
percent to around 85 percent. The network detects fewer objects overall and produces
less optimal bounding boxes for the tracking service. Additionally, inputs from the
detection stage get lost relatively fast, and the missing consistency of new detection
inputs results in this reduction.

5.7 Ethernet vs. wireless networks

For edge infrastructures, different network conditions play a vital role in the perfor-
mance of the hosted services. Smaller devices often connect to the network using
wireless connections such as Cellular, WiFi, or Bluetooth. Upcoming transmission
standards like 5G or WiFi 6 promise radical improvements for latency and bandwidth,
yet all wireless approaches are still slower and more unreliable than wired approaches.
To evaluate the communication influence on the pipeline performance, we reconfigured
the local testbed to utilize wireless connections for the APU and the Raspberry PIs.

To verify the increased communication latency, we employed a separate benchmark
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workload previously used for the evaluation of the EdgeIO platform [115, 9]. The
workload is composed of a standard Nginx web server and a python script that mea-
sures the latency of 100 requests. Figure 5.8a shows this accumulated latency for the
different links in the system for both network approaches. Connections that integrate
the wireless connectivity of the APU or the PIs perform noticeably slower. The latency
is much more unstable, with more values outside the vicinity of the mean. In the
context of the pipeline performance, these unpredictable network conditions result in
more frames being skipped by the aggregation. With these network conditions, the
initial implementation utilizing the numpy encoding skips almost all frames due to the
increased transfer times. With the improved encoding, this effect is softened to an
increase of 200 to 300 additional skipped frames compared to the standard ethernet
execution (see figure 5.8c). The majority of frames are skipped for the tracking com-
munication, which explains the better performance for the third and fourth mapping
where only the communication to the detection service partly happens over wireless
LAN. The miss ratio depicted in figure 5.8b is more volatile with varying degrees of
influence for the skipped frames. Overall the wireless deployment performs slightly
worse than the ethernet-based approach but can maintain some form of operation.
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This chapter discusses the findings from our evaluation and proposes future improve-
ments to the benchmark suite. In the first section, we describe our challenges related to
the chosen dataset and our naive tracking approach. Section 6.2 highlights our findings
from the individual service performance. We discuss the influence of the real-time
emulation scheme in section 6.3. Section 6.4 and section 6.5 discuss the extensibility
and the scalability of our benchmark approach. The last section 6.6 revisits the initial
research goals defined in section 1.2 and classifies our approach similar to the existing
benchmarks.

6.1 Metric calculation and dataset problems

The MOTA and MOTP metrics are based on misses, mismatches, and false positives for
the object hypotheses output by the tracking service. However, preliminary runs of the
benchmark workload showed large differences between the expected values and the
actual output. Visual review of the pipeline output shows a satisfactory performance of
the pipeline. The resulting metrics opposed this conception, with many false positives
and object misses, skewing the MOTA metric in the wrong direction. Contrary to
our design goal, the better performing mappings actually resulted in a worse overall
pipeline performance.

Further investigation into the dataset (described in section 3.3) and the ground truth
provided by the dataset showed three major problems. First, the dataset states that it
provides annotations for the first 2000 video frames. However, those were generated
on a lower frame rate version of the video with ten fps. For the 60 fps version, this
corresponds to the first 12000 frames or roughly 3:20 min. This introduces an increasing
gap between our video input and the frame annotations and explains some of the false
positives. Utilizing this fixed video input resulted in a significantly longer benchmark
run which prohibits our proposed matching approach. We overcame this problem
by resampling the input video to ten fps, so it corresponds to the source annotations.
To avert other researchers from similar problems, we suggest future datasets utilize
consistent frame rates for the annotation process and the video input. Secondly, we
found several inconsistencies between our pipeline output and the provided ground
truth. The used dataset misses people that are not fully present in the video frame
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(a) Missing Truth (b) Large Truth (c) Right Skew

(d) Big False Positive

Figure 6.1: Visualization of Dataset Problems

(compare figure 6.1a). Our pipeline is able to detect and track these people, which
results in false positives for objects that are correctly tracked. Bounding boxes around
people do not necessarily correspond to the actual object size as seen in figure 6.1b.
The big area of the ground truth results in a low intersection over union, which further
increases the incorrect number of false positives. Thirdly, we resize the video input to a
rectangular format corresponding to the input size of the YOLO network. Converting
the rectangular bounding boxes back to the native input format introduces inaccuracies
in the bounding boxes. Especially in the outer regions (see figure 6.1c) this introduces a
skew towards the center of the image. Additionally, the YOLO network has its problems
in handling the dataset and detects one bounding box that spans across the upper half
of the image (see figure 6.1d). We have not identified any particular reason for this
behavior, but we suspect the large gathering of people to be a limiting factor for the
YOLO architecture. Xu et. al. [109] have identified crowded images as a weak point of
the YOLO architecture as well and propose an improvement based on joint prediction.
Future iterations of the tracking pipeline may integrate such an approach to evade
these problems.

To overcome the above-mentioned drawbacks, we abandoned the MOTA/MOTP
metrics and focused on the less expressive miss ratio m = misses

totalObjectCount . While our
tracking approach still performs worse than state-of-the-art MOT algorithms, it still
allows us to compare the performance of different environments with more intuitive
results. Additionally, we lowered the IoU threshold for the object association from fifty
percent to thirty percent to pose a clearer picture of the pipeline performance. In the

59



6 Discussion and Conclusion

future, we want to address these problems by integrating a better object detection and
tracking approach [117, 35], a change of the dataset [25], and a complete rework of the
MOT module of the metric service [55].

6.2 Execution environment

The extra layer of virtualization employed by the HPI resources introduces significant
overhead and discourages the usage of virtual machines for the edge. However, the
HPI and the local environment are not entirely comparable, which necessitates further
research with different virtualization techniques. Other approaches, such as unikernels
or AWS Firecracker MicroVMs [3], offer interesting alternatives to docker containers
and should be integrated as well.

For the local environment, the service performance depends heavily on the available
accelerators and the processor architecture. While the x86 based APU performs suffi-
ciently fast when executing the pipeline on the CPU, the ARM-based devices struggle,
especially for the detection stage. This gap was expected for the small-sized PIs, yet
the more powerful Jetson shares similar performance characteristics. We attribute this
behavior to the slower single-core speed of the ARM devices. This especially comes to
fruition for the tracking service, where we identified a suboptimal implementation that
utilizes only one thread. Pulli et. al. [82] have identified the integration of Intel TBB
(Thread Building Blocks) as another optimization for the ARM platform. Based on these
findings, we want to evaluate different threading approaches (pthreads, OpenMP, Intel
TBB) as well as the influence of SIMD extensions on the tracking service performance.
When utilizing hardware accelerators, the performance mostly corresponds to our
initial expectations. Yet, the OpenCV dnn backend introduces a significant overhead
for the first execution of the object detection (see section 5.4). This is particularly
pronounced for the Jetson GPU and the Intel iGPU where the first forward takes up to
20 seconds. We suspect OpenCV to employ lazy, on-the-fly translation of the network
weights to the specific platform, which results in this spike for the first detection.
Other DNN backends like TensorFlow or Caffe may employ a different accelerator
strategy and should be evaluated in the future. For commercial edge platforms based
on Function-as-a-Service (FaaS) architectures, this may introduce additional problems
when executing state-less, short-lived functions that utilize accelerators. Additionally,
we find the slower execution on the Nvidia Jetson GPU compared to the CPU to
oppose current hardware development trends. In the future, we want to integrate more
machine-learning accelerators into our testbed and verify if the Jetson device is an
outlier to this trend or if future accelerator development has to be rethought.
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6.3 Real-Time Emulation

The employed real-time emulation scheme plays a vital part in the pipeline performance.
It penalizes slow deployments where either the network or the processing speed cannot
keep up with the desired frame rate by skipping frames. The network’s performance is
especially important for distributed applications deployed in diverse network conditions
at the edge. Our findings regarding different encoding schemes highlight this influence.
Future research may compare novel encoding procedures and evaluate their influence
on pipeline performance. Especially for diverse edge deployments with complex
network infrastructures, this provides further insights into the balance of transmission
savings and encoding overhead for the edge. The current implementation for the frame
skipping may have more adverse effects than intended. For some workload mappings,
unfortunate circumstances may result in a substantial amount of detecting frames
dropped. This significantly worsens the pipeline performance, with rare updates of the
tracking service and old objects lost by the tracking algorithm. The larger computational
complexity of the detection can cause a concentration of skipped frames directly after
the detection stage. Valid objects may get lost quickly, caused by large jumps between
the initialization data and the next video frame. For the used dataset, this is especially
relevant with the changes we did to the video frame rate described in section 6.1.
Future improvements of the tracking pipeline may remove the real-time emulation and
rather focus on the maximum supported framerate more common in current tracking
challenges [25]. Yet, adapting existing tracking algorithms to our real-time scheme may
highlight their readiness for real-world edge deployments.

6.4 Extensibility

The benchmarking suite is designed with upcoming edge trends in mind. Developers
can integrate custom workloads that better fit their specific use case. The latency work-
load utilized in subsection 5.8 was such a workload, initially used for the evaluation
of EdgeIO [115, 9]. Minor adjustments were necessary to correctly containerize the
workload components based on the required naming scheme. For common docker
images (such as the nginx), this requires manually re-tagging them based on the em-
ployed technology. In the future, we want to improve this scheme by integrating the
supported technologies into the image metadata instead of the image tag. This enables
the orchestration to assume standard CPU capabilities for common containers and
avoid unnecessary work for the developer. Integration of custom metrics requires small
adjustments to the workload codebase, where accruing metrics get pushed to the metric
service. Subsequent iterations of our benchmarking approach should provide good
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library support that assists developers in this process. Lastly, custom workloads require
the developer to adjust the workload configuration for the orchestration and the metric
modules for the metric system. This split approach is a cause for inconsistencies and
needs some rework in the future. We envision a unified configuration at the orches-
tration that configures the external metric system using additional control sequences
similar to subsection 4.4.3. Additionally, the control flow between the benchmark
orchestration and the metric system needs further refinement. Deploying the metric
service in secluded environments with no outside HTTP communication impedes our
current approach. In our tests, we deployed a CPU-based variant of our benchmark
workload on Kubernetes (k8s, k3s, and microk8s) and EdgeIO to highlight the ability
to deploy real-world applications. In the future, we want to concretize this integration
further and compare their performance influence in similar environments.

6.5 Scalability

Our approach focuses on small edge environments and the specific performance of
the employed hardware. Larger or more diverse environments result in a significant
increase of generated mappings that converges to O(n!) as described in subsection 4.3.3.
The additional structuring into node groups and the limited node capacity soften this
problem, yet homogeneous environments (like the HPI resources) are still suboptimally
handled. Many benchmark runs do not offer significant insight into the environment
but prolong the overall duration. We plan to address this issue by refining the matching
procedure with a more restrictive approach that considers more device characteristics
and significantly prunes the number of mappings. Individual device benchmarks
similar to Scission [70] can serve as a characteristic that influences the scheduling. For
(edge) orchestration platforms that include their own scheduler component, we want to
adapt the mapping approach to the different technologies available for the workload
and let the platform handle the orchestration.

Another scalability issue is the current approach for preparing nodes to run a service.
We copy needed files to the nodes and pull the most recent docker image for the specific
workload. For large environments, this results in significant image pulls that quickly
reach the free rate limits of the docker hub repository 1. Developers may revert to a
privately hosted image repository, yet this requires the developer to set up access on
each node manually. In the future, we want to integrate a local (image) cache that
pulls the newest build artifacts only once and distributes them locally. This concept
can be extended for non-docker artifacts such as VM templates, native executables,
or unikernels and allow the execution in disconnected environments where only the

1https://www.docker.com/increase-rate-limits
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developer machine can access the internet.

6.6 Classification and Conclusion

This thesis addresses missing aspects of current edge benchmarks compared in table 2.2.
We extend on this in table 6.1 and classify our approach based on the same parameters.
In addition, we revisit our research goals defined in section 1.2 and evaluate our
proposed solution against them:

RG1 The proposed workload represents a realistic video analytics pipeline for the MOT
problem. We simulate real IP-cams often used for video surveillance with the
RTSP protocol. The pipeline integrates real camera data from the WILDTRACK
dataset with representative input resolution. We utilize commercially available
edge devices and accelerators such as the Nvidia Jetson Xavier or the Raspberry
PI to capture the heterogeneity of edge devices. Explicit network communication
between services utilizes gRPC as state-of-the-art technology, reflecting modern
application design. The workload integrates a novel real-time emulation that
penalizes deployments in suboptimal conditions and influences the pipeline
accuracy.

RG2 The proposed benchmark suite paints a comprehensive picture of edge deploy-
ments and explores an extensive list of possible service schedules. We capture
different (even non-intuitive) deployment options and compare their performance.
The architecture of the orchestration service integrates future support for edge
orchestration platforms like Kubernetes or EdgeIO. While we compare VM-based
execution to lightweight docker containers in our evaluation, we currently do not
support more distinct virtualization techniques used at the edge. To fully achieve
this goal, more implementation effort is needed, where we further evaluate
different novel orchestration platforms and integrate them into our benchmark.

RG3 Our approach provides a quickly extensible platform for future edge workloads
that can be integrated into our flexible workload configuration and metric system.
While our naive multi-tracking implementation performs worse than recent
tracking implementation such as ByteTrack [117], the modular architecture of
our pipeline allows for easy integration of such approaches. Apart from the
proprietary source code used for the CUDA and L4T docker images, we build on
open source components and plan to make our codebase available to the public.
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CoAP benchmark [58] + - + - - - - - -
RIoTBench [93] + - + - - - - - -
EdgeBench [24] + - + - - - + - -
Edge AIBench (concept only) [46] - - - - - - - - +
DeFog [72] + - - - + - - - -
Edge accelerator benchmarking [87, 27] + + - - - - - - -
EdgeBench (2) [111] + - + - + - + - -
OpenRTiST [36] + +/- - - + - - - +/-
Scission [70] + +/- - - - - - - -
Proposed approach + + +/- - + (+) - - -

Table 6.1: Tested Components of new benchmark suite (improvements bold), extension
of table 2.2
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