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Abstract

Cloud computing has seen steady growth over the last decade and its deployment is now
increasingly covering the whole planet, while next-gen applications for the cloud come
with bigger and bigger requirements. From cloud gaming to autonomous driving and
AR, an important metric to enable those applications is cloud access latency. Providers
are constantly looking to increase their reach and improve their connectivity, with many
negotiating peering agreements directly with ISPs and some even building their own private
backbone to constantly improve user access latency and bandwidth. Consequently, the lack
of scientific literature about this topic is perplexing, with the latest global cloud latency
study dating back to 2010. In this thesis we perform extensive global client-to-cloud latency
measurements towards 189 datacenters from all major cloud providers to analyze the impact
of those tactics. We conduct our analysis using the well-known measurement platform RIPE
Atlas, involving over 8500 probes from all around the world to create a dataset spanning
more than 196 million datapoints. We evaluate the suitability of current cloud environments
for modern applications such as virtual reality in different regions around the world. We
differentiate our findings between the different cloud providers and attempt to quantify the
impact that the privatization of the user-to-cloud-path and ISP peering agreements have on
them. Our results indicate that the majority of the worlds population can reach the cloud
within the threshold needed to perform even most demanding applications. We find, that
the development of private backbones by some cloud providers shows clear improvements
of connectivity in some, but not all regions. Our research also suggests, that ISP peering
agreements rarely improve latency for cloud providers in most regions.
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Kurzfassung

Die Verbreitung von Cloud computing wächst seit Jahren stetig und die Datencenter der
Betreiber bedecken zunehmend den ganzen Planeten. Unterdes stellen immer mehr Tech-
nologien von morgen immer größere Anforderungen. Angefangen bei Cloud Gaming über
fahrerloses Fahren bis hin zur Augmentierten Realität, die wichtigste Kenngröße, um diese
Anwendungen möglich zu machen, ist die Latenz vom Nutzer zur Cloud. Die Anbieter
versuchen kontinuierlich, ihre Verbreitung und Erreichbarkeit zu verbessern, wobei viele mit
den Internetanbietern Verträge zur direkten Verbindung, sogenannte Peering Agreements,
abschließen. Einige bauen sogar ihr eigenes Netzwerk, um die Latenz für den Nutzer so
niedrig und die Bandbreite so hoch wie möglich zu halten. Umso überraschender ist es,
dass die wissenschaftliche Literatur in diesem Bereich sehr dürftig ist. Die letzte globale
Cloud-Latenz Studie wurde 2010 veröffentlicht. In der vorliegenden Arbeit führen wir weit
reichende Latenz-Messungen an 189 Datencentern aller großen Cloud Anbieter durch. Wir
verwenden die bekannte Platform RIPE Atlas, um unsere Messungen von mehr als 8500 auf
der ganzen Welt verteilten Computern aus zu starten, wobei wir mehr als 196 Millionen
Datenpunkte sammeln können. Mit Hilfe dieser Messungen prüfen wir die aktuelle Cloud
Infrastruktur auf Eignung für die nächste Generation an Anwendungen und vergleichen
die Ergebnisse von verschiedenen Regionen rund um den Globus. Wir unterscheiden dabei
die unterschiedlichen Cloud Anbieter und versuchen, die Auswirkungen ihrer Bemühungen
um die Privatisierung des Weges vom Nutzer zur Cloud, sowie ihrer Peering Agreements
mit Intenetanbietern, zu quantifizieren. Unsere Ergebnisse suggerieren, dass die Mehrheit
der Weltbevölkerung die Cloud schnell genug erreichen kann, um selbst anspruchsvollste
Anwendungen zu ermöglichen. Wir finden heraus, dass der Ausbau eines privaten Netzwerks
klare Latenzverbesserungen für die Anbieter bringt, allerdings nur in bestimmten Regionen.
Unsere Forschung zeigt außerdem, dass Peering Agreements mit Internetanbietern in den
meisten Regionen selten zu einer Verbesserung der Latenz führen.
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1. Introduction

1.1. Motivation

The cloud has seen steadily rising interest over the last ten years, with several providers
emerging and deploying a rapidly growing network of datacenters all around the globe.
The high supply, as well as the equally high demand for cloud computing from companies,
individuals and scientific organizations alike make this field inherently interesting for studies.
Consequently it comes as a surprise, that the last broad scientific study to the best of our
knowledge is dated back to 2010 [1]. Back then, Amazon Elastic Compute Cloud (EC2) for
example only had four deployments around the world, compared to 21 now [2]. Furthermore,
while back then applications for cloud computing were sparse, nowadays, there seems to
be an infinite number of next-gen applications, seemingly predestined for the cloud. Some
providers have already rolled out cloud gaming, smart homes are already controlled via the
cloud, and while autonomous driving, augmented and virtual reality are already worked on,
bigger concepts like smart cities are looming on the horizon - all powered by the cloud. But
those applications come with steep requirements: augmented and virtual reality for example
- when not calculated fast enough - cause motion sickness and dizziness [3, 4]. But while
failing these requirements for AR and VR may result in nausea, the consequences of being too
slow are much higher for autonomous driving. To be ready for those applications, user-cloud
access latency must be reliably below a certain threshold. Given the vital importance this
topic has, the lack of up-to-date literature about current cloud infrastructure is perplexing.

In the last decade, cloud deployment has steadily improved, not only in terms of datacenters,
but also beyond that: More and more cloud providers are trying to take control over the path
from user to cloud, in order to minimize access latencies. They are doing so by building
their own private network, interconnecting their datacenters. Those private backbones are
then connected to the users directly, by setting up private peering agreements with their
ISPs. This expansion of their private networks has allowed cloud providers to bypass huge
other internet traffic and connect directly to the user, something unthinkable ten years ago.
These developments are shifting paradigms, as well for the cloud computing field, as for
the entire hierarchy of the internet [5]. We therefore think an up-to-date study is needed to
evaluate and - if possible - quantify the progress made in the field by cloud providers. We
also want to explore the paradigm-shifting methods, that cloud providers have used over
the past decade to improve their service for the user and to find out, which factors impact
user-to-cloud latency.
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1. Introduction

1.2. Research Questions

RQ1: What are the user access latencies to the current cloud infrastructure across the
globe? Latency is one of the defining metrics of user-to-cloud access. It is important
in categorizing the connection for certain applications - from the smart city to live cloud
gaming and even augmented reality and virtual reality in the cloud - the access latency a user
can achieve is the primary way of measuring user-to-cloud connectivity. Given the wildly
different quality of network infrastructure, as well as cloud deployment between countries, it
is important to take a look at the global scale and to identify and highlight regions of interest.

RQ2: Does the type of underlying networking backbone interconnecting cloud infras-
tructure impact user cloud access? With the internet growing faster and faster over the
last decades, the demand for a high-bandwidth "exclusive lane" has understandably been
booming, especially among cloud providers. To optimize their bandwidth and thereby their
customer service, bigger cloud providers like Google, Microsoft and Amazon have steadily
increased their efforts to privatize their backbone, even trying to get their network as close
to the customer as possible. We want to find out, if and how this way of managing traffic
in contrast to using the public internet can be measured. We also want to quantify the
improvements of those private WANs in terms of improved latency.

RQ3: What is the impact of ISP peering agreements on global user-cloud access? The
access to the internet has traditionally been a hierarchical one. Users accessed tier 3 ISPs,
who in turn accessed tier 2 ISPs, who then connected to large, world spanning tier 1 ISPs. But
recent research suggests, that the internet’s hierarchy is starting to crumble [5]. The internet
is steadily flattening, meaning corporations - especially cloud providers - and tier 3 ISPs start
peering among themselves turning traditional tier 1 and tier 2 ISPs more and more obsolete.
Peering is no longer a solely hierarchical domain, which comes with benefits for both Content
Delivery Networks, as well as cloud providers. In theory, this gives the cloud providers access
to the ISPs users, while decreasing access latencies for them. We aim to find out, whether ISP
peering has the effects we expect it to have and what geographical differences exist.

1.3. Contribution

We conducted a cloud analysis study spanning ten cloud providers on six continents and
collected around 196 million data points. We show the current state of cloud reachability in
terms of latency for continents and countries alike and compare performances of individual
cloud providers. We also provide the context of next-generation applications requiring
latencies below a certain threshold to classify the current cloud performance in global regions
and find, that a majority of the population is able to connect to the cloud fast enough to
enable those applications. This thesis compares the accuracy of ICMP and TCP latency
measurements and finds, that the latter proves consistently lower than its counterpart. It also
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1. Introduction

quantifies the degree, to which cloud providers’ private WANs have already taken over the
path from the user to the cloud.

1.4. Overview

First, we are giving an overview over the topic and the scientific research already conducted
in this field in chapter 2. We then describe our own measurements and how we obtained and
enhanced our research data in chapter 3. Here we specifically detail our choice of research
targets and the data we want to analyze. We detail our findings in chapter 4 and attempt
to answer our research questions. Finally we draw a conclusion in chapter 5 and offer an
explanation of how to reproduce our results in chapter 6.

3



2. Background & Related Work

2.1. Cloud Application Latency Requirements

Mohan et al. [4] analyzed the latency of RIPE Atlas probes to cloud datacenters to discuss
the usefulness of edge computing in the cloud. In that context, they compare the latencies
to landmarks in the area of latency perception to humans. They define three such latency
classes:

Motion-To-Photon latency (MTP) is the delay between user inputs and the reaction happen-
ing on the computer screen and marks the latency, at which symptoms like motion sickness
can occur and lies at ca. 10-20 ms. It is necessary for applications like Virtual Reality (VR)
and Augmented Reality (AR) to stay within those latencies. Other applications, that require
such low latencies are autonomous driving and to some extend 360-degree video.

Perceivable Latency (PL) is the latency at which a delay between user input and visual
response to that input, becomes noticeable to humans. It is roughly estimated to be 100 ms and
is important for applications like wearables, gaming and most camera and traffic monitoring.

Human Reaction Time (HRT) is the last category defined in the paper. It is a necessary
delay to beat for most real-time applications over the cloud, including some smart home and
smart city applications, as well as applications like remote surgery. It is generally set around
250 ms.

We will refer to those classifications in the thesis.

2.2. Global Cloud Provider Reachability

Since the use of cloud computation nowadays is of ever-growing importance for companies,
individual users and scientific researchers alike, it has naturally been subject to extensive
research and debate. Massive amounts of reports regarding the latency of cloud computing
datacenters have been published, most notably the yearly "Thousand Eyes Report" [6]. In the
year 2019, it measured cloud-to-user performance from 98 end-user vantage points in Europe,
Oceania, Asia, Africa, North and South America to 94 datacenters belonging to 5 different
cloud providers (Amazon, Google, Azure, IBM and Alibaba). It found that in comparison
to its last year report (2018) cloud performance measurements improve, depending on the
provider, by up to 36%. It also monitored steadily growing investments into architecture and
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2. Background & Related Work

peering in geographical locations, that previously were showing a performance worse by
comparison, especially Asia and Africa. It also highlights the growing backbone infrastructure
and predicts steadily growing obfuscation of path steering within the networks of those cloud
providers. The report shows, how providers with a superior private backbone like Azure
offer better performance predictability than cloud providers, who rely more on the public
internet. It analyzes the lack of interconnection between certain locations and the impact those
have for customers of the cloud provider in that region, e.g. Google’s missing connection
between India and Europe and the resulting latency penalties. The report also empirically
covers the impact ISPs have on the latency of a customer’s experience in connecting to the
cloud datacenters. It looks specifically into North American ISPs and determines, which ISPs
provide the best latency for cloud users in North America.

Li et al. [1] compared cloud providers 10 years ago and were one of the first to do so.
They also present their benchmark suite - CloudCmp - to compare cloud providers by cost
and performance scales. They specifically target Amazon AWS, Microsoft Azure, Google
AppEngine and Rackspace CloudServers. While anonymizing their findings, they analyze
the collective of these cloud providers in terms of persistent storage (database interaction,
price, etc.), elastic computing (cost per task, in terms of CPU, memory and disk usage, etc.),
and networking (upload, download, cost, etc.)

2.3. Peering Agreements and Cloud Provider Interconnectivity

The aspect of internet peering and its implications is of increasing popularity in the research
field and of great importance for a variety of reasons, from net neutrality to optimizing
network traffic performance. While transit describes the act of one Autonomous System
(AS) paying another AS, most often an internet service provider (ISP) to provide him with
access to the public internet, peering on the other hand is the practice of two networks
providers exchanging access to their networks and customers bi-laterally. The latter form of
interconnection is the primary source of connecting two autonomous networks in the modern
internet and is increasingly widespread [7]. While most forms of internet interconnection
are still similar to those two peering options, the ever-growing nature of the market and
technological advances have since brought a lot of different variations to those two practices
into existence [8]. The job of physically connecting two networks to each other is usually done
by an internet exchange point (IXP). Chatzis et al. [9] explain in their paper the importance
of IXPs in regard to internet measurements as well as cloud and content delivery network
performance. Giotsas et al. [10] present a detailed overview of the topic of IXP peering
and its implications in regards to interconnecting the internet. They also present ways to
determine IXP facilities and their geographical location using publicly available data and
their CFS algorithm (Constrained Facility Search). The paper concludes, that this algorithm
outperforms all other heuristics of pinning a peering activity to a physical facility with an
accuracy of more than 90%. Arnold et al. [5] analyzed the aforementioned transit and peering
interconnections on a vertical level and find, that the internets hierarchy is severely flattening,
meaning that the traditional 3-tier model with Tier-1 ISPs as the backbone of the internet is
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2. Background & Related Work

no longer the norm and is increasingly replaced by private interconnections. A big factor in
those private interconnections are identified to be major cloud providers like Amazon, Google
and IBM with their private infrastructure, which originally was intended to exchange traffic
between their own datacenters, but is increasingly interconnecting with other providers and
ISPs, ultimately even bypassing Tier-1 and Tier-2 ISPs. They cite, that those cloud providers
are today capable of bypassing Tier-1 and Tier-2 ISPs entirely, while still reaching 76% of
the internet. That brings up the question, whether this extensive private network benefits or
hinders the reachability of these clouds from an end-user’s perspective.

Arnold et al. [11] measure the performance differences between paths over the private
WAN of two large cloud providers and paths over the public internet and find, that the vast
majority (91%) have equal or improved performance using the private WAN option over the
public internet, with 48% seeing an improvement. They also find, that those benefits generally
improve with client-to-server distance and are very dependent on geographic location.

2.4. Internet Latency Measurements

To answer our research questions, multiple large-scale measurements must be taken from
vantage points around the globe, to allow an analysis of latency and path structure between
various home networks around the globe and the different datacenters of the cloud providers.
There are several platforms, that provide a service allowing single users to do this.

RIPE Atlas The RIPE Atlas network has been used for measurements several times before.
It and its functionality have been described and published by the RIPE NCC [12] and Bajpai
et al. [13] have detailed the scientific value it merits and have described limitations to it.
RIPE Atlas is a platform provided by the RIPE NCC, that lets private individuals as well as
scientific researchers, corporations or others host small, physical probes and in return rewards
them with the opportunity to make measurements in this network. A probe is a computer
with a network connection, that can be used by the RIPE Atlas platform to schedule a wide
array of measurements to one or more endpoints. Those measurements can include ICMP
Ping measurements, ICMP or TCP traceroute measurements, HTTP/HTTPS measurements
and others. Arnold et al. [11] have used it in their work alongside Speedchecker to determine
the impact of private WANs on Cloud Performance. Giotsas et al. [10] have used it to map
peering interconnections to facilities and have enhanced their measurement data with CAIDA
IXP data and data from the PeeringDB. Gigis et al. [14] have used it with an exclusive focus
on user connectivity and have shown, that RIPE Atlas is well suited to be used in measuring
user-to-user latency, while Gedeon et al. [15] show, that it is useful to measure user-to-fog
and - in extension - user-to-cloud latency, while also enriching their data with CAIDA.

Measurement Lab (M-Lab) Rajabiun et al. [16] use M-Lab to analyze the broadband in-
frastructure of Canada and Deng et al. [17] analyzed residential broadband capacity using
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2. Background & Related Work

measurements from M-Lab. The latter also addresses problems that M-Lab has when measure-
ments are taken by computers using NATs and can therefore isolate household measurements
to accurately analyze their networking. M-Lab provides the ability to run tests from the user’s
machine to target points and makes the results publicly available [18]. It allows for Traceroute
and Reverse Traceroute measurements, as well as their custom TCP Info measurement and
their Network Diagnostic Tool [19]. Its knowledge base consists of all measurements taken
from individual users and can be queried. As a successor to PlanetLab, it also incorporates
their measurements [20]. Dovrolis et al. [21] describe it and its underlying software and
presents it specifically as a tool for scientific network analysis.

Speedchecker A widely known and used commercial option for internet analytics mea-
surements is Speedchecker [22]. It utilizes mobile hardware and software probes on PCs,
Android phones and routers around the world and offers restricted access to schedule Ping,
Traceroute, HTTP GET and DNS measurements. When signing up for their plan, one gets
access to schedule those measurements from their selection of vantage points, spanning 170
countries and over 1000 ISPs. Chavula et al. [23] analyzed African intra-continental and
inter-continental latency to speed test servers using Speedchecker. They found, that Africa
could be clustered into distinct "latency clusters", in which latency is very similar across
country borders. They also analyzed the peering set up by the local ISPs in those clusters
and found, that this peering bears a significant performance impact on intra-continental
latency, highlighting the importance of inter-country and inter-network connections in this
area. Formoso et al. [24] contribute, that in many cases inter-continental connections are
faster. A reason for this is identified as significant shortcomings in Africa’s network design.
They also use Speedchecker to make measurements and extract their information. As already
mentioned, Arnold et al. [11] were using Speedchecker in combination with RIPE Atlas to
obtain data monitoring the extent of the private WAN of cloud providers.

7



3. Methodology

In the following chapters, we are going to explain, what data we collected to answer the
research questions. We will also detail, how we collected this data and go over the methods
we used to clean and enrich the data and the frameworks utilized to do that.

3.1. Data Collection

3.1.1. Platform

The platform we chose for data collection was RIPE Atlas [25], as it is the de-facto standard
for internet measurements in the research community right now. It provides the option
of scheduling ICMP pings, as well as ICMP and TCP traceroutes. We included all these
measurement methods in our data collection process. Atlas probes generally are installed in
very heterogeneous network environments, e.g. home networks, research facilities and cloud
datacenters. This allows us to observe the reachability of cloud providers on a global scale
and among many different categories. By adding system and user tags to their probes, RIPE
Atlas allows us, to filter out probes located within datacenters or focus just on home-based
probes.

3.1.2. Vantage Points

Since we wanted our study to be as thorough as possible, we included all RIPE Atlas probes
available as our vantage points. The distribution of RIPE Atlas probes across the globe,

500
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100

0 EU 5566    NA 865   AS 1047   OC 287   SA 216   AF 223

Figure 3.1.: Distribution of 8000+ RIPE Atlas probes used in our measurements.
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VLTR DO BABA AMZN GCP LIN MSFT LTSL ORCL IBM

Figure 3.2.: Distribution of Datacenters by cloud providers (refer to table 3.1 for per-provider
distribution).

including the number of probes per continent, can be seen in figure 3.1. As clearly visible,
the overwhelming majority of probes are hosted in Europe. Continents like Africa, South
America and Oceania on the other hand show a very limited density of probe distribution.
This is a limitation of our measurements and will be addressed in chapter 5.3.

3.1.3. Cloud Providers & Datacenters

We list all chosen cloud providers and their deployments per continent in table 3.1. We
selected every datacenter the chosen cloud providers had running by August 2020. The
distribution of those datacenters around the globe can be seen in figure 3.2.

We chose ten cloud providers for our measurements. Our selection was focused on a broad
variety of cloud providers with different focus regions, backbones and experience in the
field. As they have been operational in the field for a long amount of time and also own
resources, enabling them to utilize their own private backbone, we included Microsoft Azure,

Datacenters per continent Backbone
N/WEU NA SA AS AF OC

Amazon EC2 (AMZN) 6 6 1 6 1 1 Private
Google (GCP) 6 10 1 8 - 1 Private

Microsoft (MSFT) 12 10 1 11 2 4 Private
Digital Ocean (DO) 4 6 - 1 - - Semi

Alibaba (BABA) 2 2 - 16 - 1 Semi
Vultr (VLTR) 4 9 - 1 - 1 Public
Linode (LIN) 2 5 - 3 - 1 Public

Amazon Lightsail (LTSL) 4 4 - 4 - 1 Private
Oracle (ORCL) 4 4 1 7 - 2 Private

IBM (IBM) 6 6 - 1 - - Semi
Total 50 62 4 58 3 12

Table 3.1.: Datacenters per continent and provider

9



3. Methodology

Google Cloud Compute Engine and Amazon EC2. As it is a younger offspring of the latter
one, we also included Amazon Lightsail. As for smaller cloud providers utilizing the public
internet as their backbone, we included the two best-established providers (to the best of
our knowledge): Linode and Vultr. We also looked at other big tech companies making a
more recent entry into the cloud computing field in the last years: IBM and Oracle. Lastly, we
included Alibaba Cloud Computing, as we were interested in their specific focus on China
and Asia in general, and Digital Ocean, a smaller provider, yet still employing their own
backbone for a part of their path to the cloud.

When it came to finding an endpoint for our measurements, we had to make sure not to
undergo load balancing, potentially rerouting our measurement to a different datacenter. For
that purpose we used the vantage points of CloudHarmony [26]. It is a platform, that offers
vantage points for internet measurements in virtual machines residing in the datacenters of
all of the cloud providers mentioned above.

We scheduled measurements from every probe within a continent to every datacenter in
this continent. We additionally wanted to inspect inter-continental connections for Africa and
South America, so we scheduled measurements from probes in Africa to datacenters in South
Europe and the USA and from probes in South America to the datacenters in the US.

3.2. Implementation

In order to schedule, parse, clean and enrich the data, we created the python package
ripeanalysis (see chapter 6) for this thesis. In the following, we will describe its workflow
(see 3.3).

To schedule measurements and receive the results outside of their web GUI, RIPE Atlas
offers a RESTful API. Based on that API a python wrapper named cousteau exists. This
library was used and improved by ERA [27], which was used to schedule measurements in
this work. ERA allows the scheduling of multiple measurements from many probes to many
target points. It also allows for a great amount of customization of the query, including native
cousteau functionality. Most importantly it allows to schedule measurements from all the
probes in a specific continent. ERA also allows the limitation of the number of probes per
country when choosing all probes per continent. We have modified ERA to allow for TCP
and paris traceroutes and to allow URLs as targets instead of IP addresses. That way we are
able to write a script, which generates ERA commands based on our dataset of datacenters.
We also limited the number of probes per country to 500.

We generated three ERA commands per continent - one TCP traceroute, one ICMP tracer-
oute and one ICMP Ping measurement - for the continents North America, South America,
Africa, Asia and Oceania and manually balanced them between the four API keys. For Europe,
we needed to manually split the amount of probes into two different commands, since Europe
exceeds 5000 probes and thereby the maximum amount of probes, RIPE Atlas allowed to use
in one go. We also generated commands for the intercontinental measurements (Africa to
South Europe, Africa to USA and South America to USA) and wrote all the commands into a
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3. Methodology

Dates of measurements
1 September 17th 2020
2 September 23rd 2020
3 September 25th 2020
4 September 28th 2020
5 October 3rd 2020

Table 3.2.: Dates when measurements were taken.

bash script.
We scheduled the first set of measurements over a few days while still in the implementation

phase, adjusting our scheduling routine after every continent until finishing the final bash
file. This allowed us to schedule and import an entire measurement within a day. The dates
on which we scheduled measurements are listed in table 3.2. Over those measurements, we
collected 196 million datapoints from over 8500 vantage points to 189 datacenters.

The results were downloaded and imported using the standard RESTful web-API by a
python script. The script queries RIPE Atlas for all measurements scheduled by the account,
for which the API key is provided. The API returns a JSON file detailing measurement info
for all measurements the account has ever scheduled. After analyzing the file, it filtered
the returned measurement IDs by their timestamp. It compared them to the parameter
"later_than", to only import the most recent measurements. Those measurement IDs are then
divided by their type and individually downloaded from the RIPE Atlas API in their standard
JSON format. (See full data structure in Appendix A.1 and A.2)

Afterward, those measurements were parsed, cleaned and enriched before being stored in
an SQLite database.

3.3. Cleaning and Enriching the Data

3.3.1. Data parsing and Cleaning

To process the data, we first parsed it into a python data structure. We generated a list of
traceroute objects, each having a list of hops, and a list of ping objects.

3.3.2. Parsing the Measurements

The data we parsed from the RIPE Atlas JSON responses is the following:

Traceroute measurements From the traceroute JSONs we parsed most importantly the
destination name (dst_name), the destination address (dest_addr) and the source address
(from) to identify the beginning and endpoint of the traceroute. In cases the dst_name field
didn’t return a URL, we overwrote it with the information in the target field of the previous
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downloading step.

Further, we parsed information about the probe (prb_id) and measurement (msm_id), to
later combine the traceroute with information about the vantage point and the measurement
from RIPE Atlas, a timestamp and information about the protocol used (proto) as a way
to distinguish ICMP traceroutes from TCP ones. Finally, we parsed the paris_id, which
described the amount of different paris traceroutes RIPE Atlas allowed.

After gathering this meta-information, the hops were parsed. The information we selected
was the hop number (hop), its source address (from), the TTL (ttl) and the RTT (rtt) for each
hop. In case any hops come back erroneous, we discarded the traceroute. Any late hops were
discarded as well. All unresponsive hops were marked as empty, the RTT and TTL values for
this hop were set to 0 and the address was set to "x".

Ping measurements The most important part of the Ping measurement was again the desti-
nation name (dst_name), the destination address (dest_addr) and the source address (from),
as well as the information about the probe (prb_id) and measurement (msm_id). Information
about the protocol was not necessary, since only ICMP pings were possible via RIPE. We
stored a timestamp, as well as the TTL (ttl) from the ping, although we later found out, that
due to a bug in RIPE Atlas this information was unreliable.

For the actual pings, we imported the RTT (rtt). In case a ping came back erroneous,
we defaulted the RTT to 0. In case the target timed out, we also defaulted to 0. The Ping
data-structure we wrote in python (and subsequently the database layout, see chapter 3.4)
supported up to five pings per measurement to provide scalability, even though for our usual
RIPE Atlas measurements we decided to go with three pings per measurement.

3.3.3. Data Enriching

After parsing the traceroute and ping data into their respective data structures, we enriched
the data with AS information. To do that, we stored all the IP addresses we encounter,
including datacenter IP addresses, probe addresses, as well as every responsive hop address.
We then filtered the addresses to exclude link-local addresses. Then the resulting set of IP
addresses was enriched using the PeeringDB 1 and CAIDA dataset [28], as well as PyASN and
their latest dataset 2. Since the measurements were taken over a relatively short period of time,
we downloaded the entire PeeringDB dataset and queried it locally. First, the .jsonl format
was converted into a normal JSON array, before it could get parsed by python and converted
into a dictionary. We parsed the Autonomous System Number (ASN) as a key and a tuple

1We extracted the PeeringDB dataset by querying the peeringdb python client for all ASNs. The dataset we
used will be submitted with this thesis.

2The dataset was obtained by following the instructions on https://pypi.org/project/pyasn/, the version of the
dataset we used is submitted with this thesis.

12



3. Methodology

Figure 3.3.: Workflow of scheduling, importing and enriching the measurement data.

of the organization name and the organization type, that PeeringDB had for this ASN, as value.

If the IP address was known in the PyASN dataset and was thereby identified as part in
an autonomous system (AS), we wanted to find out more details about this AS, specifically,
whether it was part of an internet exchange provider (IXP). To get this information, we queried
the CAIDA dataset, which we also downloaded for faster processing. We specifically queried
the ixp_asns.json dataset and the ixs.json dataset. By looking up the ASN we previously got
from PeeringDB, we then parsed further information, specifically whether the ASN belonged
to an IXP, its CAIDA ix_id, its organization name according to CAIDA, as well as the region,
country, city and coordinates of the organization’s headquarter.

Besides this information, we also fetched the entire RIPE Atlas probe information from
the RIPE Atlas API. This information contained, besides information about a probes location,
architecture, firmware and connectivity, also several system-assigned and user-assigned tags,
that helped to categorize these probes into groups. From this data, we imported the country
a probe was sitting in and whether this probe included tags, which suggested it was either
a home users probe (e.g. home, homelab, fritzbox), an organization-hosted probe (e.g. stu-
dent, t-mobile, university), an IXP hosted probe (ix, ixp) or a datacenter hosted probe (e.g.
datacenter, us-east1-b). A detailed list of these tags can be found in the Appendix (see A.1).
We also looked up the continent associated with the country of the probe using the python
pycountry_convert package. We filtered out all probes in the dataset, which were hosted in
Antarctica.
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Column name Description

ID Unique identifier; primary key
MSMID_ping RIPE Atlas measurement ID for Ping
platform_used Platform used; ’ripe’ only in this dataset
protocol Protocol used for ping measurements; ’ICMP’ only in this

dataset
timestamp UNIX timestamp provided by RIPE Atlas, when the mea-

surement was scheduled
url Target URL
src Source IP Address
dst Destination IP Address
probe_id Probe ID used by the platform to identify vantage point
ttl Time-To-Live (TTL) after ping measurement
ping1

Ping measurements in [ms]
ping2
ping3
ping4
ping5

Table 3.3.: Database schema of Ping table

3.4. SQLite Database

The received data was stored in an SQLite database, since for such a big dataset, pre-filtering
it using a query language like SQL before loading it into memory was necessary. The database
structure was inspired by the way RIPE Atlas stored its measurements in a database [29],
but modified to better suit our needs. The focus was also laid on expendability in case
we wanted to extend this dataset to include more measurements or measurements from a
different platform in the future.

The database split into three distinct parts: The ping measurements, the traceroute mea-
surements and the meta-information. While the ping measurements were stored in one
single table (Ping) containing all necessary information, the traceroute measurements had
to be split up into three tables: The Traceroute table, the TracerouteInfo table and the Hops
table. The meta information tables included the NodeInfo table, the Datacenter table and the
Probes table.
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Column name Description

ID Unique identifier; primary key
MSMID_Traceroute RIPE Atlas measurement ID for Traceroute
platform_used Platform used; ’ripe’ only in this dataset
protocol Protocol used for ping measurements; ’ICMP’ or ’TCP’ only

in this dataset
timestamp UNIX timestamp provided by RIPE Atlas, when the mea-

surement was scheduled
src Source IP Address
dst Destination IP Address
paris_id Paris ID provided by RIPE Atlas in case the measurement

was scheduled with Paris Traceroutes; 0 otherwise

Table 3.4.: Database schema of Traceroute table

Column name Description

ID Unique identifier; primary key; foreign key to
Traceroute

probe_id Probe ID used by the platform to identify vantage point
cloud_provider Name of the cloud provider, determined using ASN;

deprecated
datacenter ID of datacenter in Datacenter table, former foreign key,

deprecated
url URL of the target Datacenter, foreign key to Datacenter

Table 3.5.: Database schema of TracerouteInfo table

15



3. Methodology

Column name Description

ip IP address of the node; primary key; foreign key to Hops
asn AS number provided by pyasn for this IP address, NULL if

none found
org_name_pdb Organization name provided by PeeringDB for this ASN,

’Unknown ASN’ if none found
org_type_pdb Organization type provided by PeeringDB for this ASN,

’Unknown’ if none found
is_ixp Boolean value; 1 if the address belongs to an IXP, 0 other-

wise
ix_id CAIDA ix_id, used to refference following information, ""

if none found
org_name_caida Organization name provided by CAIDA for this ASN, "" if

none found
region Region of the facility provided by CAIDA for this ASN, ""

if none found
country Country of the facility provided by CAIDA for this ASN,

"" if none found
city City of the facility provided by CAIDA for this ASN, "" if

none found
latitude Latitude of the facility provided by CAIDA for this ASN,

"" if none found
longitude Longitude of the facility provided by CAIDA for this ASN,

” if none found
facility_name Facility name provided by CAIDA for this ASN, "" if none

found

Table 3.6.: Database schema of NodeInfo table

Column name Description

ID Unique identifier; primary key
name Name of the cloud provider
url URL of the datacenter provided by cloudharmony
country ISO 3166 ALPHA-3 code of the country, the datacenter is

located in
continent ISO-alpha-2 code of the continent, the datacenter is located

in

Table 3.7.: Database schema of Datacenter table
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Column name Description

hop_id Unique identifier; primary key
src_ip Source IP address of the hop.
dst_ip Destination IP address of the hop
rtt_before Round-Trip-Time (RTT) before hop, 0.0 before first hop
rtt_after Round-Trip-Time (RTT) after hop
ttl TTL (Time-To-Live) after hop
hop_number Hop number to order hops of one Traceroute
attempt Attempt number of hop (important to map hops to different

Paris-Traceroute paths
Traceroute_ID foreign key to ID inTraceroute

Table 3.8.: Database schema of Hops table

Column name Description

ID RIPE Atlas’ unique identifier; primary key
country ISO 3166 ALPHA-3 code of the country, the probe is located

in
continent ISO-alpha-2 code of the continent, the probe is located in
home

Boolean; 1 if probe’s user tags identifies with being of this
certain category (see table A.1), 0 otherwise

organization
datacenter
ixp
longitude Geographical longitude of probe
latitude Geographical latitude of probe

Table 3.9.: Database schema of Probes table

3.5. Corrections

After finishing the measurements we noticed, that for unknown reasons Amazon Lightsail’s
cloud datacenters didn’t respond to ICMP pings. Analysis of this cloud provider is therefore
incomplete to some extend. The datacenters did respond to ICMP and TCP traceroutes,
however, which is why we have listed them in sections, where we look at those measurements
exclusively.
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Table Column

Ping

ping1
ping2
ping3
ping4
ping5
probe_id
url

Datacenter url

Hops
hop_number
Traceroute_ID

Probes probe_id

Traceroute
ID
protocol

TracerouteInfo
ID
url
probe_id

Table 3.10.: Indices on tables in SQLite Database

Because of a classification error, measurements to the datacenter me-south-1 (Google
Compute Engine) were rendered unusable, so it was dropped from all analysis.
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4. Results

In this chapter we will detail the results we found and attempt to use them to answer the
research questions described earlier.

4.1. Global Cloud Reachability

4.1.1. Minimum Access to Cloud Network

We begin by analyzing the global reachability of the cloud and comparing the results to the
latency categories detailed in chapter 2.1. Figure 4.1 plots the shortest latency of a probe in
the region to the nearest datacenter, thereby constructing the best case scenario. We can see,
that most parts of North America, Europe and Oceania can reach the cloud within 10 ms,
which means they can reach the cloud within MTP latency. In addition, a huge part of
Asia, including population rich countries like India, Russia and China also can reach the
cloud within MTP. This correlates clearly with the huge investment from cloud providers
into infrastructure in these areas. Especially China and India have seen an increase in local
datacenter deployment compared to previous cloud measurements.

When analyzing Africa it becomes visible, that datacenter deployment on this continent
heavily focuses on South Africa. Regions in the center and north-west of the country in
contrast have the poorest latency connection in our measurements. Similarly to Africa, the
datacenter deployment in South America entirely focuses on East Brazil, which is clearly
represented in the latency in this region: Besides Brazil, which also achieves MTP latency,

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Figure 4.1.: Global minimum latency to nearest cloud datacenter
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Alibaba Cloud

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

DigitalOcean

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Amazon EC2

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Google Compute Engine

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

IBM Cloud Solutions

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Linode

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Microsoft Azure

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Oracle Cloud Compute

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Vultr

< 10 ms
10-20 ms
20-40 ms
40-100 ms
100-250 ms
>250 ms

Figure 4.2.: Global minimum latency to nearest cloud datacenter per provider
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all other countries have way lower best case latency. In contrast we can see that in Europe
even countries without a locally deployed datacenter can reach the cloud significantly faster
than those in Africa or South America. Reasons for this may include the geographically lower
distance between the countries and the higher density of datacenters in Europe, but a stronger
international network seems to factor in as well.

In general it can be observed, that a country with a best case latency lower than 10 ms
has a datacenter deployed in it (compare with figure 3.2). This typically offers very low
latency. Some countries even have more than one datacenter deployed in their region by the
same provider (e.g. USA, Germany, Japan, China or Australia). To further investigate this
correlation, as well as to compare different cloud providers in best case latancies, we plot the
best case latency (as described earlier) per cloud provider in figure 4.2.

Right away we can see, that every single cloud provider is able to provide connections
within MTP latency within the US and Central Europe. All cloud providers who are operating
in Oceania can offer Australia the same service. The rest of North America also shows
great best case latency. While some providers are able to provide MTP latency to the entire
continent, all of them can provide minimum latency below 40 ms. One exception to this
rule is Greenland, which seems not that well covered, though it still stays within perceivable
latency with most providers.

Coverage of Asia varies hugely between providers. While most countries are covered within
Human Reaction Time, countries in the Middle East seem to have the worst coverage, even
falling below the 250 ms threshold. India on the other hand is covered fairly well and with
the exception of Vultr shows MTP latency across providers. China’s and Russia’s best case
latency on the other hand vary significantly depending on the provider. Interestingly, while
only covered by half of the providers, South America shows similar coverage regardless of
the provider, which seems intuitive given the similar deployment location. When it comes to
Africa, the only intra-continental choices of coverage are Microsoft Azure and Amazon EC2.
Here Microsoft continuously outperforms Amazon providing better best case latency in every
single country but Madagaskar.

All in all, 45 countries can access the cloud within 10 ms and 21 countries can reach it in
10-21 ms. Combined with the fact, that those 66 countries hold a vast majority of the global
population, this means, that most people can hypothetically connect to cloud computing
services within MTP latency, which would open the possibility for applications like AR, VR
and autonomous driving over the cloud [4]. Furthermore, 49 more countries are able to reach
the cloud within 40 milliseconds and another 53 can reach it within 100 milliseconds, making
all but 16 countries who host probes in our measurement able to connect to the cloud within
human perceivable latency.

To see a more detailed distribution, we plotted the minimum RTT by all probes in our
measurement set to the nearest datacenter grouped by continent as an ECDF in figure 4.3.
The first interesting observation is, that around 45% of probes in Europe, North America, Asia
and Oceania are able to access the cloud within MTP latency. It is also observable, that nearly
all probes in North America and Europe and around 90% of probes in Oceania can reach
the cloud within 50 ms, comfortably enabling applications requiring a delay within human
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Figure 4.3.: Distribution of minimum RTT by all probes to the nearest datacenter grouped by
continent.
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Figure 4.4.: Distribution of all RTT values recorded from all Atlas probes in our dataset to the
closest datacenter.

perceivable latency. Interestingly, while starting out slower, 80% of Latin American and Asian
probes can connect to the cloud within 100 ms. Only 70% of African probes can reach the
HPL-threshold in the best case. Besides a few African probes though, all measurements were
able to achieve latencies less than 250 ms. This result shines a good light on the cloud, even
suggesting, that it is able to provide HRT applications to nearly every region in the world,
including regions with sparse coverage such as Africa and South America.
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Figure 4.5.: Latencies to nearest datacenter per provider per continent

4.1.2. Overall Access to Cloud Network

Up until now we only looked at best cases. A slightly different picture is painted though
when looking at the same ECDF, but now including all measurements to the closest datacenter,
not just the minimal RTT. The resulting plot can be seen in figure 4.4.

Unsuprisingly, probes from Europe, North America and Oceania show rather excellent
performance, satisfying MTP latency requirements in around 20% of measurements and
accessing the cloud within 50 ms in around 80% of the cases. The differences are most notable
for Asia. In reality only around 60% of measurements could reach the HPL threshold and
around 15% couldn’t connect to the cloud within 250 ms. The only continent performing
worse is Africa with 20% of measurements failing to fulfill HRT requirements. When it comes
to latencies of around 100 ms though, Africa even outperforms Asia narrowly with around
62% reaching the cloud within HPL.

Those results are roughly in line with the results from our best case analysis and can be
explained by the density of the cloud datacenter deployment in regions like North America,
Europe and Oceania in contrast to the lack of adequate coverage in Africa and South America,
as well as the worse network interconnectivity between countries in those respective regions.
The widely varying performance in Asia can be tracked back to some countries such as
Singapore, South Korea and Japan having quite good coverage, while other countries are
wildly less covered. Those countries - predominantly in the middle east - have weaker
network infrastructure and are geographically far away from their next datacenter.

To compare those results by providers, we plot their performance in every region in
figure 4.5. For Europe, North America and Oceania we can see, that results up until the 95th
percentile consistently come in below the 100 ms threshold for every provider without major
variations between them. This is mainly due to the cloud providers’ extensive deployment in
those regions and the public network infrastructure in those regions. This leads to differences
between private and public backbone providers being indistinguishable. Within Africa,
Microsoft Azure shows slightly better performance due to the fact, that they employ two
datacenters in comparison to Amazon’s single datacenter. For South America results look
similar across the board with similar median and quartiles for all providers. Looking at Asia,
though, the real-life performance varies quite significantly between providers. While some
bigger providers like Microsoft and Google achieve latencies with 95th percentile around
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Figure 4.6.: Minimum cloud access latencies from probes in Africa to closest datacenter in the
US and Southern Europe (compared to intra-continental measurements)
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Figure 4.7.: Minimum cloud access latencies from probes in South America to closest datacen-
ter in the US (compared to intra-continental measurements)

200 ms, smaller providers like Digital Ocean and Linode can reach results up to 400 ms and
Vultr and IBM both reach around 600 ms on the 95th percentile. This variance can again
largely be explained by the drastically lower datacenter deployment in Asia compared to
landmass and area and the comparatively wide spread of population.

4.1.3. Inter-Continental Access to Cloud Network

Lastly, we take a closer look at the measurements we collected from Africa to South Europe
and the US (figure 4.6), as well as from South America to the US (figure 4.7). Those continents
both lack international network interconnection. Especially in Africa, large parts of the
continent are disconnected. Even South Africa, which sees 100% of the continents datacenter
deployment, has limited coverage. On the other hand, inter-continental connectivity has
developed rapidly over the last years, with extensive transatlantic connectivity at the forefront.
With these measurements we aim to find out, whether a strong transatlantic backbone can
outperform the physical proximity to the datacenter.

Looking at Africa first, we can see clearly, that the huge geographical distance, which
network traffic must travel from Africa to Europe, reflects in latencies that are overwhelmingly
often beyond 100 ms, in nearly all cases over 50 ms. This clearly doesn’t seems to be a viable
alternative to intra-continental cloud providers, which by comparison could achieve lower
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latencies for 60% of the probes. But the fact, hat Africa is a geographically large continent and
the datacenter deployment heavily focuses on the south of the continent, lets us assume, that
those lowest inter-continental latencies are measured from probes in Northern and Central
Africa. Those probes probably had much higher latencies to their intra-continental datacenters,
compared to its inter-continental connections. In that regard we can conclude, that - while
maybe an option for regions in Northern and Central Africa - inter-continental connectivity in
Africa is outperformed by its intra-continental datacenters for an overwhelming part of users.

For South America, while the spread of results is much more tightly focused around
latencies between 50 and 150 ms depending on the provider, it is also not a fundamental
improvement to latencies achieved with datacenters in Latin America. In that regard it also
confirms our expectations, since the datacenters in South America are heavily focused around
the country of Brazil, which offers a geographically shorter distance to any probe in Latin
America, than any US datacenter can do, which is reflected in the resulting higher latency.

4.2. Impact of Cloud Deployment Density

To further compare the differences in cloud accessability between areas with dense deployment
of datacenters and areas with sparser datacenter coverage, we open two case studies:

4.2.1. Case Study A: The United States of America

We first look at the United States of America, since they have the most datacenters deployed
in any country. Specifically, we look at the Primary Statistical Areas in the U.S., cities and
areas, which contain a large amount of people [30, 31]. We chose the top 98 PSAs, which
collectively house more than 80% of the population. We then selected all RIPE Atlas probes
within a 150 km radius of these PSAs and selected all ICMP ping data from those probes to
their closest datacenter. We plot the minimum latency, the median and the 95th percentile of
our results in figure 4.8.

The minimum distribution shows virtually all probes reaching the cloud within 25 ms,
with 50% coming in under 10 ms, surpassing our MTP threshold. Furthermore, the median
distribution shows nearly all probes accessing the cloud within 50 ms, comfortably enabling
HPL-requiring applications. Even the 95th percentile distribution, which should include
measurements taken under imperfect network conditions, could achieve perceivable latency
requirements in more than 65% of the case and was able to provide access latencies within
human reaction time for more than 95% of the probes measured.

This case study shows us, that a majority of the US population lives in areas, where the
cloud can be accessed within Human Perceivable Latency, making it ready for a bulk of next-
generation cloud applications. Furthermore, a huge portion of the population can already
reach the cloud within Motion-to-Photon latency, fulfilling the requirements for applications
like autonomous driving.
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Figure 4.8.: Minimum, median and 95th percentile distribution of measurements within a
PSA
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Figure 4.9.: Distribution of latency in a subset of Asian countries with and without in-land
datacenters

4.2.2. Case Study B: Asia

We now compare our findings from case study A with measurements taken from certain
regions in Asia. We look at some countries, that have multiple datacenters from different
providers deployed in their country (China, Japan, South Korea, India and Singapore), as
well as Pakistan, which only shares borders with a country, that has a datacenter deployed
(India). We also include Iran, since it is the country farthest away from any datacenter in the
region. We plot the pings achieved by probes in those countries to their nearest datacenter as
a distribution in figure 4.9 .
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Figure 4.10.: Latency comparison between ICMP and TCP

We can immediatley make some key observations: Firstly, the fact that smaller countries
(South Korea, Japan and Singapor) have their datacenter deployments in very densly popu-
lated areas is clearly visible from the fact, that between 40 and 60% of the measurements in
this area reach the cloud within MTP latency and around 90% can access it within human
perceivable latency. Bigger countries on the opposite have a far more widely distributed
population, making the latency distribution curve way less steep. Still, a majority of the
people (60-80% of probes) can reach the cloud within HPL constraints. Pakistan on the other
hand has a way lower latency distribution, enabling perceivable latency applications in only
35% of measurements. Further it has to be noted, that no measurement was faster than
30 ms, making MTP applications impossible. Finally, being the farthest away from the nearest
datacenter, Iran’s probes could only 10% of the time access the cloud within 100 ms. 40% of
the samples couldn’t even satisfy HRT constraints.

We conclude, that areas with dense datacenter deployment can consistently expect smaller
cloud access latencies. We further conclude our assumption, that a shorter geographical
distance to the nearest datacenter improves latency significantly.

4.3. ICMP vs. TCP Measurements

The scientific consensus at the moment is, that ICMP measurements are more optimistic
then TCP measurements, since ICMP responses usually don’t undergo any form of throttling
to prevent congestion. To analyze this, we compare our ICMP and TCP measurements.
As described in chapter 3, we scheduled ICMP ping, ICMP traceroute and TCP traceroute
measurements. The latter we also use, to get a fairly accurate TCP ping measurement by
taking the last-hop RTT. When talking about TCP pings, we are talking about this last-hop
RTT.

We first plot our TCP and ICMP ping measurement results, both times excluding responses
that came within 0 ms, as this is our default value for erroneous measurements. The results
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Figure 4.11.: Global latency comparison between ICMP and TCP per continent

can be seen in figure 4.10a. As evident, while following the same general distribution, TCP
measurements are consistently lower then their ICMP counterpart. The trend can also be
reproduced on a per continent basis, further solidifying the finding (figure 4.11).

To make sure, that the way we are measuring TCP pings isn’t biased, we also plot last-hop
RTTs of both ICMP and TCP traceroutes (figure 4.10b). The results offer a similar distribution.
If you take into account, that some providers like Amazon Lightsail outright don’t respond
to ICMP pings all together, this suggests, that cloud providers have taken a new approach
to handling ICMP traffic differently then TCP traffic. Since HTTP traffic utilizes TCP as
underlying protocol, we believe, that our latency measurements from TCP traceroutes are
more reflective of user cloud access times.

4.4. Differences in Underlying Infrastructure

In the last decade, big cloud providers have invested billions of dollars into expanding their
private networks. The intention behind this is to route the traffic of their customers around the
public internet. Those shielded networks serve the purpose of avoiding congestion, improving
transmission rates and optimizing their user’s path to the cloud. In this section, we analyze
the impact of those extensive network deployment efforts and investigate, what percentage of
the path from user to cloud is already controlled by the cloud providers. We have already
classified the cloud provider’s backbones in table 3.2.

To find out, which hops belong to a cloud provider’s network, we look up the ASN of each
hops’ IP address and its respective owner. A list of PeeringDB organization names associated
with the cloud providers can be found in the appendix (table A.2).

Next, we plot the total path length (meaning all hops excluding unresponsive hops and
link-local addresses) in comparison to hops, which could be identified as belonging to a cloud
provider. The results can be seen in figure 4.12. Right away it is clearly visible, that continents
with lower latency have shorter paths to the cloud. In particular North America, Europe and
Oceania show a tighter path length distribution than Asia and Africa, with South America in
the middle, tending towards shorter path lengths.

When looking at the hops belonging to cloud providers, the results are way more surprising.
While Africa sees a very low amount of cloud-hops in its traceroutes, which suggests the
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cloud providers’ WANs (all datacenters in the region are employed by Microsoft and Amazon,
both using private WANs) aren’t as developed in this region and is very much expected, other
more widely covered regions like Asia and Europe have a way longer distance traveled in the
cloud providers network. This in turn suggests high investment in the private WAN in those
areas and, again, is very much expected.

More unexpected though is the relatively short path length within the cloud providers’
networks in the regions North America and Oceania, as well as the outstandingly high one
in South America. A possible reason for this might be, that many providers, both with
and without private backbone - are hosting datacenters in North America and Oceania.
Consequently, the providers without private backbone are pulling down the average path
length within the providers network. On the other hand, only bigger providers - utilizing a
private backbone - are operating in South America, raising the average.

To look into this more accurately, we want to compare the pervasiveness of the cloud per
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Figure 4.14.: Pervasiveness of path to cloud by providers and continents

provider per continent. We define pervasiveness as the the amount of hops made within a
cloud providers’ network divided by the total amount of hops traffic has to go through to
reach a certain datacenter. The pervasiveness of the cloud per continent is plotted in figure
4.13. It can be observed, that the cloud providers already own on average 20 - 40% of the
path to the cloud. It is also very common for clouds to own more than 50% of the path,
even reaching up to 100% in some cases, meaning the first public IP address encountered
in the path belongs to a cloud provider. This might occur, when a probe is located within a
datacenter of the same cloud provider, but the fact this happens in at least 5% of the cases
suggests that this is also true for some outside probes.

Comparing pervasiveness between continents, most performances look similar. Outstanding
results are Africa, which shows way lower pervasiveness, probably due to the low maturity of
the cloud providers networks in the region, South America, which has a higher than average
median pervasiveness, and North America with a lower than average pervasiveness. We
assume, that both outliers are rooted in the type of backbone employed by the cloud providers
in the region: North America, which hosts datacenters from all cloud providers in our study,
including ones, which use the public internet as backbone, pulling down the average. South
America on the other hand only hosts datacenters from private-WAN employing providers.

To further investigate, we plot the pervasiveness of the path to the cloud for all providers on
all continents in figure 4.14. Here the differences between private and public WAN are clearly
visible. For providers utilizing the public internet as a backbone, e.g. Linode and Vultr, the
pervasiveness tops out at 55%. The same applies for a majority of the providers classified as
’Semi-Private Backbone’, utilizing both private backbones in some areas and public backbones
in others. The exception to this rule is IBM, showing up to 80% percent pervasiveness, which
suggests, that their private WAN is already very extensive. Cloud providers utilizing private
backbones to their fullest extend, e.g. Amazon (Lightsail and EC2), Google, Microsoft and
Oracle on the other hand exhibit a high degree of pervasiveness, even reaching up to 100%
pervasiveness. This is differs between continents for some providers.
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Figure 4.15.: Traceroute measurements with and without IXPs

4.5. Impact of ISP Peering Agreements on User Cloud Access
Latency

To make their aforementioned private backbone accessible to the user, cloud providers have
to connect their network to the user’s Internet Service Provider (ISP). To forego public IXPs
and to get their network as close to the customer as possible, cloud providers set up peering
agreements with those ISPs directly. In this section we want to analyze the impact of those
peering agreements and compare them to network traffic routed through IXPs.

To analyze the impact of ISP peering agreements from a user perspective, we only look
at home-based probes for our analysis. We analyze their traceroutes and identify all hops
owned by an IXP. In this context we found, that most cloud providers are already classified
as IXPs by the CAIDA dataset. In the following we consequently only classify a node as IXP,
when it is both classified by CAIDA as an IXP and doesn’t have the organization name of
a cloud provider (see list A.2). We assume, that user traffic travels from their ISP onwards
straight to the nearest cloud network access point. The "traditional" way of doing so would be
to go through an IXP. But with the rise of the "flat internet", more and more cloud providers
are peering directly with the ISPs. Therefore, if there is no IXP node within the traceroute, we
assume a peering agreement in place.

We filter our dataset as described. As a result, we get around 1.2 million traceroute
measurements. Figure 4.15a shows, that around one third of the traceroute measurements
contains at least one IXP node, indicating an ISP peering agreement for around one third
of traceroutes. We also take a look at the latency differences in figure 4.15b. While looking
similar, latency of paths, that go through an IXP node see a slight advantage in terms of lower
median latency.

To analyze this more closely, we look at the differences in IXP peering between providers.
Here, the results show a clear difference between some providers. Figure 4.16a shows the
percentage of paths containing IXP nodes. While Amazon (EC2 and Lightsail), Google and
Microsoft Azure utilize IXP peering only around 30% of the time, Linode, Vultr and Oracle
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need to rely on them in 60% of our measurements. When we compare these findings with
table 3.1, a clear trend is visible: Cloud providers with private backbones have a way lower
usage of IXP nodes, than providers with a backbone relying on the public internet do. Those
providers utilizing a mix between those two, can be found right in between (Digital Ocean,
IBM, Alibaba). This is in line with the philosophy of the bigger cloud providers, to segregate
their traffic away from the public internet as much as possible. It also explains the high
pervasiveness, that those cloud providers showed in chapter 4.4.

We now want to focus on the impact those peering agreements have on the user to cloud
connectivity. The first one is bandwidth: A direct peering between ISP and cloud provider
allows for provisioning huge bandwidth links to cloud traffic. Furthermore, those links are
also isolated, giving the cloud provider the full control of managing his traffic with this
bandwidth free from other competing traffic. Since none of our measurements were aimed to
measure bandwidth, we cannot prove this theory.

The second factor cloud providers hope to optimize with peering agreements is latency.
The idea is, that less congestion at high traffic IXPs and more end-to-end control over the path
automatically improves the user-to-cloud latency. Figure 4.16b compares latencies between
paths via an IXP and paths with peering agreements in place. Interestingly, we can see, that
peering agreements have virtually no effect on latency. Especially for cloud providers with a
private backbone, the differences are hardly noticeable. Small differences can be observed for
providers using the public internet as backbone, though the effect varies wildly and most
often benefits the median mildly, while simultaneously having a bigger variance. One notable
exception in that context is Alibaba, for which the peering agreement is not beneficial at all,
showing higher latencies from the median upwards. This is probably due to the fact, that
Alibaba operates its private WAN only in parts of Asia (mostly China) and employs peering
agreements in that region, while in Europe and the US it uses the public internet. The peering
agreement measurements for Alibaba consequently originated in Asia, where RIPE Atlas
probe coverage is sparse, resulting in longer paths.

Lastly, we want to compare the impact of ISP peering agreements on latency per conti-
nent. Figure 4.17a shows the percentage of peering agreements per continent. Similar to
our pervasiveness study, we can see, that regions, which are considered focal points and
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Figure 4.16.: Differences in IXP peering per provider
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Figure 4.17.: Differences in IXP peering per continent

thereby host datacenters from many providers (NA and EU), including those without private
backbone, have a higher rate of IXP-based routing as others. On the opposite side, regions
with predominantly private backbone cloud providers have peering agreements in place
between 80 and 90% of the time. As we can see in figure 4.17b, this can have some impact
on latency. In regions, that don’t have a good and highly interconnected public internet
infrastructure in place (Africa, Asia), peering agreements can indeed greatly benefit latencies,
while in regions with better public internet connectivity (EU, NA, OC), peering agreements
show limited usefulness.

To confirm this theory, we look at the latencies per continent for some providers, specifically
those with a private backbone. We chose Microsoft, Amazon (EC2 and Lightsail) and Google,
because they deploy datacenters in the most continents and have a similar pesrcentage of
peering agreements within their traceroutes. The results are ploted in figure 4.18. We can
see, that the results for these providers are similar to the overall-picture we got in figure
4.16b. For the continents with well-developed networks, peering agreements only have minor
influences on latency. In parallel, we see that those continents are the least interesting for the
cloud providers to make peering agreements in. For Africa and Asia on the other hand we
see clear improvements achieved by using peering agreements. We can also see, that in those
continents, a larger portion of traffic comes in via peering agreements.

Two exceptions to this are Oceania and South America. Oceania is known for a quite
good internet connectivity, nevertheless peering agreements are responsible for nearly all
network traffic to cloud providers in this region. Similarly to North America and Europe
though, the latency differences are minute; the visible differences are mostly due to a lack of
measurements with IXP nodes. In the case of South America, we see, that peering agreements
seem to have a negative impact on latencies. This might again stem from a relatively low
amount of measurements with IXP nodes within the paths and from the relatively bad
coverage of probes and datacenters in South America, slimming down our measurements.
This result might get clearer, once more measurements are taken.
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Figure 4.18.: Differences in IXP peering per continent for selected providers
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5.1. Conclusion

RQ1: What are the user access latencies to the current cloud infrastructure across the
globe? We have observed a great variance in the user-to-cloud access latency between
continents. Chapter 4.1 has shown, that Europe, North America and Oceania do show great
performance, often even achieving latency low enough to enable applications like AR and VR
directly from the cloud. The infrastructure in continents like Africa, South America and Asia
on the other hand clearly still has to mature. South America and Asia show promising results,
often providing access latency below the threshold of human perceivable latency. However,
Africa’s performance is still held back by its poor international network infrastructure and the
sparse deployment of datacenters in the region. Nevertheless, around 80% of probes could at
least satisfy the constraints of human reaction time.

We conducted a case study of the primary statistical areas in the US and found, that
around 50% of the measurements in this area had the potential to reach the datacenter within
Motion-to-Photon latency, while even at the 95th percentile 65% of probes were able to achieve
latencies below 100 ms. We also conducted a case study of a number of Asian countries with
different cloud deployment and population characteristics and concluded, that geographical
distance to the cloud is a major factor of user to cloud access latency. We can also say, that for
this reason datacenters within the continent usually outperform those in other continents.

RQ2: Does the type of underlying networking backbone interconnecting cloud infrastruc-
ture impact user cloud access? We analyzed the difference in latency performance between
providers, specifically focusing on the difference in underlying backbone in chapter 4.1.2.
We did find, that providers, who do employ a private backbone have comparatively lower
latencies in regions with poor network infrastructure. However, they don’t show significantly
lower latencies in areas like North America, Europe or Oceania, where the public internet’s
infrastructure is fairly good.

We can also conclude, that cloud providers using private WANs own increasing parts of
the path to the cloud. Chapter 4.4 has shown, that cloud providers can even reach up to
100% path coverage in some cases. This effect varies from continent to continent and between
providers.

RQ3: What is the impact of ISP peering agreements on global user-cloud access? We
looked at traceroutes, that we could identify as going through an IXP node, and compared
them with paths, where we identified a peering agreement between cloud provider and ISP
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in place. Chapter 4.5 showed, that around two thirds of all cloud traffic is routed through
such peering paths and have shown, that the amount of peering agreement paths is higher
for providers with a private backbone in place. We have found, that peering agreements
have virtually no impact on latencies in regions with good network connectivity, but improve
latencies in regions, that don’t.

5.2. Limitations

The limited nature of this thesis only allowed for a total set of five measurements, which
- while already providing enough datapoints to eliminate outliers in general - could be
improved by running more measurements over a greater period of time. In combination, one
has to consider the enormous size of the dataset and the consequences of growing it any
larger in terms of computing and storage capacity .

We also have confined ourselves to the RIPE Atlas measurement platform. The tools we
created and the underlying database structure are designed to be open to the contribution of
any other measurement platform, a few of which we have already mentioned in chapter 2.
The comparison of those measurements and the RIPE Atlas measurements made in this
Thesis project could eliminate any bias on the way the measurements were taken. In this
context, we mentioned the uneven distribution of RIPE Atlas probes across the globe. Further
measurements from other platforms will eradicate this bias.

Our research on ISP peering agreements was entirely based on what we were able to infer
from our traceroute measurements. Since we don’t cross-reference our findings with other
public datasets, our investigation on this topic is quite crude.

As detailed in chapter 3.5, the project unfortunately had to exclude some providers and
datacenters from this study. A further analysis into those could provide further insights.

5.3. Future Work

As previously mentioned, the open structure of the project results enable a vast array of
possibilities to continue this research topic. This includes the expansion of the database
by adding more and frequent RIPE Atlas measurements, as well as the addition of new
measurement platforms to the dataset. Both would bring inherent value and would increase
confidence in the resulting findings. A long term continuation of the measurements might
even show the increased investments cloud providers take over the next few years and
evaluate their usefulness. We also think that the dataset as it is can be used for further
analysis in the workings and developement of cloud providers over the years.
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6. Reproducibility

6.1. Environment

Research was conducted using Python 3.8, Jupyter 4.6.3. Jupyter Notebook 6.0.3 and SQLite
3.33.0. All installed Python packages are listed in table 6.2. The ERA package is not yet
publicly available. All scripts required to generate ERA commands and import the RIPE Atlas
measurements into the SQLite database reside within the ripeanalysis Python package.
All Jupyter Notebooks used to generate the plots for the thesis are in the same package. A
directory tree can be seen in figure 6.1.

6.2. Reproduction

To schedule the measurements via ERA, commands were generated using the ripeanalysis/
era/era-gen.py script. The commands used by us are commented below. To import the
measurements into the SQLite database used for analysis, run the ripeanalysis/database/
import_ripe_measurements.py script. The imported data can be found in ripeanalysis/
database/SQLite/ripeanalysis-data.db. Valid API keys for RIPE Atlas must be added in
every script. In the import script, a timestamp must be given, after which measurements
should be imported. If all measurements should be imported, set this to 0.

To generate the plots, run the corresponding Jupyter Notebook. A list mapping every figure
to the notebook it originated from can be found in table 6.1. The notebooks, as well as the
data-subsets used by them are located under ripeanalysis/jupyter. Queries, with which
we extracted the aforementioned data-subsets can be found under ripeanalysis/database/
SQLite/Queries.
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Jupyter notebook Figure

Datacenter Lantency comparison.ipynb
4.3
4.4

Geographical Analysis.ipynb

4.1
4.2
4.5
4.6
4.7

IXP peering.ipynb

4.15
4.16
4.17
4.18

Path analysis.ipynb
4.12
4.13
4.14

PSA Study.ipynb
4.8
4.9

TCP vs ICMP.ipynb
4.10a
4.10b
4.11

Table 6.1.: Map of Jupyter notebooks to figures
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Package Version Package Version Package Version

arrow 0.15.8 attrs 19.3.0 backcall 0.2.0
basemap 1.2.0 bleach 3.1.5 brotlipy 0.7.0

certifi 2020.6.20 cffi 1.14.0 cfu 1.5.0
chardet 3.0.4 click 7.1.2 click-plugins 1.1.1

cligj 0.7.0 cmake 3.18.0 coverage 5.3
cryptography 2.9.2 cycler 0.10.0 decorator 4.4.2
defusedxml 0.6.0 descartes 1.1.0 entrypoints 0.3

Fiona 1.8.17 future 0.18.2 geographiclib 1.50
geopandas 0.8.1 geopy 2.0.0 idna 2.10

importlib-metadata 1.7.0 iniconfig 1.0.1 ipykernel 5.3.3
ipython 7.16.1 ipython-genutils 0.2.0 ipywidgets 7.5.1

jedi 0.17.1 Jinja2 2.11.2 jinja2-time 0.2.0
joblib 0.17.0 jsonschema 3.2.0 jupyter 1.0.0

jupyter-client 6.1.6 jupyter-console 6.1.0 jupyter-contrib-core 0.3.3
jupyter-core 4.6.3 jupyter-nbextensions-configurator 0.4.1 kiwisolver 1.2.0

make 0.1.6.post1 mapclassify 2.3.0 MarkupSafe 1.1.1
matplotlib 3.3.1 mistune 0.8.4 mkl-fft 1.2.0

mkl-random 1.1.1 mkl-service 2.3.0 munch 2.5.0
munge 1.0.0 nbconvert 5.6.1 nbformat 5.0.7

networkit 7.0 networkx 2.5 ninja 1.10.0.post1
notebook 6.0.3 numpy 1.19.1 olefile 0.46
packaging 20.4 pandas 1.1.3 pandocfilters 1.4.2

parso 0.7.0 peeringdb 1.0.0 pexpect 4.8.0
pickleshare 0.7.5 Pillow 7.2.0 pip 20.1.1

pluggy 0.13.1 pprintpp 0.4.0 prometheus-client 0.8.0
prompt-toolkit 3.0.5 ptyprocess 0.6.0 py 1.9.0

pyasn 1.6.0b1 pycountry 20.7.3 pycountry-convert 0.7.2
pycparser 2.20 Pygments 2.6.1 pyOpenSSL 19.1.0
pyparsing 2.4.7 pyproj 2.6.1.post1 pyrsistent 0.16.0

pyshp 2.1.2 PySocks 1.7.1 pytest 6.1.0
pytest-cov 2.10.1 pytest-mock 3.3.1 python-dateutil 2.8.1

pytz 2020.1 PyYAML 5.3.1 pyzmq 19.0.1
qtconsole 4.7.5 QtPy 1.9.0 repoze.lru 0.7
requests 2.24.0 ripe.atlas.cousteau 1.4.2 scikit-learn 0.23.2

scipy 1.5.2 seaborn 0.11.0 Send2Trash 1.5.0
setuptools 49.2.0.post20200714 Shapely 1.7.1 sip 4.19.13

six 1.15.0 socketIO-client 0.7.2 terminado 0.8.3
testpath 0.4.4 threadpoolctl 2.1.0 toml 0.10.1

toolz 0.10.0 tornado 6.0.4 tqdm 4.49.0
traitlets 4.3.3 twentyc.rpc 0.4.0 urllib3 1.25.10

wcwidth 0.2.5 webencodings 0.5.1 websocket-client 0.57.0
wheel 0.34.2 widgetsnbextension 3.5.1 zipp 3.1.0

Table 6.2.: Used Python packages and version
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ripeanalysis
database

SQLite
Exports
Queries
ripeanalysis.db

__init__.py
database_interface.py
import_ripe_measurements.py
probes.py
ripe_api_integration.py
structure_of_sql.rst

era
__init__.py
era-gen.py

jupyter
Listed in figure 6.2

network
__init__.py
Edge.py
Node.py
RIPEGraph.py

peering
__init__.py
caida.py
data

asndb.dat
facilities.json
ix_facilities.json
ixp_asns.json
ixs.json
locations.json
organizations.json
peeringdb.json

peeringdb.py
types

__init__.py
Hop.py
Measurement.py
Ping.py
Traceroute.py

Figure 6.1.: Folder structure of ripeanalysis package
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jupyter
all_pings.csv
ases
continent
Datacenter Lantency comparison.ipynb
Geographical Analysis.ipynb
h_&_a_per_prov.csv
hops
IXP peering.ipynb
ixp_cases
ixp_peering_rev.csv
lat_world_tcp
latency
latency_world
lowest
lowest_icmp_ping_per_country_and_provider.csv
lowest_tcp_prov_coun.csv
Path analysis.ipynb
ping_comp_troute.csv
ping_to_closest_dc_intercontinental.csv
ping_to_closest_dc_min_only.csv
ping_to_closest_dc.csv
PSA Study.ipynb
psa.csv
RIPE Analysis 2.0.ipynb
TCP vs ICMP.ipynb
us_probes.csv

Figure 6.2.: Folder structure of jupyter directory
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A. Appendix

A.1. RIPE Atlas traceroute JSON structure

A measurement result is a JSON object with the following fields:

• "af" – address family, 4 or 6 (integer)

• "bundle" – [optional] instance ID for a collection of related measurement results (int)

• "dst_addr" – IP address of the destination (string)

• "dst_name" – name of the destination (string)

• "endtime" – Unix timestamp for end of measurement (int)

• "from" – IP address of the probe as know by controller (string)

• "group_id" – [optional] If the measurement belongs to a group of measurements, the
identifier of the group (int)

• "lts" – last time synchronised. How long ago (in seconds) the clock of the probe was
found to be in sync with that of a controller. The value -1 is used to indicate that the
probe does not know whether it is in sync (int)

• "msm_id" – measurement identifier (int)

• "msm_name" – measurement type "Traceroute" (string)

• "paris_id" – variation for the Paris mode of traceroute (int)

• "prb_id" – source probe ID (int)

• "proto" – "UDP", "ICMP", or "TCP" (string)

• "result" – list of hop elements (array of objects)
objects have the following fields:

• "hop" – hop number (int)

• "error" – [optional] when an error occurs trying to send a packet. In that case there
will not be a result structure. (string)

• "result" – variable content, depending on type of response (array of objects) objects
have the following fields:
Case: Timeout
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• "x" – "*" (string)

Case: Reply

• "err" – (optional) error ICMP: "N" (network unreachable,), "H" (destination
unreachable), "A" (administratively prohibited), "P" (protocol unreachable), "p"
(port unreachable) "h" (string) Unrecognized error codes are represented as
integers

• "from" – IPv4 or IPv6 source address in reply (string)

• "itos" – (optional) type-of-service (IPv6 traffic class) in the packet that triggered
the error ICMP. Omitted if zero and the TOS/Traffic Class field is not set in
outgoing packets (int)

• "ittl" – (optional) time-to-live in the packet that triggered the error ICMP.
Omitted if equal to 1 (int)

• "edst" – (optional) destination address in the packet that triggered the error
ICMP if different from the target of the measurement (string)

• "late" – (optional) number of packets a reply is late, in this case rtt is not
present (int)

• "mtu" – (optional) path MTU from a packet too big ICMP (int)

• "rtt" – round-trip-time of reply, not present when the response is late (float)

• "size" – size of reply (int)

• "ttl" – time-to-live in reply (int)

• "flags" – (optional) TCP flags in the reply packet, for TCP traceroute, concate-
nated, in the order ’F’ (FIN), ’S’ (SYN), ’R’ (RST), ’P’ (PSH), ’A’ (ACK), ’U’
(URG) (string)

• "dstoptsize" – (optional) size of destination options header (IPv6) (int)

• "hbhoptsize" – (optional) size of hop-by-hop options header (IPv6) (int)

• "icmpext" – [optional] information when icmp header is found in reply (object
with the following fields:)

• "version" – RFC4884 version (int)

• "rfc4884" – "1" if length indication is present, "0" otherwise (int)

• "obj" – elements of the object (array of objects).
objects have the following fields:

• "class" – RFC4884 class (int)

• "type" – RFC4884 type (int)

• "mpls" – [optional] MPLS data, RFC4950, shown when class is "1" and
type is "1" (array of objects)
objects have the following fields:
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• "exp" – for experimental use (int)

• "label" – mpls label (int)

• "s" – bottom of stack (int)

• "ttl" – time to live value (int)

• "size" – packet size (int)

• "src_addr" – source address used by probe (string)

• "timestamp" – Unix timestamp for start of measurement (int)

• "tos" – (optional) type-of-service (IPv6 traffic class) in the reply packet. Omitted if zero
and the TOS/Traffic Class field is not set in outgoing packets (int)

• "ttr" – time to resolve dst_name in milliseconds (float)

• "type" – "traceroute" (string)

(Source: https://atlas.ripe.net/docs/data_struct/)

A.2. RIPE Atlas ping JSON structure

A measurement result is a JSON object with the following fields:

• "af" – address family, 4 or 6 (integer)

• "avg" – average round-trip time (float)

• "bundle" – [optional] instance ID for a collection of related measurement results (int)

• "dst_addr" – IP address of the destination (string)

• "dst_name" – name of the destination (string)

• "dup" – number of duplicate packets (int)

• "from" – IP address of the probe as known by the controller (string)

• "group_id" – [optional] If the measurement belongs to a group of measurements, the
identifier of the group (int)

• "lts" – last time synchronised. How long ago (in seconds) the clock of the probe was
found to be in sync with that of a controller. The value -1 is used to indicate that the
probe does not know whether it is in sync (int)

• "max" – maximum round-trip time (float)

• "min" – minimum round-trip time (float)
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• "msm_id" – measurement identifier (int)

• "msm_name" – measurement type "Ping" (string)

• "prb_id" – source probe ID (int)

• "proto" – "ICMP" (string)

• "rcvd" – number of packets received (int)

• "result" – variable content, depending on type of response (array of objects)
objects have the following fields:
Case: Timeout

– "x" – "*" (string)

Case: Error

– "error" – description of error (string)

Case: Reply

– "rtt" – round-trip-time in milliseconds (float)

– "src_Addr" – [optional] source address if different from the source address in first
reply (string)

– "ttl" – [optional] time-to-live reply if different from ttl in first reply (int)

– "dup" – [optional] signals that the reply is a duplicate (int)

– "sent" – number of packets sent (int)

– "size" – packet size (data part, not including IP and ICMP header) (int)

– "src_addr" – source address used by probe (string)

– "timestamp" – Unix timestamp (int)

– "ttl" – time-to-live field in the first reply (missing due to a bug)(int)

– "ttr" – time to resolve dst_name in milliseconds (float)

– "type" – "ping" (string)

(Source: https://atlas.ripe.net/docs/data_struct/)
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A.3. RIPE Atlas user-tags identified with probe categories

Category RIPE Atlas User-Tags

home ’freifunk’, ’freifunk-haloch’, ’freifunk-karlsruhe’, ’freifunk-
rheinland’, ’freifunk-sudpfalz’, ’fritzbox’, ’guest-lan’,
’home’, ’home-co-ltd’, ’home-lab’, ’home-office’, ’homelab’,
’homeoffice’, ’macbook’, ’magenta’, ’magenta-zuhause’, ’pi-
hole’, ’pihole’, ’pihole-2’, ’play’, ’raspberry-pi-1-mod-b’,
’raspberry-pi-1-mod-b-2’, ’raspberrypi’, ’residential’

organization ’comcast’, ’comcast-50x10’, ’comcast-business-services’,
’comcast-xfinity200mbps10mbps’, ’research’, ’san-company’,
’sandisk’, ’santa-fe’, ’satellite’, ’speedbone’, ’speedify’, ’stu-
dent’, ’student-dormitories-in-stuttgartgermany’, ’student-
dormitory’, ’student-network’, ’studentenwohnheim’, ’t-
mobile’, ’t-mobile-thuis’, ’t-online-telekom’, ’technicolor’,
’tele2’, ’telecentro’, ’telefonica’, ’telekom’, ’telenet’, ’telenor’,
’telfort’, ’telia’, ’telia-2’, ’teliasonera’, ’telstra’, ’testing’,
’testing-tagging-3’, ’testlab’, ’tiscali’, ’tlc’, ’tmobile’, ’under-
graduate’, ’unitelnet’, ’unitymedia’, ’university’, ’vodafone’,
’vodafone-2’, ’vodafone-ita’, ’vodafonegigabit’

datacenter ’data-centre’, ’datacenter’, ’datacentre’, ’mobile-datacentre’,
’us-central1-a’, ’us-east1-b’, ’us-east4-c’

ixp ’ix’,’ixp’

Table A.1.: RIPE Atlas user-tags identified to belong to a certain category of probes
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A.4. PeeringDB organization names of cloud providers

PeeringDB organization names

Oracle Cloud Infrastructure
Amazon.com

SoftLayer Technologies Inc. (an IBM Company)
Google LLC

Linode AS63949
DigitalOcean

Microsoft
Alibaba

Choopa, LLC
Alibaba (China)

Table A.2.: PeeringDB organization names of cloud providers
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Figure B.1.: Datacenter table

Figure B.2.: Hops table

Figure B.3.: NodeInfo table
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Figure B.4.: Ping table

Figure B.5.: Probes table

Figure B.6.: Traceroute table
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Figure B.7.: TracerouteInfo table
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