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Abstract

Edge computing describes the process of moving computational resources and services
closer to their consuming clients, in an attempt to reduce network traffic and increase
location awareness. The rapid growth of this paradigm as an enabler for IoT and latency-
critical applications has posed a new challenge for building decentralized edge systems.
Namely, such systems would benefit from distributed coordination, agreement, and
transaction handling services without relying on any third-party authority. In this thesis,
we investigate the suitability of distributed ledger technologies for addressing those
needs, focusing mainly on the capabilities of existing blockchain systems to operate
as a distributed marketplace for the exchange of edge computing tasks and resources.
By matching requests for service deployments with (crowdsourced) edge computing
resources using a decentralized blockchain auctioneer, a self-sufficient and autonomous
system can be envisioned. Here, we are especially interested in potential boundaries,
trade-offs or bottlenecks imposed by blockchain when applied in combination with
performance optimized edge. For our purposes, we develop a generic emulation
framework for distributed ledgers, enabling the measurement of parameters that are
of high relevance for edge computing platforms, such as latency, consistency and fault
tolerance of transactions. By supporting a total of 26 configuration variables, allowing
the emulation of arbitrary peer-to-peer networks and modular consensus protocols,
we evaluate the suitability of two state-of-the-art blockchain platforms for their use in
edge computing. Therein, the validation of our emulator against the major blockchain
networks has shown its accuracy being above 85%. Using four simple empirical models,
we identify severe performance trade-offs of blockchain technology, leading to reduced
efficiency, consistency and decentralization of transactions and higher level applications,
when optimizing for lower latency. To improve the latency of transactions efficiently, we
propose a sharding solution of fragmented edge marketplaces backed by local blockchain
networks, i.e. as part of a smart city environment. The resulting individual markets
are synchronized using a globally shared interledger. Our results make us cautiously
optimistic about the suitability of sharded blockchain technology for edge computing
applications with medium to relaxed latency requirements. However, we emphasize
the need for a permissioned and edge-restricted deployment of the ledger, and propose
the use of more centralized approaches to improve efficiency and performance of
marketplace operations, albeit at the cost of trust and privacy.
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Zusammenfassung

Im Rahmen von Edge Computing werden aus Cloud Computing bekannte Rechen-
ressourcen näher zu deren Nutzern verlegt, um Netzwerkauslastungen zu verringern
und die Lokalität der Ressourcen zu erhöhen. Aufgrund der Schlüsselrolle dieser Tech-
nologie in der Gewährleistung von IoT und anderen Applikationen mit stringenten
Latenzvoraussetzungen, wächst die Nachfrage an derartige Ressourcen unaufhaltsam.
Dies stellt eine neue Herausforderung für die Bereitstellung dezentraler Edge-Systeme
dar. Aufgrund ihrer natürlichen, flächenmäßigen Verteilung, würden solche Systeme
von Diensten profitieren, welche eine dezentrale Koordination und Verständigung über
Transaktionen gewährleisteten. In dieser Arbeit untersuchen wir die Eignung von Dis-
tributed Ledgern (Blockchains) für diese Rolle. Dabei fokussieren wir uns auf deren
Möglichkeit als eine verteilte Handelsplattform von Edge Ressourcen zu fungieren.
Durch das dezentrale Zuordnen von Bereitstellungsanfragen eines Services und den
dazu passenden Rechenressourcen, könnte eine autonome und autarke Edge Computing
Umgebung vergegenwärtigt werden. In solch einer Architektur sind wir besonders
an möglichen Trade-offs und Performanzgrenzen interessiert, die aus einer Verwen-
dung von Blockchain in Edge Computing Netzwerken resultieren. Dazu entwickeln
wir eine generische Plattform, welche die Emulation von Blockchains erlaubt, und
damit das Messen von mehreren relevanten Parametern wie Latenz, Einheitlichkeit
und Fehlertoleranz von Transaktionen ermöglicht. Durch das Bereitstellen von 26
konfigurierbaren Variablen können modulare Blockchain-Protokolle in beliebigen Net-
zwerken evaluiert werden. Dabei weist unser Emulator eine Genauigkeit von über
85% gegenüber realen Blockchain-Netzwerken auf. Mithilfe von vier einfachen, em-
pirischen Modellen identifizieren wir signifikante Kapazitätsengpässe von Blockchains
mit niedriger Transaktionslatenz, welche zu einer reduzierten Effizienz, Korrektheit
und Dezentralität des Systems führt. Um die Latenz der Transaktionen effizient zu
verbessern, schlagen wir eine Lösung mittels Sharding vor. Darin wird der globale Markt
für Rechenressourcen in mehrere kleinere Märkte, etwa auf Smart-City Ebene, unterteilt.
Diese Märkte werden von fragmentierten Blockchains bereitgestellt, welche sich über
einen gemeinsamen, globalen Interledger synchronisieren. Unsere Ergebnisse stimmen
uns zuversichtlich gegenüber einer potentiellen Umsetzung unserer Lösung in weniger
Latenz-stringenten Edge-Umgebungen. Allerdings betonen wir die Notwendigkeit die
Teilnahme an derartigen Edge-Marktplätzen geographisch zu begrenzen und regen zur
Umsetzung zentralisierterer Ansätze an, auch wenn dies Einschränkungen in Vertrauen
und Privatsphäre impliziert.
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1. Introduction

Recently, and especially with the advent of 5G technology, endeavors of next-generation
applications such as IoT, autonomous vehicles, AR/VR or smart grids have received an
ever increasing amount of attention in both industry and academia [1], [2]. Commonly,
these applications experience stringent latency requirements of data and their processing,
in order to maximize QoS and usability (i.e. reflecting user input within 20ms to avoid
dizziness in VR [3], or controlling energy grids within 20ms of a lightning strike [4]). As
a key enabler of low latency computation, edge computing describes the idea of utilizing
compute resources in close proximity to end-users, as opposed to remote datacenters
found in traditional cloud computing. Consequently, edge computing implies the need
for vast, and geographically scattered provisioning of computing resources.

Amplified by the latest reignition of cryptocurrencies [5], Distributed Ledger Technol-
ogy (DLT) represents a similarly attention-gathering development and proposed key
enabler of decentralized applications [6], [7]. By replicating an irreversible ledger of
transactions, DLT aims to provide a trustful environment without third-party authority
and perform computation securely by the means of smart contracts [8].

Unsurprisingly, the idea of merging both technologies has gathered traction in recent
years [9]. Edge computing and its applications tend to be distributed and localized by
definition. In many regards, enabling a trustful and decentral environment as provided
by DLT, for the use in edge computing, yields attractive benefits for a variety of edge
applications [6]. To this end, highly distributed clients, such as IoT or autonomous
vehicles, could take advantage of DLT in order to share data on a secure and decen-
tralized communication medium [10]. Figure 1.1 describes the increase in research
publications of DLT and edge computing, in an attempt to capture the recent interest in
both technologies, as well as their amalgamation.
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Figure 1.1.: Google Scholar publications mentioning distributed ledgers and edge com-
puting in title or abstract.
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1. Introduction

1.1. Context

While DLT (and its subclass blockchain) has matured in the past decade with several
commercial-grade systems such as Ethereum [11] or Hyperledger [12] offering platforms
for cryptocurrencies, smart contracts and decentralized consensus, its application in the
edge computing domain is still in early stages [9]. As a result, research endeavors are
plentiful and explore the use of DLT in edge computing from many different directions.

A major challenge of edge computing can be seen in the installment, management
and provisioning of geographically scattered, heterogeneous resources and services [13].
Here, a popular approach is the proposal of a (crowdsourced [14]) edge computing
marketplace, using DLT as a decentralized auctioneer between resource bids [15], [16].
By matching under-utilized computing resources that are already part of the edge
network, i.e. home desktops, mobile devices or dedicated servers, with resource requests
of localized client applications and developers, an autonomous and self-sufficient edge
computing ecosystem could be envisioned. Due to the latency-stringent nature of many
edge applications, these marketplace operations are required to be highly performant. In
order to enable on-demand edge resource provisioning, or hand-offs between different
providers in case of crashes or client mobility, latency boundaries of resource bidding,
matching and deployment should be reduced to maximize quality of service [17].

1.2. Problem Statement

In total, research interest in edge computing and distributed ledger technology is as high
as never before, and attempts at merging both technologies seem promising [9]. Therein
however, we notice a popular, and potentially hype-driven, tendency of treating DLT
as a black-box solution for crowdsourcing, security or decentralized trust. Meanwhile,
potential performance bottlenecks relevant to edge are tactfully ignored, or left open
for future work (Section 3.2). Moreover, at the first glance, traditional blockchain
architectures appear to deliver unsatisfying latency and throughput results towards their
potential use in edge (i.e. Bitcoin blockchain creating one block every 10 minutes, leading
to 7 Tx/s) [18]. Making a similar observation, authors of [19] pose the research question
of finding a suitable distributed ledger for edge, and identify further requirements on
DLT. As a result, we ask ourselves, how does an edge computing marketplace backed by
blockchain look like in detail, and how applicable is a deployment of edge applications
using DLT in reality? Our objective for this thesis is therefore threefold:

1. Investigate state-of-the-art distributed ledger technology and existing attempts at
applying it in the realm of edge computing, in order to propose a decentralized
and performance-optimized compute marketplace based on blockchain.

2. Evaluate potential latency boundaries, bottlenecks and capabilities imposed by the
use of DLT in edge, and specifically in the proposed marketplace architecture.

2



1.3. Thesis Approach and Outline

3. Taking the strict performance requirements of next generation edge applications
into account, formulate a realistic outlook on the use of distributed ledger technol-
ogy in edge computing.

1.3. Thesis Approach and Outline

explore
Requirements

emulate
Configurations

Emulation
Results

build
Model

Prediciton
Model

discuss
DLT in Edge

identify
Parameters

Emulation
Environment

Marketplace
Architecture

Realistic
Outlook

Figure 1.2.: Emulation-based approach showing literature-guided (book), manual (stick-
figure) and automated (gear-wheel) activities (rounded rectangles) and
corresponding artifacts (rectangles).

In general, we aim to evaluate the combination of DLT and edge computing by devel-
oping a framework allowing the emulation of generic blockchain networks. Compared
to working with code of real blockchain architectures (i.e. Ethereum [11], Hyperledger
[12]), an emulation-based approach is promising due to higher maintainability and
versatility, while being more realistic than abstract simulations or models. Figure 1.2
depicts our approach as an activity diagram. In Chapters 2 and 3 we consult literature
and related work in several directions. Firstly, we are interested in latency requirements
of current and upcoming edge applications, in order to determine the performance
margin available for underlying control structures. Secondly, we investigate existing
DLT with the goal of devising components, parameters and performance variables to be
included in our subsequent implementation. Finally, we explore previous applications
and evaluations of DLT in edge, in order to discover common assumptions and goals, but
also to pre-select relevant DLT based on existing results. In combination, we propose our
version of the crowdsourced edge computing marketplace in Chapter 4, while focusing
on optimizing interactions with the underlying blockchain. Based on our marketplace
architecture and the identified DLT parameters, we develop our scalable emulation
environment in Chapter 5. Subsequently, we devise an experimentation strategy encom-
passing the latency of common marketplace operations. Using our emulator, we conduct
a variety of experiments in Chapter 6 and evaluate the performance of two configurable
blockchain architectures in three different networks. Here, we are especially interested in
potential trade-offs and boundaries occurring when optimizing blockchain performance
for low-latency edge. We summarize our results by proposing four empirical models
encompassing the most relevant parameters of blockchain performance. Finally, we
discuss our results, identified problems and potential solutions, and conclude by giving
a more realistic outlook on DLT in edge computing as part of Chapter 7.
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2. Background

In this chapter, we provide necessary background on key concepts referred to in this
work. Specifically, we introduce edge computing as an enabler of latency-stringent
applications and devices by moving computation closer to the end-user. Secondly, we
showcase the proposition of how crowdsourcing can be utilized to alleviate some of
the challenges, especially regarding resource provisioning, that were identified in edge
computing. Finally, we investigate distributed ledgers as an application of crowdsourcing
and its potential in edge. To this end, we aim to highlight intricacies of state-of-the-art
blockchain technology by shining a light on its promises and hindrances towards an
adoption in the edge.

2.1. Edge Computing

With the ever progressing development of information technology, the number of
devices, sensors and applications inhabiting the sphere of computation and networking
proliferates greatly. [20] predicts 55.7 billion connected devices worldwide by 2025, 75%
of which will be interacting with IoT platforms. Similarly, some sources project the global
cloud computing market to reach $1 trillion by 2026 [21]. Naturally, such a rapid growth
and adoption of interconnected solutions also poses complex technical challenges to
the industry. Ensuring Quality of Service (QoS) in regards to latency, throughput, fault-
tolerance and more, in an environment reliant on the performance of centralized server
facilities, is increasingly difficult for traditional cloud-based architectures. Consequently,
the idea of moving computation, storage and networking capabilities closer towards
their consumers, in an attempt to reduce traffic and congestion of data, becomes ever
more attractive [22], [23].

Edge Computing (here also Fog Computing) describes the paradigm of extending (or
even co-locating) cloud computing capabilities to the network edge. Initially introduced
via the proposal of cloudlets [24], describing compact datacenters deployed on WiFi
access points or LTE base stations, edge computing aims to improve QoS of latency-
stringent applications by enabling on-site aggregation, preprocessing, delivery and
analysis of data. Since then, only few promising initiatives have been taken. As such,
Multi-Access Edge Computing (MEC) as coined by the European Telecommunications
Standards Institute (ETSI) [25], describes placing edge servers within the Radio Access
Network (RAN) of mobile devices, i.e. near telecommunication masts [26]. RAN allows
applications to be enriched with real-time radio network information such as location or
cell load, enabling various optimizations based on radio and network conditions [27].
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2. Background

2.1.1. Edge Offloading

The existence of localized compute resources as found in MEC additionally fuels the idea
of (on-demand) edge offloading [28], [29]. Similar to its cloud computing counter part,
edge offloading describes the provisioning of services, or the execution of on-demand
tasks, as in i.e. Function-as-a-Service (FaaS), on edge resources. Especially mobile or IoT
devices provide comparatively low computing power while simultaneously benefiting
from low energy consumption [30]. Offloading computations to the cloud alleviates both
of these issues but comes with a tradeoff in latency and thus, user experience [31]. The
process of provisioning edge resources in a fashion similar to current cloud practices is
an ongoing research question and also part of this work (Chapters 3 and 4). In general,
the problem can be divided into five steps, namely resource discovery, negotiation, service
placement, execution and verification [32].

Therein, resource discovery is concerned with finding suitable edge providers in
close proximity to the targeted clients. Ideally, an optimal match between the client’s
requirements in terms of computing capabilities, latency or cost and the resource offer
is to be found. During the negotiation step, a service level agreement (SLA) between
resource requester and provider is reached. Additionally, payments from both parties
may be transferred into an escrow account, to ensure compensation or rewards in case
of contractual (un-) fulfillments. After negotiation of terms, the service or task is placed
onto the edge resource, to be then executed or accessed by clients. Depending on
individual SLAs, results may be verified during a final step, before they are accepted by
clients and funds are released from escrow.

2.1.2. Applications

Ever since its emergence, countless proposals and case studies on applications benefiting
from, or even being born by edge computing have been published [26], [27]. The
following aims to provide a brief overview and summarize important requirements
relevant to our work. Specifically, we notice that many applications have strict latency
and bandwidth requirements, and as a result, propose edge computing as an enabling
technology [33]. Figure 2.1 depicts these requirements for some driving edge applications
along with their expected marketshare [3]. The authors additionally identify an edge
computing feasibility zone of 200 milliseconds latency or below. For applications
with less stringent requirements, a traditional cloud-based deployment might be more
beneficial, especially in terms of cost effectiveness [3].

Content Delivery

As a pioneer of edge computing, Content Delivery Networks (CDNs) attempt to reduce
latency and bandwidth usage of data consumption by acting as localized caches. As
such, they provide static HTML content and web components, but also video and other
media streams. Therein, CDNs additionally offer more advanced forms of congestion
control, such as reducing graphics resolution of videos streamed by a large amount of

6
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Figure 2.1.: Strictness of bandwidth and latency requirements in driving edge applica-
tions. Color denotes expected market share by 2025 [3].

users, in order to avert denial of service [26]. In 2018, North American and European
regions experienced median latencies as low as 20ms to prevalent, commercial CDNs [34].
Here, especially storage and access control capabilities are moved closer to their direct
consumption.

Virtual and Augmented Reality

Virtual and Augmented Reality (VR/AR) describes the concept of simulating or enriching
a real environment through the use of virtual objects. To this end, the use of head-
up displays, and mobile technology such as Google Goggles [35] usually requires
task offloading for extensive computation, and high bandwidth in order to supply
imagery with minimal latency [36]. Here, the most stringent latency boundaries and
QoS requirements primarily depend on the human vestibular system requiring sensory
inputs and interactions to be synchronized. In order to avoid the feeling of sickness or
dizziness, these latencies should stay below 20 ms, the majority of which is however
taken up by the display technology [3]. In an attempt to tackle these and related
problems, [37] proposes the deployment of GPU clusters in edge, to be used at low
latency by devices with limited hardware.
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2. Background

Smart Grid

In a smart grid network, appliances and energy resources use distributed smart meters to
receive and transmit measurements of energy consumption and production. Here, edge
computing is proposed to perform supervisory control and data acquisition (SCADA)
within the energy network. The resulting system is intended to maintain and stabilize
the power grid by balancing and scaling its load autonomously based on information
provided by the smart meters [38]. To properly respond to changes in the grid, many
applications have strict latency requirements in the range of 100 milliseconds to 5
seconds [39]. Critical applications dealing with, i.e. lightning strikes require even lower
latencies of 20 ms or below [4].

Video Analytics and Rendering

Algorithms for object detection and classification in video streams concerned with
license plate recognition, face recognition or home security surveillance have high
computational complexity and are unsupported by traditional video capturing devices.
However, routing video streams to the cloud for processing [40] consumes large amounts
of bandwidth. Instead, video analysis could be moved closer to the capturing device
in edge to avoid network congestion, and also improve the latency of results [23].
Similar to VR/AR applications, edge computing could again provide GPU clusters
for rendering or machine learning tasks submitted by clients lacking the required
hardware capabilities [37]. Here, the advantages of edge computing primarily manifest
in bandwidth gains by processing video streams locally. Nevertheless, in use cases such
as traffic monitoring, latencies the below human reaction time of 250 ms may still be
required [3].

Internet-of-Things

The Internet-of-Things (IoT) envisions a wide array of physical and embedded devices
to be interconnected using data centers in order to generate new magnitudes of data
and value. Compute resources are again placed in the network edge to reduce latency
and congestion resulting from enormous amounts of data. Smart devices such as
phones, vehicles or general sensors and actuators are leveraged to propose a variety
of new paradigms, e.g. smart home, smart city or smart mobility [33]. Especially in the
entertainment area (i.a. TV, lights, heating), latency requirements appear to be less
stringent, and usually position around human reaction time (250 ms). However, in
applications concerned with traffic monitoring or autonomous vehicles, lower latencies
might apply [3], [27]. Here, Vehicular Adhoc Networks (VANETs) [41] are proposed
to enable communication between vehicles, mobility predictions and environmental
knowledge sharing. In order to be used for road safety, latencies around 10 ms are
necessary [4].
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2.2. Crowdsourcing in Edge
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Figure 2.2.: Total time t1 + t2 = t >> t3 until the verified completion of an offloaded
task in different scenarios. Here, deployment consists of resource discovery,
negotiation and service placement.

2.1.3. Challenges

Compared to cloud computing, edge computing violates the economies-of-scale paradigm
in almost every regard. Centralizing compute resources within a single authority
promises tremendous benefits in maintenance and deployment costs, energy deals, as
well as a reduction of personnel expenses for administration and management [42]. As
a result for application developers, cloud computing offers attractive pay-as-you-go
deals for a wide variety of resources and deployment schemes. Furthermore, datacenter
networks are highly optimized for technical performance and robustness, enabling
responsive load-balancing and elasticity on demand [43]. Contrary, edge resources are
decentralized and localized by design, necessitating a massive administrative overhead
[44]. On top of that, requirements on elasticity, hand-offs and performance may be
even more stringent in edge when compared to cloud computing. Especially when
considering the potential mobility of clients, i.e. in automotive, transferring tasks in
case of crashes, or offering FaaS, migrating and provisioning edge resources within
the latency requirements of their applications becomes vital (Figure 2.2). The shocking
realization is that not only edge resources but also its management plane needs to
satisfy edge requirements in an extremely heterogeneous environment. To this end,
communication technology enabled by the emerging 5G already aims for sub 10 ms
latencies in the control plane [45]. Finally, we note that stringent latency and throughput
requirements of applications are one of the main drivers of edge computing technology.
Failure of meeting these requirements may lead to traditional cloud computing being
the more attractive solution in many cases [3].

2.2. Crowdsourcing in Edge

Crowdsourcing can be defined as the practice of gathering and aggregating services,
data or any other resource, by the collective efforts of multiple parties, i.e. the general
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public [46]. For the area of edge resource provisioning, crowdsourcing appears to be the
perfect match. Today, the computational landscape is filled with personal computers,
mobile phones or intelligent cars with computational capabilities. These resources are
oftentimes underutilized and placed exactly where they are needed within the edge of
the network. By matching resource requests of edge applications and IoT devices to the
crowd’s resource offers, an autonomous and self-sufficient system could be envisioned.
Overall, the crowdsourcing paradigm promises a cost effective method of pooling
resources by offloading administration to individual resource owners. Furthermore, the
idea of crowd intelligence suggests qualitative benefits in task execution, by constructing
a global view of the edge computing landscape and enabling best possible matches
between resource requests and offers [47]. Therein, edge computing undoubtedly
satisfies all four requirements of a crowdsourced system as defined by [48], namley
diversity in devices and tasks, independence by autonomous operation, decentralization
without an arbiting governance and aggregation of devices and tasks to improve QoS.

Previously, volunteer cloud computing [14], describing the volunteered provision of
computing resources for distributed scientific computations, has been very successful.
Projects such as SETI@home and BOINC [49] have attracted millions of participants
worldwide, sustaining a processing rate of over 28 PetaFLOPS today [50]. However,
existing attempts of implementing a general crowdsourced compute market such as in
EDGE [51], Sonm [52] or Dfinity [53] (Section 3.2) appear to be largely unpopular. As
identified in Section 2.1.3, QoS is a vital requirement for edge computing. Especially
under the influence of commodity hardware introduced by a crowdsourced edge, the
blurry vision of a truly decentralized and crowdsourced platform for edge orchestration
becomes even grimmer.

2.3. Distributed Ledger Technology

As unarguably one of the major drivers of crowdsourcing in recent times, DLT is
influencing the industry landscape tremendously. With the rise of cryptocurrencies
such as Bitcoin [18] and Ethereum [11] combined with the advent of smart contracts,
many fields attempt to adopt DLT in order to leverage compelling promises such as
decentralized trust, distributed computation or even security by design [54]. In this
work, we shed a light on the roles and pitfalls of DLT in edge computing from two
perspectives. Firstly, we investigate the use of DLT as an enabling technology for a
variety of edge computing applications in general. Secondly, we explore DLT specifically
as a distributed auctioneer of crowdsourced edge computing marketplaces, offering an
open exchange and matching of edge computing tasks to requested resources. In the
following, we aim to highlight some of the intricacies and parameters of distributed
ledger and blockchain technology that are heavily influencing its potentiality of an
adoption in edge.

Distributed ledger technology (DLT) can be described as a decentralized, ordered
record of transactions. In its simplest form, DLT consists of a peer-to-peer network
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of nodes1, each maintaining a replica of the ledger. By adhering to a shared protocol
and cryptographic standard, an immutable total order over all transactions is enforced.
With the emergence of smart contracts [54], allowing the decentralized execution of code
using transactions as input parameters, DLTs have entered the field of general purpose
replicated state machines. To this end, DLTs have transcended their original field of
cryptocurrencies (e.g. Bitcoin [18]) and aim to be an enabling technology for a variety of
decentralized applications [54], such as electronic voting [55], data provenance [56], or
item sharing [57].

Clients of the distributed ledger create a public and private key pair known as a wallet.
Using the wallet’s asymmetric cryptography, new transactions are signed and sent to
a peer of the client’s choice. The transaction is then further propagated through the
network and included within the ledger. Here, a transaction could serve the purpose
of sending cryptocurrency to another client, or to initiate the execution of a replicated
smart contract. Replaying all transactions from the beginning constitutes the same state
on all replicating nodes. This is described as the world state.

As a subclass of DLT, a blockchain maintains the distributed ledger by batching
transactions into immutable blocks with each block referencing a previous one. Blocks
are created and replicated using a consensus protocol. Such a protocol can be divided
into several steps consisting of block proposal, propagation, validation, finalization and
an incentive mechanism [8], [58]. Moreover, peers can participate in the blockchain
in a variety of ways. For instance, participation can be public or private - based on
blockchain’s read access - as well as permissionless or permissioned - based on a peer’s
ability to participate in the consensus [59]. Restricting access to the ledger usually
implies the need for a separate registration and certification authority. Consequently,
while participating in permissionless DLTs tends to be pseudo-anonymous (Bitcoin [18]),
identities of permissioned consensus nodes are revealed to enable traditional Byzantine
Fault Tolerant (BFT) protocols. In permissionless DLTs, users are typically incentivized
to participate in the consensus protocol by monetary gains enabled by block rewards
or transaction fees. Consensus nodes in permissioned DLTs may instead be operated
explicitly by the platform owner [8], [58].

In general, DLT can be described as a layered architecture (Figure 2.3). For our
purpose, especially parameters influencing the performance of lower levels and DLT
internals are of importance. To provide a summary on consensus protocols (Layer
II), we further categorize DLT into four areas consisting of proof-based, BFT-based and
committee-based blockchains, as well as Directed Acyclic Graph (DAG) based DLT (Table 2.1).

2.3.1. Proof-Based Blockchains

Proof-based blockchains propose new blocks by employing a distributed, pseudo-random
lottery, e.g. proof-of-work (PoW [18]) or proof-of-stake (PoS [60]), and effectively
simulate a random leader election. The lottery winner (i.e. the miner) includes a

1In this work, we use the terms peer and node interchangeably.
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Figure 2.3.: Components of the layered DLT architecture.

zero-knowledge proof of their win within a new block, making it verifiable to other
peers. Equation (2.1) describes how the probability Prwin

i of a node i ∈ N winning the
consensus lottery, is directly proportional to a node’s verifiable share of lottery power wi,
i.e. its computational power (PoW) or the amount of staked coins (PoS) [58].

Prwin
i =

wi

∑j∈N wj
, ∀i ∈ N (2.1)

Proof-based blockchains additionally specify a difficulty of the lottery, with the goal
of regulating the amount of winners within a given time frame. Consequently, we can
model the proof-based lottery as a Poisson process with rate λ, describing the rate of
new blocks to be created by the entire network per time unit. Since the combination
of N independent Poisson processes with rates λi still describes a Poisson process,
we can further model the lotteries conducted by individual peers using their winning
probabilities as shown in Equation (2.2) [58].

λi = λPrwin
i , ∀i ∈ N (2.2)

Apart from the ability to propose the next block, winning the lottery traditionally
entails a reward according to the employed incentive mechanism, i.e. in form of a
cryptocurrency. The reward consists of transaction fees for all transactions included
in the block which are paid by the submitting clients, as well as block rewards used
for minting new coins (i.e. coinbase transaction in Bitcoin [18]). Without the existence of
an incentive mechanism, consensus nodes of proof-based blockchains would operate
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Table 2.1.: Consensus protocol summary [8].

Cat. Proposal Propagation Validation Finalization

PoX PoW, PoS, PoR Gossip to peers zk-Check LCR, GHOST

BFT Round-robin,
on request

Broadcast Signature check Mutual
state agreement

Com. Round-robin
by elected
delegates

Broadcast btw.
delegates, gossip
to peers

Proposer
eligibility check

(Pipelined) BFT +
LCR, GHOST

DAG PoW, parent
approval

Gossip to peers Check zk-proof &
reference to par-
ents

DAG total order

at a massive monetary loss. By forcing participants to commit valuable resources such
as computational power, memory or their staked coins, the danger of a sybill attacker
controlling many nodes without overhead, in order to skew winning probabilities in
their favor, is averted. In proof-based blockchains, nodes are anonymous and equal
in their role of proposing and validating blocks. To this end, transactions and blocks
are propagated and replicated in the peer-to-peer network using gossiping. Here, we
differentiate between advertisement-based gossiping (Figure 2.4) and unsolicited block
push (Figure 2.5) [8]. While in the latter strategy nodes immediately transmit new blocks
to their peers in order to reduce latency, advertisement-based gossiping only propagates
block headers to minimize bandwidth usage. Consequently, blocks are only transmitted
after an explicit request is received. Due to the equality of peers and open participation in
the random leader selection employed by lottery. Proof-based approaches are primarily
adopted by public-permissionless blockchains and cryptocurrencies such as Bitcoin [18]
or Ethereum [11].

Proof-of-Work

In PoW blockchains such as Bitcoin [18], the distributed lottery is represented by a
cryptographic puzzle to be solved by all peers. More specifically, for a block to be
accepted by peers, its hash is required to be smaller than a target difficulty. This is
achieved by changing a nonce value within the block. Consequently, wi (Equation (2.1))
describes the rate at which a node i is able to calculate new hashes. For a hash function
H(·) generating bit strings of length L and a difficulty target h < L, the condition to be
fulfilled in order to propose a new block x is therefore precisely:

H(x||nonce) ≤ 2L−h (2.3)
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Figure 2.5.: Unsolicited block push.

Assuming H(·) is an irreversible cryptographic hash function, satisfying this condition
cannot be more efficient than systematically trying every possible value of the nonce [58].
Therefore, the probability of finding a valid hash is a Bernoulli trial of Equation (2.3).
Since a repeated Bernoulli trial in short intervals converges to a Poisson process, our
model of proof-based blockchains as a Poisson process in Equation (2.2) is valid [61].
During the validation phase of a block, the proof-of-work calculated in the nonce can
then easily be validated by a single call to H(·).

Proof-of-Stake

Initially proposed by Peercoin [62], PoS aims to reduce the energy consumption of large
scale PoW mining. To this end, Peercoin introduces the notion of coin age describing
the duration a specific amount of coins was held by a miner. The miner is then able
to calculate a traditional PoW solution but reduces the difficulty target by the miner’s
personal coin age. As transactions are publicly stored on chain, coin age is easily
verifiable by other miners. In [63] and related work, the PoW concept is replaced
entirely by an algorithm described as follow-the-satoshi. Therein, a satoshi is the minimum
token unit carried by the blockchain. By indexing all tokens in circulation, a complete
distribution of coins and their owners is created. In a simplified protocol, the header of
block t− 1 is used to pseudo-randomly determine the winner of block t. To this end,
the output of H(header(t− 1)) is used to search the satoshi index. The owner of the
chosen satoshi is then selected as the winner of the new block [58]. As a result, wi of
Equation (2.1) describes the share of coins owned by node i, the remaining equations
follow analogously. In order to be the verifiable owner of the indexed satoshi, the PoS
lottery winner includes their signature within the new block.

14



2.3. Distributed Ledger Technology

Block 3Block 1 Block 2

Block 0

Block 1 Block 2 Block 3 Block 4 Block 5

SB w/ 1 confirmation
= Stale block

SB w/ 
2 conf.

SB w/ 
3 conf.

Shared Parent Main Chain Stale Fork

Figure 2.6.: Differentiating between stale blocks and confirmed stale blocks.

Other Proof-Based Protocols

Similar to PoW and PoS, other proof-based protocols have been proposed. To this end,
Proof-of-Retrievability (PoR) [64] requires staking resources, i.a. memory, similar to PoW.
Other approaches such as Proof-of-Useful-Work (PoUW) [65] aim to replace PoW with
less wasteful alternatives such as calculating prime number chains. Proof-of-Elapsed-
Time (PoET) as implemented in Hyperledger Sawtooth [66] or Proof-of-Luck (PoL) [67]
attempt to simulate the process of PoW by using Trusted Execution Environments (TEEs)
to wait for a random amount of time before a new block can be proposed by a node.

Stale Blocks and Confirmations

Revolutionary, and in some cases a drawback of proof-based consensus, is the concept of
probabilistic finality. In case of multiple lottery winners in quick succession, along with
network latencies, proof-based blockchains can experience forks, resulting in multiple
blocks referencing the same parent block as shown in Figures 2.6 and 2.7. In order to
restore consensus and agree on the same transaction history, fork resolution mechanisms
such as the longest chain rule (LCR), GHOST [68] and additional confirmation blocks
allow peers to reach eventual, probabilistic consensus finality by deciding on one of
the forks (know as the main chain). In this work, once a transaction is included in a
block, it is said to have received one confirmation. Every additional child block added in
accordance of the applied fork resolution strategy further increments the transaction’s
total confirmation number. As a result, transactions with many confirmations are less
likely to end up in a fork outside of the main chain (Chapter 6). Once a transaction
receives enough confirmations to be deemed irreversible by an application, following
actions relying on the acceptance of the transaction are initiated (i.e. shipping a product
that was purchased using cryptocurrency). In the following, the latency of a transac-
tion receiving enough confirmations to be accepted at the application level is termed
transaction latency or confirmation latency.

Blocks outside of the main blockchain, as determined by the fork resolution, are
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known as stale blocks. Transactions that are only present in stale blocks are automatically
released back into the memory pool, in order to be included in future blocks of the main
chain. Consequently, we additionally differentiate between general stale blocks and
confirmed stale blocks which received enough confirmations for their transactions to
be wrongfully accepted by an application, before ultimately turning out to be stale
(Figure 2.6). Here, the latter potentially implies the existence of double-spends or the
necessity of rollback operations after the confirmed block was detected as stale by the
application [69]. In general, the creation of stale blocks represents a waste of computing
power, storage and bandwidth. As a result, the percentage of stale blocks can be used as
a characteristic attribute, and as an efficiency indicator of the blockchain architecture.

Longest-Chain Rule

Originally introduced by Bitcoin [18], the longest-chain rule (LCR) resolves forks by
always selecting the chain with the largest amount of consecutively invested lottery
power. Ties may be resolved randomly or on a first-come-first-serve basis. Here, in
the case of each block having the same difficulty, LCR is simplified to selecting forks
containing the highest number of consecutive blocks. To this end, a known vulnerability
of proof-based blockchains is the alternative history or 51% attack [18]. Therein, an
attacking network secretly works on an alternative version of the blockchain, starting
at a common block. Once the secret chain reaches a higher block count than the
longest currently accepted chain, the secret blocks are released, effectively rewriting
the transaction history (Figure 2.7). By reverting previously accepted transactions, a
double-spend attack can be conducted, leading to proof-based blockchain’s theoretical
fault tolerance of 50% lottery power to be controlled by a benign network [18].

GHOST

Contrary to popular believe, research has shown that double-spend attacks on LCR
can be conducted with less than 50% lottery power due to the existence of stale blocks
[70]. Stale blocks are excluded of the longest chain and consequently do not protect
against alternative history attacks, despite using up valuable lottery power during
their creation. As a result, especially networks creating many stale blocks are more
vulnerable to double-spend attacks [70]. To increase the resistance against attacks, the
Greedy-Heaviest-Observed-Sub-Tree (GHOST) rule includes stale blocks during fork
resolution. Here, instead of the longest chain, the largest sub-tree is selected at every
fork. In order to avoid calculating sub-tree sizes starting from the genesis block as
shown in Figure 2.7, GHOST additionally defines a depth parameter from which tree
sizes are calculated. GHOST was initially proposed in [68] and is partially implemented
in the Ethereum blockchain [11], allowing the network to create blocks at much higher
rates as opposed to LCR-based blockchains such as Bitcoin [18].
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Figure 2.7.: Using GHOST to decrease vulnerability against alternative history attacks
by including stale blocks during fork resolution [68].

2.3.2. BFT Blockchains

In contrast to proof-based consensus, BFT blockchains are maintained by identifiable
consensus nodes adapting traditional protocols known from state machine replication.
To this end, a Crash-Fault Tolerant (CFT) protocol such as Paxos [71] (Figure 2.8) allows
up to f simultaneous crash-failures in a network of 2 f + 1 nodes. To additionally
allow for byzantine-failures introducing erroneous or malicious results, Byantine-Fault
Tolerant (BFT) protocols such as Practical BFT [72] (Figure 2.9), introduce an additional
synchronization step to compensate for f simultaneous failures in a network of 3 f + 1
nodes at the cost of higher message complexity [8], [58]. BFT protocols are adapted
to fit DLT requirements of reaching consensus on blocks by operating in multiple
rounds. In Casper FFG [73], all nodes propose blocks and transactions during individual
checkpoint cycles. Out of all proposed blocks, finality is reached on one block per
round. Similarly, Hyperledger Indy [12] makes use of Redundant BFT [74] to reach
consensus on blocks proposed by a primary node. Here, blocks are signed by the
proposing leader, allowing for signature checks during the consensus validation step.
In a different approach, Hyperledger Fabric [75] extracts a separate ordering service,
enabling modular deployment of pluggable CFT consensus protocols such as Kafka [76]
or Raft [77]. The support of BFT algorithms is planned for the future. In the Cosmos
Hub architecture [78], Tendermint [79] describes a variation of PBFT to be used for
blockchains. Therein, n validator nodes propose new blocks in order, until one of the
blocks is accepted by more than 2n/3 validators in accordance to PBFT. The procedure
is repeated for every new height of the blockchain.
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Compared to proof-based blockchains, BFT blockchains achieve total finality without
stale blocks at the cost of lower fault-tolerance and scalability, by reaching consensus
immediately for every individual block. Especially the depicted quadratic message
complexity in terms of participating nodes, limits their deployment to small networks
[80]. Additionally, due to the nature of BFT protocols requiring nodes to be identifiable,
BFT-based blockchains imply an operation in permissioned mode.

2.3.3. Committee-Based Blockchains

Hybrid or committee-based blockchains attempt to improve upon the scalability shortcom-
ings of BFT-based blockchains by selecting a smaller subset of nodes to be used for
consensus. In a public-permissionless setting, this might be enabled by allowing peers
to vote for a set of delegates, which in turn propose the next set of blocks [81]–[83]. In
permissioned operation mode, a committee may instead be hand-picked, or chosen by a
separate selection mechanism. Delegates reach consensus on blocks using BFT protocols
of the previous section (i.e. Tendermint in Cosmos Hub [78]) or pipelined BFT protocols
with slightly relaxed finality (i.e. EOS [84]).

DPoS-BFT

In delegated proof-of-stake using pipelined BFT (DPoS-BFT) as found in EOS [84],
delegates are elected in rounds by peers staking coins to vote. Subsequently, delegates
each propose multiple blocks in round-robin fashion. To this end, block production
intervals are deterministically assigned to consensus nodes in a way ensuring that only
one node has authority over the blockchain at any given time. Here, EOS introduces
the notion of a last irreversible block, describing the latest block on the chain which was
extended by blocks of at least 2/3 of remaining block producers (Figure 2.11). The block
is described as irreversible under the assumption that a Block Producer (BP) building
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Figure 2.11.: Stale and irreversible blocks in DPoS-BFT
with 4 block producers.

upon a block for the first time will continue to do so in the future. Any deviation of
this assumption describes a verifiable byzantine failure, leading to an exclusion of the
violating consensus node. By limiting the authority to one node at a time and allowing
BPs to create multiple blocks consecutively, EOS achieves block rates of 2 blocks per
second, representing a significant improvement over other permissionless approaches
[84]. However, in case of blocks produced during the previous interval not arriving at the
next BP in time, stale-blocks may still be created during the authority hand-off between
two BPs (Figure 2.11). Therefore, an obvious optimization is ordering BPs according to
their shortest Hamilton cycle, returned by solving the underlying traveling-salesman
problem [85]. Since waiting for a block to be confirmed by blocks of 2/3 remaining block
producers increases a transaction’s confirmation latency significantly, EOS additionally
introduces a pipelined BFT protocol. Therein, BPs broadcast a block proposal to all other
BPs, before sending out the new block (Figure 2.10). Only if at least 2/3 consensus nodes
reply with an acknowledgment, signaling their intend of extending upon the proposed
block if received in time, the completed block is gossiped through the remaining network.
This allows clients to skip the waiting time for a block to become irreversible and enables
EOS to provide low transaction latencies with high probabilistic finality.

2.3.4. DAG-Based DLT

Finally, DLTs based on Directed Acyclic Graphs (DAGs) aim to diverge from the lin-
earity of Bitcoin’s original blockchain design, in an attempt of increasing transaction
throughput. Here, the key insight is that restricting the underlying datastructure to
linear growth inherently limits its expansion and scalability, especially in the presence
of natural transaction concurrency. Instead, DAG-based DLT embraces concurrency by
allowing blocks and transactions to reference multiple parents. To restore a consistent
transaction history, the resulting partial transaction ordering imposed by the DAG is
then transformed into a total order using a common procedure [8].
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BlockDAGs

Similar to blockchains, blockDAGs aggregate transactions into blocks before including
them in the datastructure. Here, SPECTRE [86] requires nodes to point a new block to
all child-less tips of the current DAG by including their hashes and calculating a PoW.
The nodes then initiate a recursive procedure to determine a pairwise order of blocks,
eliminating all conflicting transactions [8]. As a result, the probability of a transaction
being eliminated decreases proportionally to its depth in the DAG, leading to similar
probabilistic finality and confirmation latency as observed in blockchains.

TxDAGs

Transaction-based DAGs (TxDAGs) further deviate from the blockchain architecture by
absolving of blocks entirely, and instead creating a DAG of transactions. To this end,
IOTA Tangle [87] requires new transactions to reference and approve two, preferably
unapproved, transaction tips using PoW. In case of multiple conflicting tips, transactions
with the highest acceptance probability are chosen using a tip-selection scheme [8].

For our purpose of evaluating edge computing marketplaces, purely transaction-
based platforms such as IOTA are less attractive. Since the majority of edge marketplace
approaches envision conducting auctions on chain (Chapter 4), they would inherently
benefit from transactions being aggregated into blocks. Consequently, transaction-based
platforms do not fit these marketplace requirements.

2.3.5. Trade-offs in DLT

Between the presented platforms, choosing the best suited blockchain technology for
edge, or for the edge computing marketplace, requires consideration of a variety of
trade-offs [59] - most notable being performance vs. security, fault-tolerance and decen-
tralization. Table 2.2 summarizes a variety of other trade-offs to be considered when
selecting between the discussed categories of existing DLT platforms. Overall, currently
operating blockchains appear to be un-optimized for edge computing use cases, mainly
represented by their significant confirmation latency. Specifically, cryptocurrencies
employ low block rates and require many confirmations in order to remain secure and
consistent (i.e. 6 confirmations at 10 minutes per block in Bitcoin [18]). While on the
other hand BFT-based blockchains appear to be more performance oriented, latencies
are limited by synchronization and the computational overhead resulting from serial-
izing and deserializing a cubic amount of messages [80]. Nevertheless, state-of-the-art
blockchain technology exposes many configurable parameters, allowing us to investigate
their applicability in edge using reparameterization by measuring trade-offs, bottlenecks,
limitations and capabilities. To quantify these trade-offs, multiple internal performance
metrics of different blockchain technologies need careful investigation. In this work, we
focus our attention on analyzing performance (in throughput and confirmation latency),
security and consistency (in stale blocks) as well as decentralization (in the number of
consensus nodes and the duration of block production intervals) [88]. As previously
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Table 2.2.: Consensus trade-off overview [8].

Cat. Participation Complexity Finality Fault Tolerance Latency

PoX Permissionless O(1) Probabilistc 50% lottery
power

minutes

BFT Permissioned O(n2)−O(n3) Total 33% nodes seconds

Com. Either O(n) − O(n3)
delegates

Either 33%
delegates

seconds

DAG Permissionless O(1) Probabilistc 50% lottery
power, partici-
pants

seconds,
minutes

mentioned, we additionally differentiate between general stale blocks and confirmed stale
blocks receiving enough confirmations to be wrongfully accepted at the application level
(Figure 2.6) [69].
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3. Related Work

Existing research relevant to our work can be categorized into three areas. Firstly, we are
interested in previous attempts of using DLT in edge computing, in order to reveal pop-
ular strategies, but also misconceptions or assumption made about blockchain in edge.
Secondly, we investigate proposals of edge computing marketplaces and provisioning
using both distributed and centralized auctioneers, with the goal of extracting common
components and architectures. Finally, existing evaluations and especially simulations
of DLT are relevant to us. Here, we hope to find preliminary results on blockchain
performance and determine the research gap to be bridged in order to make emulation
a viable strategy for evaluating blockchain in edge.

3.1. DLT in Edge Computing

The following aims to provide a brief summary and selection of common frameworks
attempting to integrate blockchain and edge computing systems, especially focusing
on performance critical applications. For a more complete study, refer to for example
[6], [7], [89], [90]. Overall, the use cases of blockchain in edge can be categorized into
network, storage and computation, under the overarching goal of improving security,
privacy, consistency and trust within the applied systems.

Network

In DistBlockNet [91], a PoW blockchain is used as a trustless mediator between IoT
nodes updating flow rules of their underlying Software Defined Network (SDN). Here, the
authors claim to detect and respond to attacks on the IoT network in real time, however,
the intended blockchain architecture remains largely unmentioned and is not included
in performance evaluations. The authors of [92] propose a framework of Security
Manager (SM) nodes providing rekeying and key transfers for transportation systems
entering or leaving the SM’s security domain. Therein, SMs construct a blockchain
network by collecting and propagating requests in blocks. While the given performance
evaluation seems promising, the simulated network was only composed of 9 nodes,
leaving the scalability of this approach to be questioned. [93] suggests using three
different blockchain networks (monitoring, provisioning and brokering) to quickly
deliver video content to end users in the public web. To this end, authors suggest the
use of a permissioned blockchain Hyperledger Fabric [75] previously criticized for its
low scalability [94]. Additionally, their approach reveals the need for five consecutive
write operations, and thus - blocks on the chain, before content is finally delivered. [95],
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[96] provide a thorough review on the use cases of blockchain in 5G networks. Here,
the prevalent challenges are related to the performance and scalability of blockchain
platforms.

Storage

Liu et al. [97] use blockchain to ensure integrity and verification of data shared between
IoT producers and consumers. Despite the blockchain only being hosted by a single
node in their evaluation, the results reveal significant latencies of up to several minutes,
making us question the applicability of such an approach in IoT. In BeeKeeper [10], the
privacy of IoT devices is preserved by storing data on a trustless blockchain. On request,
the data is then read by external servers, processed and written back to chain without
identities being revealed. The authors identify that the performance of their approach
relies on the underlying blockchain. Arguably, without a suitable architecture, such an
approach is infeasible. Similarly, BlockPro [98] defines two Ethereum smart contracts
acting as a pipeline to secure provenance and integrity of data sent between IoT devices
and database servers. Evaluations are conducted on two private Ethereum miners,
disregarding the overhead of scaling blockchain and Ethereum in particular.

Computation

In [99], the authors propose a two-stage Stackelberg game allowing mobile devices to
offload expensive PoW computation to the cloud. As a result, mobile clients are able to
participate in PoW blockchains under otherwise equal conditions, without experiencing
heavy computational loads. In a different approach, Mneme [100] defines two new
consensus protocols, proof-of-concept and proof-of-equivalence, to deploy blockchains
on mobile devices. Evaluation results indicate that, similar to other consensus protocols,
a trade-off between performance and security has to be made. [101] proposes a health
blockchain for recording and processing data of patients’ implanted or wearable sensors.
Once again, no performance analysis or description of the blockchain architecture is
made. [102]–[104] and others propose the use of Ethereum smart contracts to create
marketplaces for trading electricity in smart grids. As identified in Section 2.1.2, these
systems could potentially benefit from latencies lower than what is offered by Ethereum.
The authors of [105] propose using the blockchain black-box for trustless mediation of a
crowd-intelligence ecosystem on mobile edge computing. As a result, applications of
such a platform are additionally limited by the underlying blockchain architecture.

3.2. Edge Computing Marketplaces and Provisioning

Enabling crowdsourced edge marketplaces for decentralized computations has remained
a topic of interest within the research community for several years. In[15], the authors
propose an edge computing marketplace on top of a DPoS blockchain supported by a
range of simulation results. However, results reveal that latency overheads imposed by
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the enabling blockchain architecture are quite high - delivering an unsatisfying perfor-
mance for edge marketplaces. DeCloud [16] defines a truthful double auction protocol
and architecture designed for edge computing marketplaces reliant on blockchain. Here,
bids containing resource offers and requests are first published in encrypted form. After
all bids for the next auction are collected, a block header is published, prompting clients
to reveal their encryption keys. Subsequently, a match is computed and the final block is
added to chain. Nevertheless, especially due to performance constraints, the underlying
DLT remains an open research question [19]. [106]–[108] and [109] define smart contracts
enabling compute marketplaces and cloud tenant management based on Ethereum [11].
However, potential overheads resulting from an Ethereum network are not included
in these studies. In BlockEdge [110], multiple blockchains are superimposed into a
hierarchical structure (edge, fog and global blockchains) in order to adapt to varying
network requirements, but the blockchain architectures themselves are not investigated.
Focusing on a different part of the marketplace architecture, the authors of [111] propose
a model to predict the probability of failure-free execution and result of decentralized
resource providers, using log traces of an existing blockchain-based cloud market (iExec
[112]). Sharing many research areas with compute marketplaces, [113] suggests a system
for blockchain-based multi-party computation on EOS [84]. However, overheads of
using the EOS platform are not investigated. In [114], IoT tasks to be executed by cloud
servers are submitted on an Ethereum blockchain. Here, task submission could take
up a significant portion of total provisioning latency. Conversely, in [17], [32], [115]
and [116] the authors suggest more centralized solutions by making use of trusted
servers as opposed to DLT. To this end, [32] proposes the use of a cloud server serving
as the initial rendez-vous point, service discovery and computational fallback of edge
providers. In total, many approaches suggest blockchain as a decentralized auctioneer
for crowdsourced compute marketplaces. However, barely any practical solutions are
provided. Additionally, existing evaluations are oftentimes lacking in the area of the
underlying DLT, ignoring potential bottlenecks imposed by such an architecture.

Outside of the research community, several platforms offering the exchange of com-
puting tasks and resources have been implemented. These consist of most notably,
iExec [112], EDGE [51], Dfinity [53] and SONM [52], all of which employ blockchain
and crypto tokens in parts of their operation. In EDGE, highly available master nodes
maintain a PoS blockchain serving as a domain name system for gateways. Gateways
in turn are used as network entry points, keeping job queues and assigning tasks to
crowdsourced edge hosts. Despite only offering storage capabilities so far, support for
computing tasks is planned [51]. In iExec, computing providers join working pools
under a pool manager. Here, iExec describes a customizable proof-of-contribution
protocol, to certify the likelihood of a result being valid, by replicating tasks on multiple
workers and comparing digests of result folders. Deals between pool managers and
requesters are sealed using an Ethereum on-chain component. SONM follows a similar
approach by handling payments on the public Ethereum chain. Smart contracts relevant
to the marketplace are executed on a private Ethereum network, creating blocks every 2
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to 3 seconds. In contrast, Dfinity distances itself from traditional blockchain solutions,
aiming to create the Internet Computer using a Network Nervous System as a tailored net-
work abstraction. To summarize industrial approaches, interactions with the blockchains
appear to be particularly prevalent during auctioning and sealing of deals. Especially for
longer running services, or applications with relaxed latency requirements, the resulting
initial overhead is manageable. However, in order to support edge computing use
cases as claimed by these platforms, offering service hand-offs or FaaS by provisioning
resources with negligible latency, seems to be a problem remaining to be solved.

3.3. DLT Evaluation

Concluding our results of the previous sections, we are highly interested in finding a
blockchain architecture capable of supporting low latency edge computing use cases. In
particular, we aim to determine how such a platform looks like, or if it even exists at all.
To this end, we investigate a variety of simulators and models evaluating blockchains. A
general summary over the field concerned with modeling blockchain architectures is
provided by [117]. Here, we realize that existing work in this space appears to be largely
unsuitable for our study due to several reasons.

BLOCKBENCH [94] describes a framework for evaluating the performance of pri-
vate blockchains. In their work, the authors investigate throughput and latency of
Hyperledger Fabric [75] and permissioned adaptations of Ethereum [11]. Their findings
determine permissioned blockchains to be significantly slower than current database
systems when comparing their capability of handling traditional data processing work-
loads. Although these results represent valuable insights to us, BLOCKBENCH itself is
not suited for emulating detailed edge network topologies or permissionless blockchains.
Following a similar approach to us, SimBlock [118] attempts to investigate ways of
improving the performance of proof-based blockchains using simulation. However,
the implementation does not consider other consensus protocols nor the simulation
of transactions. Similarly, [119]–[122] or [123] only support proof-based blockchains
and are not fine-grained enough for our purpose. As one of the few evaluations fo-
cusing on latency, [124] provides interesting results regarding the high confirmation
latency of Ethereum. However, the simulation only considers parameters describing
inter block time, number of confirmations and average propagation delay. Finally, [125]
provides relevant comparative results on the creation of stale blocks in proof-based
blockchains depending on block rate and network latency, but doesn’t allow for any
latency evaluation of transactions.

In contrast, DLT evaluations not using simulation are more insightful to us. [19]
identifies potential shortcomings and requirements of DLT in edge. Next to low latency,
the authors mention the need for privacy, accountability, juristic legislation and low cost.
[126] compares the performance of blockchain platforms Hyperledger Sawtooth [66],
Ethereum [11] and EOS [84]. Here, EOS appears to be the most promising in terms of
CPU and RAM usage, as well as transactional performance. In [80], the authors compare
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the scalability and performance of several permissioned consensus protocols, namely
Tendermint [79], Paxos, PBFT and HotStuff [127], revealing severe bottlenecks at higher
node counts.

In this work, we primarily focus on the latency of blockchain transactions in edge envi-
ronments. However, for many applications, transaction throughput represents an equally
important parameter. Rainblock [128] describes a performance bottleneck resulting from
verifying many transactions per block, and proposes a solution improving underlying
data structures and I/O operations of Ethereum [11]. As a result, the authors achieve
throughputs of 20k transactions per second at the cost of higher latency.

3.4. Contribution

In summary, many works are tempted by the promises of DLT. As a result, strong
assumptions are made, by treating blockchain as a black box solution to privacy, security
or trust related issues, and no mind is paid towards potential bottlenecks or implications
resulting from such an architecture. Furthermore, evaluations and implementations of
proposed blockchain frameworks in edge are incomplete or not applicable for deploy-
ments at scale. While existing evaluations specifically targeting DLT give strong hints
on trade-offs and limitations of blockchain in edge, previously implemented simulators
are too abstract and unoptimized for the edge computing use case. However, as we do
not blatantly disagree with the promises made by DLT towards a crowdsourced edge,
we recognize the need for thorough investigations. Consequently, we are motivated
in our contribution of evaluating blockchain performance in edge. As the optimal
middleground offering better maintainability and measurability compared to evaluat-
ing real blockchain code (i.e. Hyperledger Fabric [75], Ethereum [11]) all while being
more realistic and fine-grained than abstract simulations, in this work we opt for an
emulation-based approach.

To this end, we develop a generic, scalable and message-based blockchain emulator
(see Chapter 5) allowing the configuration and observation of several internal parameters
with special influence on performance. Due to the low granularity of our approach
using real world socket connections, we additionally aim to enable the potential of
evaluating hardware-in-the-loop, by implementing a n-to-m mapping of emulated peers to
coordinating machines. Because of the poor performance of BFT-based blockchains at
scale [80], [94], we focus on implementing a generic proof-based approach, and DPoS-
BFT as presented in Section 2.3. Subsequently, we will apply our emulator to evaluate
performance boundaries of blockchains supporting a crowdsourced edge computing
marketplace in regards to latency requirements imposed by the edge environment, and
propose 4 empirical models summarizing our results.
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In the following, we intend to investigate the internals of a crowdsourced edge com-
puting marketplace backed by blockchain. To identify potential dependencies between
both paradigms, we introduce vital components of such an architecture, as well as their
interactions with the underlying DLT. Based on our results, we will deduce a strategy to
evaluate the performance and latency boundaries imposed by blockchain in Chapter 6.

Figure 4.1 depicts a typical architecture of a decentralized edge resource marketplace.
Such a marketplace consists of three participating entities, resource providers that offer
their heterogeneous hardware for hosting applications (typically for an asking price),
clients or developers that are looking for resources at the edge to deploy their next-
generation applications, and a blockchain acting as a decentralized auctioneer - matching
requests from clients to offers from providers. Rather than focusing on transactions
and interactions between clients and providers, in this work we dissect the internals of
the blockchain operations that glue the marketplace together. To furthermore highlight
direct communication with the blockchain, we distinguish between off-chain and on-
chain components of the marketplace. Additionally, we differentiate between devices
that are required to be part of a low latency edge network (i.e. edge resource providers)
and participants who may or may not be part of the abstract edge (i.e. clients and
blockchain nodes) as indicated by Figure 4.1. In contrast to previous proposals of
edge computing marketplaces, our approach and architecture attempts to minimize
the potential of DLT becoming a bottleneck, by limiting client interactions with the
blockchain to a single transaction before matching results are received.

Based on prior research in the field [15]–[17], [108], an edge marketplace relies on the
blockchain to support the following operations.

4.1. Auction Protocol

The auction protocol enables bidders to participate in the matching by defining a commu-
nication channel with the auctioneer. Bids define valuation, costs and properties of the
requested and offered resources, information about the submitted task and the provided
hardware. To this end, requirements such as truthfulness, privacy and the message
complexity of the protocol need to be considered. Using blockchain as a distributed,
trustless auctioneer to record and process resource bids, promises irreversibility and
decentral fairness of the resulting matches. As is typical for blockchain networks, created
blocks, and thus auction results, are verified by all peers using a consensus protocol.
This way, the decentralized blockchain auctioneer ensures that no bid was excluded
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Figure 4.1.: Devices, roles and activities in a crowdsourced edge computing marketplace
using blockchain.

or altered by a malicious peer, and the auction result is indeed optimal. In order to
minimize latency of the blockchain auction in an edge environment, participants should
be able to send their bid as a single transaction and be expected to receive a match
as part of the next block containing their transaction. Several auction protocols for
blockchains have been proposed in the past - most of which, however, require multiple
blocks until completion to accomodate for security or privacy requirements. Strain [129]
describes a secure auction protocol for blockchains, guaranteeing non-retractability and
confidentiality of bids against fully-malicious adversaries. Yet, on top of expensive cryp-
tographic operations taking up several seconds according to the authors’ measurements,
the protocol additionally requires 4 consecutive blocks on the chain. Similarly, DeCloud
[16] sacrifices latency in favor of guaranteeing the truthfulness of bids. Here, encrypted
bids are published as part of the first block. In a second block, the encryption keys are
revealed and a match is computed1. The third and final block is then composed of the
clients’ confirmations. In SmartEdge [107], computation providers deploy smart contracts
for each of their resources. Clients then send requests to the contract which are mined
into a first block. Requests are subsequently accepted or rejected by the provider in the
second block. [106] mirror this process by allowing clients to publish computation tasks
in a first block which are then selected by farmers as part of a second block.

To summarize, sending resource offers and requests to the blockchain in a single
transaction, as proposed by our approach, potentially requires sacrifices in truthfulness
and privacy due to i.a. abandoning the encryption step of bids as described in [16].
Additionally, we discover the need for an escrow account to be filled with funds by
clients and providers before participating in any auctions. This way, payments and

1Note that the latency of the second block is additionally bounded by the slowest client participating in
the auction. The match cannot be computed before all previously encrypted bids are revealed. Verifying
consensus nodes cannot distinguish between a slow client revealing the bid too late and a malicious
auction node excluding the client’s bid on purpose.
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penalties can be handled asynchronously without interfering with the auction from a
performance perspective.

4.2. Matching Algorithm

After receiving the service bids from clients and resource offers from providers, during
block creation, the matching algorithm finds optimal pairings with the goal of maxi-
mizing economic, QoS and runtime performance. Here, under the assumption of bids
being hidden from other participants due to encryption, DeCloud [16] defines a welfare
optimizing auction and matching mechanism. Similarly, albeit not using blockchain
auctioneers, EdgeMap [17] relies on Vickrey-English-Dutch auctions [130] to maximize
QoS. In general, depending on the number of participants, complexity of bids and QoS
goal, calculating and verifying an optimal match represents a computationally extensive
or even NP-complete task [131], [132]. Similar to PoW, a proof-based consensus protocol
denoted as Proof-of-Match (PoM) could be envisioned, which uses the calculation of
optimal matches to replace hashing of random numbers.

Unrelated to the underlying consensus protocol, our approach attempts to reduce
the latency of participants waiting for the auction result by creating a new match for
every new block on the blockchain and vice versa, resulting in exactly one auction per
block on the chain. Consequently, the waiting time of the matching algorithm gathering
bids and the underlying block rate are closely interlinked. Similarly, the block size
determines the maximum number of bids to be considered for each match. Choosing a
suitable block and auction rate is therefore a trade-off between latency and quality of the
match. While higher block rates lead to faster auction results, a lower block rate implies
waiting for more bids which naturally leads to a better matching result. Contrary to
other approaches, we additionally eliminate the bidders’ responsibility of confirming a
computed match. Instead, we consider a rejection of the match to be an unfulfillment of
the SLA made when participating in the auction, equal to delivering erroneous results.

4.3. Resource Provision

To minimize interactions with the blockchain, resource provisioning is handled off
chain once both parties receive the computed match. Locations and addresses of tasks
and resources that were originally included in bids are now published to both parties
as part of the match. Here, distributed storage technology such as the peer-to-peer
enabled InterPlanetary file-system (IPFS) [133], which has been successfully integrated to
blockchain and IoT platforms in the past [134], [135], appears suitable for uploading
results or task containers in case the storage of individual resource providers is limited.
Due to the prevalence of poorly managed commodity hardware in a crowdsourced edge,
longer running services are expected to experience crashes. Additionally, when offering
FaaS execution of smaller tasks, resource provision potentially takes up a significant
part of the total result latency. Therefore, minimizing provisioning times is critical
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for short-lived lambda functions and for reducing overheads resulting from service
hand-offs. To this end, technology such as JITSU [136] enables just-in-time summoning
of Unikernel VMs in 100-150 ms.

4.4. Result Verification and Reputation

This marketplace component is responsible for verifying task results and failure-free
execution as per QoS requirements in the bid. Here, we distinguish between different
strategies, i.a. log verification, correctness checking and redundant computation. In
TrueBit [137], external entities are used to move expensive verification or redundancy
off-chain. Verifiers are incentivized to replicate or verify tasks by monetary rewards
issued for discovering invalid results. To incentivize verifiers even in the absence of
invalid results, occasional errors are introduced artificially by the auctioning process
conducted on blockchain nodes. [111] proposes a model to predict the probability of
failure-free execution and result of decentralized resource providers using log traces of
previous tasks. Consequently, the determined probability can be reflected in a reputation
score assigned to each resource provider. During bidding, clients may then specify a
parameter defining the required minimum historical reliability and reputation. BC-MDC
[15] proposes the use of predefined verification functions, possibly to be included in the
client’s bid. After a result is calculated, the client determines its correctness by applying
its verification function. In case of invalid results, the same function is executed by a
blockchain consensus node as part of a smart contract, to enable asynchronous dispute
resolution. This approach essentially represents the idea of verifiable computing [138].
Similarly, in Pinocchio [139], clients are able to verify computational results based solely
on cryptographic assumptions, which are defined by creating a public evaluation key
describing the computation task. In order to enable task replication, the algorithm
chosen in Section 4.2 may output multiple resources for a single task, depending on
a requested redundancy parameter. The correct result may then be determined using
majority vote, similar to the approach presented by iExec [112].

4.5. Dispute Resolution and Payment

In order to prevent free-riding, both parties transfer security deposits, including the
client’s payment, into escrow before partaking in the auction [15]. If a bidder’s escrow
account does not contain enough funds to compensate or pay their match in case of
an SLA breach, they are excluded from the auction before a match is calculated. After
resource provision, in case the result verification indicates a dispute, the resolution
process is initiated asynchronously as a smart contract by the aggrieved party. Con-
sequently, monetary or reputational punishments and compensations can be issued
by diverting funds of both parties from escrow. By handling dispute resolution and
payments asynchronously using security deposits, clients are able to access their results
without having to wait until the provider is paid.
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The goal of emulation is to narrow the credibility gap of measurable differences between
a simulated model and the real system by bringing the model closer to reality [140]. In
our case, an emulation-based approach promises to be more configurable, maintainable
and measurable compared to a real system, while being more granular than theoretical
models or abstract simulations. Our goal in this chapter is therefore, firstly, to implement
an extendable emulation of general peer-to-peer (P2P) networks. To this end, we
will make use of socket connections and message serialization as found in real-world
communication, in order to resemble natural phenomenons such as network congestion,
latency or bandwidth as close as possible. At the same time however, the emulation
should be scalable both vertically (i.e. emulating larger networks on a test bed of
few capable machines without sacrificing realism) and horizontally (i.e. measuring
performance on top of real networking hardware in a controlled environment). Moreover,
the emulator’s networking plane should be highly configurable and allow for custom
topologies and future implementations while maintaining a high usability.

To enable the evaluation of DLT in edge we will then, secondly, extend our networking
implementation with blockchain functionality. After defining a generic and pluggable
blockchain abstraction layer, we will focus on implementing a general proof-based
approach and DPoS-BFT as presented in Chapter 2. Here, the emulation aims to provide
a snapshot of a static P2P network, replicating a shared blockchain by propagating
blocks and transactions according to a defined message and consensus protocol. While
remaining consistent with real-world implementations of DLT in terms of message and
protocol definitions, we introduce abstraction especially in regards to cryptographic
details. Specifically, we generalize the process of creating transactions or blocks and
disregard encryption, authentication or signatures as commonly found in real-world
counter-parts. Instead, we opt to implement artificial and configurable delays to emulate
the operation of specific blockchain platforms, i.e. the verification of auction matches or
the creation of blocks or transactions at configurable rates. Due to their in-applicability
to our use case and low scalability as identified in Chapter 3, for now, we leave the
implementation of DAG and BFT-based DLT to future work. Consequently, the emulator
should allow to easily plug in future blockchain technologies with minimal overhead.

Lastly, the emulator should be measurable and repeatable especially in terms of its
performance metrics. As a result, we implement latency and throughput measurements
of confirmations, transactions and blocks as an integral part of the emulation. In order
for our results to be repeatable, we define limitations of our approach and validate our
emulator against measurements of real-world blockchains used in cryptocurrencies.
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Figure 5.1.: Emulator deployment and technology stack.

5.1. Architecture

The emulator [141] is developed using Java and enables a n-to-m mapping of emulated
peers to managing coordinators. Typically, each coordinator is hosted on a separate
machine or VM and connected to other coordinators in order to compose a network
of peers. Figure 5.1 provides an overview of the emulator’s technology stack and
an exemplary deployment of 13 peers to 3 coordinator machines or VMs, of which
coordinator 1 assumed the orchestrator position. All connections between coordinators
and peers are based on TCP sockets using Netty [142] as an asynchronous networking
framework. Messages are defined using Protobuf [143] and strictly divided into messages
sent between coordinators and messages sent between peers exclusively (Appendix A).
Coordinators are responsible for instantiating, starting, connecting and stopping peers
assigned to them by the orchestrator. During an emulation run, peers communicate with
each other as defined by their instantiated implementation at runtime (i.e. a blockchain
protocol).

5.1.1. Peer-to-Peer Network

Before a new run can be started, the orchestrator calculates a network graph defining
the underlying topology of the configured P2P emulation. Using the strategy pattern,
network topologies are easily defined and added by implementing and instantiating the
GraphStrategy interface as shown in Figure 5.2. The interface defines methods returning
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<<Interface>>
GraphStrategy

getEdges() : List<List<Edge>>

getNodes() : int

RndGraphStrategy

nodes: int

density: double

latency: int

ExplicitGraphStrategy

peers: Map<List<Edge>>

ScaleFreeStrategy

nodes: int

m: int

latency: int

Figure 5.2.: Graph and network strategy class diagram.

the number of nodes in the network (n) and an adjacency list defining edges and latencies
between nodes. The defined graph is required to be undirected and connected. During
the emulation, each unique edge results in a new TCP connection between peers with
added artificial latency as specified by the edge. Peers are enumerated from 0 to n
referring to their index within the adjacency list. At the time of writing, three graph
strategies are implemented.

Random Graph Strategy

This strategy generates a fully random graph with a given number of nodes and edges.
To reduce the scale of a parameter defining the edges, a graph density parameter is
introduced to calculate the number of edges. In undirected graphs of n nodes, the
network density d describes the ratio of existing edges e to the maximum possible
number of edges as defined in Equation (5.1). As part of the random graph strategy,
networks are created by firstly generating a random spanning tree to ensure connectivity.
Subsequently e− (n− 1) unique edges are picked and added at random from a set
containing all remaining edges. As a result, the true number of edges et is calculated as
shown in Equation (5.2).

d =
2e

n(n− 1)
(5.1)

et = max
(

dn(n− 1)
2

, n− 1
)

, d ∈ [0, 1] (5.2)

Scale-Free Strategy

A scale-free network describes a graph following a power-law degree distribution, resulting
in few nodes known as hubs with unusually high degree compared to the remaining
nodes of the network. Many networks, i.a. the Ethereum network [144], are thought
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to fulfill scale-free properties. Consequently, compared to fully random graphs, this
strategy generates a different and potentially more realistic network topology, while still
being randomized and easily configurable. As the underlying generation mechanism
we choose to implement the Barabási-Albert model [145]. Starting with an initially
connected component, new nodes are added iteratively to m previously included nodes
until all n nodes are part of the network. To generate the aforementioned power-law
distribution, when selecting m nodes to connect a new node to, node i of degree ki is
chosen with probability,

pi =
ki

∑j k j
. (5.3)

Explicit Graph Strategy

In order to be compatible with other topology generators or custom network topologies
without recompilation, this strategy enables an explicit definition of a connected graph
by constructing a file containing a list of edges.

Listing 5.1: Defining a network topology file using a list of edges.

<from_id_string> <to_id_string> <latency_in_microseconds>
<from_id_string> <to_id_string> <latency_in_microseconds>
...

5.1.2. Emulator Components

Throughout our implementation, we pay special attention towards the extendability,
modularity and maintainability of our approach. As a result, we make use of inheritance
to extract common functionality shared between components and offer easy to use
interfaces to enable future extensions. Figure 5.3 presents a class diagram of the
emulator architecture. Overall, our approach can be divided into three major abstract
components described as coordinator, peer and the blockchain. While coordinators overlook
the execution of emulation runs by configuring peers and their network, peers themselves
share transactions and blocks to collectively extend the replicated blockchain. Concrete
implementations and configurations of these components, i.e. consensus protocols, fork
resolutions strategies or other parameters are then chosen at runtime according to the
current emulation run. As a cross-cutting concern, we aim to encompass functionality
and parameters of real world blockchain networks as closely as possible and base our
implementation on literature as introduced in Section 2.3 and Chapter 3.

Coordinator

At the beginning of each emulation run, one coordinator is selected as the orchestrator of
all coordinators. To this end, the orchestrator generates the configured network graph
as described in Section 5.1.1. Subsequently, the orchestrator distributes the total number
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Figure 5.3.: Emulator class diagram.
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of peers to be emulated between all coordinators by establishing TCP connections and
initiates the creation of a P2P network. As soon as all connections between peers are
established, coordinators start the emulation simultaneously. To allow for custom P2P
emulations, coordinators expose abstract methods defining operations to be executed
once the emulation is started and stopped (Figure 5.3). In case of a blockchain emulation,
on start, peers begin creating transactions at the same time. Once the emulation is
stopped, the blockchain coordinator defines the specific blockchain related results to be
collected from peers. To allow for additional operations before a blockchain emulation
is started, i.e. the selection of specific block producers in DPoS-BFT, the blockchain
coordinator is extended further by overriding methods of the coordination protocol.

Figure 5.4 shows the communication between coordinators during a blockchain emu-
lation as a sequence diagram. After being assigned a specific amount of peers to host,
coordinators reply with the IP addresses of their instantiated peers. Subsequently, the
orchestrator sends out the created network graph along with peers’ IP addresses to
enable the inter-connection between remote peers. Once all peers are connected accord-
ing to the graph, the coordinators send a ready response, upon which the emulation
start is initiated. During or after an emulation, the current run can be terminated by
any coordinator sending a stop message to the orchestrator. The stop command is then
propagated to all remaining coordinators. Finally, results are collected and stored by the
orchestrator. The message protocol between coordinators is defined using Protobuf [143]
as described in Appendix A.

Peer

The abstract peer component offers methods to connect to other peers, as well as sending
and receiving TCP messages. To enable the emulation of large networks on restricted
hardware, peers maintain connections to other peers by additionally storing latencies as
configured by the underlying network graph. Before a message is sent to a remote peer,
the latency is added artificially using scheduling. Similar to coordinators, peers provide
an entry point for concrete implementations by defining overridable messages called, i.e.
once the emulation is started, or whenever a P2P message is received (Figure 5.3). In
case of a blockchain emulation, transactions are created by all peers periodically once
the emulation run is started. A blockchain peer additionally defines block propagation
protocols such as advertisement-based gossiping or unsolicited block push (Figure 2.5)
and maintains a local blockchain replica. Furthermore, measurements concerning latency
or throughput of blocks and transactions are made and reported to the coordinator on
termination. The blockchain peer is further extended to incorporate block consensus
protocols evaluated in our work. To this end, proof-based peers generate blocks randomly
and periodically according to a Poisson process inspired by our model of proof-based
blockchains in Section 2.3.1. Therefore, each peer i is configured with an individual
mining share which precisely represents parameter wi of Equation (2.1). As a result,
Poisson processes are instantiated with rate λi as defined in Equation (2.2). When
emulating DPoS-BFT, a DPoS peer only creates new blocks if it was determined to be a

39



5. Emulator

BlockchainPeer A

connect(B)

onStart(time)

BlockchainPeer B

broadcast proposal to other BPs (BlockProposal)

establish TCP connection

channelActive() channelActive()

announce node IDs (AnnouncePeer)

register channel
notify coordinator

register channel
notify coordinator

schedule transaction and
mining threads at time T0

T0

add Tx to pool
schedule broadcast

onTxCreated()

broadcast Transaction

add Tx to pool
schedule Tx broadcast excluding A

onBlockFound()

broadcast Block

add block to chain
schedule block broadcast excluding A

schedule proposal

send BlockAck

[2/3 ACKs received] 
add block to chain
schedule broadcast

stop coordinator

[ ≥ maxBlocks in chain ]

[is block producer]

Figure 5.5.: PoX (black) and DPoS-BFT (black and blue) peer sequence diagrams. Mes-
sages in parentheses refer to definitions of Appendix A.

40



5.2. Configuration and Execution

block producer by its coordinator. In that case, blocks are created at configurable batches
in round-robin fashion as described in Section 2.3.3.

Figure 5.5 represents a sequence diagram of the communication between two block-
chain peers employing a proof-based or DPoS-BFT consensus protocol depending on
their concrete implementation. When establishing a connection, peers exchange their
IDs in order to correctly assign latencies of future messages as defined by the network
graph. After being instructed to start at a given time, blockchain peers begin to create
and propagate blocks of transactions. Each peer broadcasts new and received blocks to
all known peers using a block propagation protocol (here, unsolicited block push) and
applies individual latencies as defined by the network graph and bandwidth. Once a
maximum number of total blocks is reached, the hosting coordinator is informed to stop
the current emulation run.

Blockchain

Blocks and transactions are stored in the blockchain component of each peer. The
blockchain maintains multiple indices used to access blocks at specific heights of the
tree or by a block’s unique id. Additionally, the blockchain offers registration of
transaction listeners to be executed once a transaction is confirmed by the configured
number of blocks, in order to allow for measurements of confirmation latency. Each
blockchain further consists of a transaction pool responsible for tracking transactions that
are currently part of the main chain, in a fork or not yet included in a block. To allow
for different fork resolution strategies, the blockchain framework exposes an abstract
method returning all tips of the current chain and its forks. Here, tips are defined as one
or more blocks without children, eligible to be selected as the parent of a new block. As
defined in Section 2.3.1 and implemented in their respective sub-classes, LCR blockchains
select tips of the longest forks, while GHOST blockchains choose those that are part of
the heaviest sub-tree.

Figure 5.6 describes the process of adding a block to the chain. In case no parent
of the new block is found, it is instead stored separately as an orphaned block until the
respective parent is received. If the addition of the new block leads to a switch from the
previous main chain to one of its forks, the transaction pool is updated to reflect the
new history of transactions.

5.2. Configuration and Execution

An emulation experiment is defined by constructing a configuration file in YAML format
and sharing it between coordinators. To enable communication of coordinators, configu-
ration files start with a coordinator definition section, listing addresses and computing
shares of coordinators participating in the next emulation run (Listing 5.3). Here, the
first list entry represents the orchestrator, that initially establishes connections to all
other coordinators. The computing share parameter refers to the share of total peers
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Figure 5.6.: Process of adding a block to chain.

to be hosted on each coordinator. Typically, this is achieved by specifying the number
of cores on each coordinator or by using the exact number of peers to be emulated.
Individual coordinators are started on their host machines or VMs by executing the
compiled emulator program along with IP and port to be used for hosting the coordina-
tor (Listing 5.2). Consequently, for each coordinator definition entry, one coordinator is
started. The third argument contains a path to the (shared) folder of configuration files.
After all coordinators are started, configuration files are executed in lexicographic order.
Coordinators terminate automatically after the execution of all emulation runs.

Listing 5.2: Starting a coordinator.

$java −jar bcem.jar <ip> <port> path/to/config/folder
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Listing 5.3: Coordinator definition.

coordinators:
− address: 192.168.0.124:5151

computingShare: 40
− address: localhost:5152

computingShare: 47
− address: vm.example.com:5153

computingShare: 39

Table 5.1 gives an overview of parameters exposed by the emulator configuration. We
divide between general blockchain and networking parameters, and parameters relating
to our implemented consensus protocols, DPoS-BFT and PoX (proof-based). Parameters
listed here define the configuration of all peers equally by i.e. specifying a mathematical
distribution of lottery power between peers in PoX (PD). Additionally, peers can be
configured individually to override global settings and define specific behavior.

The following explains a selection of parameters in more detail. TF defines a list of
transaction fees and the share of their occurrence at each peer. When creating a new
block, transactions with the highest fee are selected first to maximize the miner’s reward.
Along with TR, TPD defines the amount of transactions created at individual peers.
While the total rate of transactions is determined by TR, the distribution determines
whether some peers generate more transactions than others. TTD specifies the time
distribution of transactions being created at each individual peer. While following
a static mean derived from the global TR and TPD parameters, transactions may be
created at a constant, uniform or Poisson distributed rate. TPS sets the maximum
number of transactions to reside in the memory pool without being included in the
chain. Further transactions are ignored by the peer. The block verification time VT is
applied artificially when receiving a remote block before adding it to the local chain and
propagating further. In case the fork resolution strategy BFR results in a tie, it is broken
either randomly or on first-come-first-serve basis as defined by BTR. BP refers to block
propagation mechanisms introduced in Section 2.3.1. In case parameter BFB is set to true,
additional latency is added to block propagation according to bandwidth as if all blocks
were full. DK attempts to mitigate the creation of stale blocks in DPoS-BFT as shown in
Figure 2.11. By refraining from creating the last blocks in each round, thus increasing
the time between hand-offs, the number of stale-blocks is expected to decrease. With
a similar goal, DR defines whether the order of BPs should be chosen randomly or by
solving the traveling-salesman problem to minimize hand-off times. In case of very
large emulations of high block rates and many peers, results may be inaccurate while
some mining and transaction threads are still initializing during start-up. SB allows
those first blocks to be skipped in measurements. After the orchestrator is started, the
first emulation run starts automatically after ND ms. Therefore, starting the orchestrator
last is recommended.

Results of each emulation run are stored on the orchestrator’s host in JSON format.
Table 5.2 summarizes measurements relevant to this work.
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Table 5.1.: Supported emulation parameters and default values.

Par. Description p. val. default

BR Blocks generated by entire network per second f loat 22
BS Maximum block size (transactions) [0, 216] 5000
TR Transactions generated by network per second f loat 10
TS Transaction payload size (byte) [0, 216] 100
TF Transaction fee distribution list [(1, 1)]
TPD Transaction peer distribution (exp., const., uni.) enum constant
TTD Transaction time distribution (pois., const., uni.) enum poisson
TPS Transaction pool size (transactions) [0, 231] 1000
VT Block verification time (µs) [0, 231] 100
C Number of required confirmation blocks [1, 231] 1
BFR Fork resolution (LCR, GHOST) enum LCR
BTR Tie resolution of forks (random, first) enum f irst
B Number of blocks to be created in this run [0, 231] 5000
BP Use unsolicited block push bool true
BFB Always emulate full blocks bool f alse
BC Blockchain consensus (PoX, DPoS) enum PoX

Network Parameters
NN Number of nodes [1, 231] 500
NB Bandwidth (MB/s) [1, 231] 1000
NL Mean propagation delay between peers (µs) [0, 231] 63k
NT Network topology (random, scale-free, explicit) enum scale f ree

PoX Parameters
PD Peer distribution of lottery power wi (exp., const., uni.) enum constant

DPoS-BFT Parameters
DN Number of block producers [0, NN ] 21
DS BP selection strategy (best, random, worst) enum best
DB Blocks created per BP each round [1, 231] 50
DK Final blocks to be skipped per BP [0, DB] 0
DR Random BP order (random, best) bool f alse

Miscellaneous
R Number of emulation runs [0, 231] 4
SB Number of first blocks to be discarded [0, B] 0
ND Start-up delay (ms) to allow sync. of coords. [0, 231] 5000
L Log level, console verbosity enum INFO
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Table 5.2.: Selection of emulator results and measurements.

Par. Description

RCPU List of maximum and average CPU loads of each coordinator
RBS Average block size
RFB Number of full blocks
RSB Number of stale blocks
RCSB Number of confirmed stale blocks
RFL List of fork lengths and the number of their occurrence
RBPS Blocks created / confirmed per peer second
RTPS Transactions created / confirmed per peer second
RTL Mean, median, minimum, maximum transaction latencies

5.3. Scalability and Limitations

In order for our results to be repeatable, experiments producing correct measurements
on a single coordinator should produce the same results even when dividing the same
emulated network between multiple coordinators and machines. To validate this design
goal and investigate the scalability limits of our emulator, we conduct experiments on
a fully switched network of up to three coordinator machines (Win10, Ryzen 5 2600X,
16GB; Ubuntu 18.04, i5-5200U, 8GB; Ubuntu 20.04, i5-2410M, 6GB). Throughout our
experiments we raise the emulation complexity by increasing the rate of blocks and
total number of peers. Subsequently, we repeat all experiments on one, two and three
coordinators while measuring the CPU load of the first machine (Ryzen 5). To evaluate
the validity of our measurements, we use the percentage of produced stale blocks as a
comparative measure of correctness.

Figure 5.7 visualizes the experiment results. Specifically, Figure 5.7a shows that the
percentage of stale blocks created by 200 nodes stays roughly the same regardless of
the underlying hosts as per our design goal. However, we notice a slight increase of
stale blocks after surpassing 50-60% CPU load when only using one machine. During
the emulation of 400 nodes (Figure 5.7b) and 600 nodes (Figure 5.7c) this observation
becomes even clearer. While results stay the same at lower node counts, block rates and
thus, CPU usage, after passing 60% of average CPU load, additional stale blocks are
introduced by the emulated peers. Due to our highly multi-threaded approach using
scheduling to create and propagate blocks according to latencies, in an attempt to enable
both horizontal and vertical scalability while retaining realism, the correctness of our
results depends on the real-time capabilities of the underlying hosts. This observation
is confirmed by Figure 5.7d showing an increasing length of queued processes when
raising experiment complexity. Due to the longer processing queue and resulting CPU
cycling, certain events happen later than they were scheduled. As a result, additional,
artificial latencies are introduced to the network. Consequently, blocks take longer
to be propagated, which in turn manifests in an increasing amount of stale blocks.
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Figure 5.7.: Additional stale blocks introduced by high CPU loads resulting from long
processing queues.

Nevertheless, our results demonstrate the horizontal scalability of the emulator. Real-
time capabilities of the underlying test bed can effectively be increased by adding more
coordinator hosts and cores. Vertically, the scalability appears to be limited to 60% of
average CPU load before result correctness starts to decrease. To compensate for this
limitation we include measurements of the CPU load in the emulator’s output and
display warning messages in case of threshold values being surpassed.
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Apart from CPU load, the emulator’s scalability on individual machines is additionally
limited by the number of available file descriptors needed to create socket connections,
as well as heap space provided by the Java Virtual Machine (JVM). To maximize a
coordinator’s capabilities, the limit of file descriptors can be increased using the ulimit

command on Linux. Similarly, Java offers -Xms and -Xmx flags used to define initial and
maximum heap space (Listing 5.4). Finally, our emulator focuses on the evaluation of
static networks. During an emulation run, joining or leaving peers lead to a termination
of the current run and thus, incomplete results.

Listing 5.4: Maximizing coordinator’s resource limits.

$ulimit −n 100000
$java −jar −Xms4g −Xmx8g path/to/jar.jar

5.4. Validation

Throughout the emulator’s development, exhaustive unit and integration tests resulting
in 95% code coverage, and the additional use of static code analysis tools, make us
confident in the functional correctness of our implementation. However, we are also
highly interested in demonstrating the semantic correctness of our approach, especially
in regards to the emulator’s measurements and its fidelity of mimicking real-world
architectures.
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Figure 5.8.: Comparing the emulator to Ethereum [121], Bitcoin [146], Dogecoin and
Litecoin [125] and an existing simulator [125].

To evaluate the precision of our system, we first emulate four proof-of-work block-
chains and configure their networks to have a block rate and average propagation delay
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equal to real-world cryptocurrencies. For each experiment, we generate up to 10k
blocks over four emulation runs and measure the number of stale blocks created by
the networks. Subsequently, we compare our results to recent measurement studies of
stale blocks produced by Bitcoin [146], Ethereum [121], Dogecoin and Litecoin [125].
Figure 5.8a shows that the trend of our data matches existing measurements with a
mean relative error of 21.33%. Here, possible deviations may additionally be explained
by missing information on parameters required by the emulator. In a second experiment,
we compare our emulation to the simulator developed in [125]. To this end, we configure
a network with equal latency and measure the percentage of stale blocks occurring in
10k total blocks generated at different interval times ranging from 0.5 to 150 seconds.
Note that we run our emulation at 70% of the block rate used in [125], as 30% of their
computational power is attributed to a selfish mining attacker. Here, our emulator is
subject to a mean relative error of 8.7%.

As expected by an emulation-based approach influenced by abstraction, our results
experience some inaccuracies, potentially due to incomplete configuration. Nevertheless,
the general trends of our measurements match those of recent works, demonstrating
our emulator’s potential for use in comparative studies.
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In the following, we will use our emulator to gather empirical evidence on the per-
formance of PoX and DPoS-BFT blockchains in a variety of network archetypes. Over
several experimentation runs, we will explore the effects of these consensus protocols
and their parameterization on performance, consistency and fault-tolerance of transac-
tions. In particular, we especially investigate trade-offs and boundaries arising when
trying to optimize for low latency. Additionally, we propose simple mathematical
models of our findings, in an attempt to describe the relationship between some of
the most impactful parameters of blockchain architectures. After comparing both of
our implementations directly in their potential of hosting edge applications, i.e. an
edge computing marketplace, we conclude in a discussion highlighting benefits and
detriments resulting from such a deployment.

6.1. Design

As our hardware configuration, we use two different setups to conduct emulation runs
depending on the experiment’s complexity. For large networks, we deploy a cluster
of 15 coordinator VMs connected by a 1 GB/s network with a total of 58 cores and 58
GB RAM. Smaller experiments are executed on a local test bed of three machines with
a total of 10 cores. Both setups are summarized in Table B.1 and referred to by their
names in the following.

During emulation runs, we measure the confirmation latency of a transaction (i.e.
a resource bid) starting with the time of its creation at one of the nodes. After being
propagated through the network, the transaction is included in a block, representing a
successful auction match with other transactions part of the same block. The block - thus,
the auction - is confirmed once it is extended by the configured number of additional
blocks (C− 1). This effectively emulates steps one and two of our marketplace setting
in Chapter 4, while revealing latency margins left open for the remaining steps, i.e.,
off-chain provisioning and result verification. Here, the transaction represents a resource
request or offer. Consequently, including the transaction in a block corresponds to a
completed auction match between all transactions that are part of the block. Once a
block containing the auction match is confirmed, it is considered to be irreversible by
its clients. Therefore, providers begin provisioning the requested resource or service
supplied by the client. Next to transaction latency, we additionally measure the amount
of (confirmed) stale blocks created by the network and investigate their effects on
consistency, efficiency and required fault-tolerance of auctions, or other applications,
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executed on top of the chain. Throughout the emulation, transactions are disseminated
equally by all peers. Unless otherwise mentioned, the emulator is configured according
to the default parameters of Table 5.1. Specific overrides of these default values are
listed in Appendix B for all experiment figures. For each data point, up to 30k blocks,
depending on block rate, were created.

As the underlying network, we choose to emulate three networks of small, medium
and large sizes. The small and medium networks are scale-free networks of 100 and 500
nodes, respectively. They were created using the Barabási–Albert model with parameter
m = 2 (Section 5.1.1), resulting in a similar topology as found in Ethereum [144]. Here,
the small network represents a Smart City network with Gaussian latency distribution
and mean latency of 10 ms [45]. The medium network was configured to have an average
propagation delay of 63 ms, similar to latencies of cloud data centers as measured in
[147]. The large network consists of 2700 global peers extracted from the same dataset.
Here, the nodes describe unique ASNs of [147], which represent ideal locations for
deploying edge servers as discovered by [148]. Consequently, we use the dataset’s
traceroute measurements between those ASNs to create a global topology of nodes.
Listings 6.1, 6.2 and 6.3 describe the emulator’s configuration entries for each of these
networks.

Listing 6.1: Small Network
networkType: scaleFree
scaleFree:
nodes: 100 # number of peers in the network

m: 2 # Barabasi-Albert parameter

latency: 10000 # microseconds

perEdge: false # latency is mean of entire network

bandwidth: 1000 # MB/s

Listing 6.2: Medium Network
networkType: scaleFree
scaleFree:
nodes: 500 # number of peers in the network

m: 2 # Barabasi-Albert parameter

latency: 63000 # microseconds

perEdge: false # latency is mean of entire network

bandwidth: 1000 # MB/s

Listing 6.3: Large Network
networkType: explicit
explicit:
bandwidth: 1000 # MB/s

fileName: cloudGraph.txt
peers: [] # replaced by file
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6.2. Results

In the following figures, data points represent the mean of all emulation runs of the
same experiment. Solid lines either refer to our proposed model functions, or fitted
Weibull curves [149] in case our model is unsuitable. In total, we propose four functions
describing the transaction latency and stale block of PoX and DPoS-BFT blockchains,
when deployed in networks with representative latency mean, i.e. the emulated small
and medium networks. To summarize the quality of these models, Table 6.1 lists their
accuracy and mean squared error present in the following figures and experiments.

Table 6.1.: Coefficient of determination and relative mean squared error of model func-
tions. nRMSE is normalized using standard deviation.

E6.1 E6.5 E6.6 E6.9

RMSE 20.48 4.38 8.36 0.276
nRMSE 0.028 0.202 0.007 0.192
R2 0.99 0.97 0.99 0.98

6.2.1. PoX

In our first experiment, we increase the block rate (BR) of a generic proof-based block-
chain deployed in two medium networks with 44 and 63 milliseconds mean propagation
delay (NL). The data points of Figure 6.1a describe the mean latency when waiting for
one or two confirmations (C) after submitting a transaction. Overall, latencies appear
to decrease for higher block rates, up to an asymptotic limit. Due to the reduced time
spent by transactions waiting to be included in the next block, a higher block rate leads
to faster confirmations and thus, lower transaction latencies. As more blocks are created
per seconds, the returns of creating blocks even faster are diminishing, resulting in the
observed lower bound. We model our results using Equation (6.1) to describe the mean
transaction latency LTx.

LTx = NL + (NL +
1000
BR

) · C (6.1)

lim
BR→∞

LTx = NL + CNL (6.2)

Here, the transaction latency is calculated as a sum of the average time needed to send
a transaction through the blockchain network (NL), and the latency of propagating C
confirmation blocks at rate BR influenced by the same network latency NL. By increasing
BR, waiting times between blocks become more and more irrelevant, leading to the
asymptotic limit of Equation (6.2), which precisely describes the round trip time of
sending one transaction and receiving C consecutive confirmation blocks. In order for
blocks to append upon each other, every block requires on average NL time units in
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Figure 6.1.: Model functions of latency and stale blocks in medium PoX network.

order to be received by other peers. Once received, peers are able to build on top of the
block and create a sequence of confirmation blocks.

Blocks created outside of this sequence become stale. The data points of Figure 6.1b
describe the increasing percentage of stale blocks generated when raising the overall
rate of blocks. Naturally, as blocks are created faster by all peers and concurrency
increases, the underlying network fails to propagate blocks in time, such that they
cannot be built on top of one another. Consequently, more stale blocks referencing the
same parent block are created. To model the creation of stale blocks, let L be the average
network propagation delay between any two peers in seconds, and R the number of
blocks created by the entire network per second. Then, X in Equation (6.3) represents a
Poisson distributed random variable describing the number of blocks created within
the time it takes for one block to be propagated on average. We can use X to calculate
the probability of k blocks being created by applying the Poisson distribution’s density
function as shown in Equation (6.4). Observing our results of figure Figure 6.1b, the
probability of a stale block being created appears to be roughly following the arithmetic
mean of at least one block being created and exactly one block being created within the
network’s average propagation delay (Equation (6.5)).

X ∼ Poisson(L · R) (6.3)

P(X = k) =
e−(L·R)(L · R)k

k!
(6.4)

P[Stale block] =
1
2
(1− P(X = 0)) +

1
2

P(X = 1) (6.5)
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Stale blocks describe a waste of resources, as their creation, propagation and storage
does not meaningfully contribute to the progression of the distributed ledger. Further-
more, they represent a security and consistency concern. Once a client’s transaction
is assumed to be confirmed, subsequent actions are initiated, i.e. sending a product
purchased with cryptocurrency, or provisioning resources after receiving an auction
match. In case a block containing such a transaction ultimately turns out to be stale, its
resulting actions (which may not be reversible) are invalid as well. In case of a purchase
with cryptocurrency, this results in funds becoming double-spendable. Similarly, a
confirmed auction match turning stale could entail expensive roll-back mechanisms or
monetary losses. Deliberately abusing this characteristic of proof-based blockchains in
the scope of a targeted attack has been investigated previously by related work [70],
[125]. Consequently, waiting for additional confirmation blocks is required to ensure
that a block is, in fact, part of the main chain with high probabilistic finality.

Overall, we can clearly observe a trade-off between performance (transaction latency)
and efficiency, consistency, security (stale blocks) in PoX, which is further investigated
in Figure 6.2. Here, Figure 6.2a shows how waiting for multiple confirmation blocks in
the medium network reduces the percentage of confirmed stale blocks exponentially1.
However, as indicated by Equation (6.1), it also leads to a linear increase in latency. In
combination, high block rates with many confirmations appear to entail lower latencies
than low block rates with fewer confirmations at an equal percentage of confirmed
stale blocks. The latter observation however comes at the cost of efficiency as seen in
Figure 6.2b. Here, the depicted experiment demonstrates how increasing the block rate
in an attempt to reduce latencies leads to a nearly exponential increase in stale blocks
and vice versa. Although the trade-off in the small, city-wide network is much cheaper
compared to the global network, multiple confirmation blocks are required to ensure
security and consistency.

Regarding an edge computing marketplace on top of PoX, increasing the block rate
BR also relates to raising the frequency and concurrency of auctions. Consequently, stale
blocks imply invalid auctions, and potentially a single bid being included in multiple
concurrent auctions. The correct auction is then determined by waiting for additional
confirmation blocks. As before, reducing the block rate to minimize the number of
stale blocks, directly affects the latency of auctions, and thus, the provisioning time
of the requested edge resources. Although, as indicated by Figure 6.2a, waiting for
one additional confirmation is enough to reduce the percentage of naturally occurring,
confirmed stale blocks by over 90%, especially in a public-permissionless setting with
high rate of blocks, more confirmations are required to counteract byzantine failures
and malicious attacks [70], [125]. Otherwise, considering an auction block as valid too
early, could lead to it becoming stale after the resource provisioning process was already
initiated or even after its completion. Consequently, the provision is invalid, due to
its auction match not being part of the main chain, and neither party is compensated.

1Confirmed stale blocks describe blocks turning stale despite being confirmed by the required number of
additional blocks at an application level. Note that confirmations do not reduce the number of general
stale blocks impacting the blockchain’s efficiency.
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Figure 6.2.: Trading (confirmed) stale blocks for Tx latency in PoX.

Instead, the stale bids are resubmitted to be included in a future block on the main chain.
Nevertheless, in a permissioned setting requiring less confirmations, PoX might be able
to support low enough latencies (< 200ms) to enable a deployment of less stringent
edge applications [3]. Here, as indicated by Equations (6.1) and (6.5), the network’s
propagation delay NL appears to be a relevant parameter for both, stale blocks and
transaction latency.

6.2.2. DPoS-BFT

Similar to our experiment of the previous section, the data points of Figure 6.3 describe
the average latency of transactions and percentage of stale blocks when increasing
the block rate (BR) in DPoS-BFT, deployed on our medium network with 63ms mean
propagation delay. As described in Section 2.3.3, instead of blocks being created
randomly and concurrently by all peers (PoX), DPoS-BFT selects a smaller set of block
producers (BPs) who then deterministically create batches of blocks in round-robin
fashion. Additionally, DPoS-BFT deploys a pipelined BFT protocol between all BPs in
order to speed up block finality (Figure 2.10). Analogous to PoX, transaction latencies
decrease with higher block rates due to reduced waiting times up to an asymptotic
limit. Moreover, transaction latency appears to improve even further, when fewer BPs
are selected based on their connectivity. Due to the BFT protocol’s broadcast between
BPs, newly proposed blocks experience additional latency before they are acknowledged
by all other BPs and then sent out to the remaining network. Consequently, block and
transaction latency can be improved by reducing the propagation delay between BPs,
as shown in Figure 6.4. Here, we raise the mean latency between BPs, and notice a
near linear increase in transaction latency at factor 2-3. As the 2-stage, pipelined BFT
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protocol requires 2/3 BPs to acknowledge the newly proposed block before it is sent
out, the observed factor seems plausible. Combined, we propose Equation (6.6) as an
approximation of transaction latency (LTx) in DPoS-BFT. Similar to our model of PoX,
the function describes a sum of the average network latency NL experienced by the
initial transaction, the average waiting time for it to be included in a block at rate BR,
the block to be acknowledged by BPs experiencing a mean latency of LBP and a constant
K = 10.

LTx = NL + 2LBP +
2000
BR

+ K (6.6)

In DPoS-BFT, stale blocks are created if the block production round of one BP starts,
before all blocks of the previous BP’s round were received (Figure 2.11). During the
emulation, each block production round is divided into DB time intervals. At the start of
each interval, the current BP sends one block proposal to all other BPs and gathers their
acknowledgments. Once enough acknowledgments are received, the block is gossiped
to all peers and BPs. Consequently, in order to avoid the block becoming stale, the
process of proposing, acknowledging and broadcasting a block should not take longer
than its designated interval. As each BP produces multiple blocks in a row, especially
the duration of the last block production interval of each round, before a BP hand-off, is
relevant to the creation of stale blocks. We can increase this duration by reducing the
total number of blocks produced by each BP and assigning multiple intervals to the last
block created during each round. DK describes the number of final blocks to be skipped
this way during every round, in order to increase the length of the last production
interval. We can calculate the duration of the final interval IL using the block rate BR as
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shown in Equation (6.7).

IL =
(DK + 1) · 1000

BR
(6.7)

Figure 6.5a shows how increasing the rate of blocks reduces the time designated for
the last block production interval, resulting in more stale blocks per round. Knowing
that the propagation of a block between BPs takes 3 messages according to the pipelined
BFT protocol, and is influenced by an average latency of LBP, we can model the number
of stale blocks created during each round as dSBRe of Equation (6.8). This effectively
describes the number of intervals fitting within the time it takes to propose and propagate
one block. To infer the percentage of produced stale blocks, we divide SBR by the number
of total blocks created during each round in Equation (6.9).

SBR = Max
(

0,
3LBP

IL
− 1

)
(6.8)

SB =
SBR

DB − DK
(6.9)

Figure 6.3 describes a linear increase of stale blocks, once production intervals are
too short for final blocks to be propagated in time. As a result, Figure 6.5b proposes
three counter measures to reduce the number of stale blocks in DPoS-BFT: 1) Reducing
the rate of blocks, and thus, increasing the duration of block production intervals at
the cost of latency. 2) Increasing the number of blocks created by each BP to minimize
the amount of hand-offs at the cost of decentralization. 3) Increasing the duration of
only the last production interval by discarding the final DK blocks. Here, transactions
handled during the prolonged interval experience slightly longer latencies.

By centralizing the consensus to a subset of BPs, DPoS-BFT produces a low percentage
of stale blocks even at high block rates. In regards to our marketplace application,
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DPoS-BFT ensures that only one BP proposes new blocks, and thus, auctions during
any production interval. Nevertheless, stale auction blocks can still be created between
hand-offs of BPs. This can be avoided by increasing the time allocated for the last
block produced by each BP or by raising the total number of auctions per BP. Overall,
DPoS-BFT achieves lower latencies and stale block rates compared to PoX. Instead,
the performance of DPoS-BFT is influenced by the individual performance of block
producers and the network between them. Consequently, QoS of our marketplace,
manifesting in auction performance and provisioning time, is reliant on the quality
of selected BPs. To this end, in case of a crashing or slow BP without another one
immediately taking over, DPoS-BFT experiences much lower fault tolerance due to its
lacking replication. This could lead to some auctions and their resource provisions taking
significantly longer than others. Compared to PoX, the trade-off between consistency
and performance is transformed into performance competing against fault-tolerance,
decentralization and availability when opting for DPoS-BFT.

6.2.3. Network
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After evaluating the limits of reparameterization in PoX and DPoS, we take a closer
look at the underlying network. Figure 6.6 describes PoX and DPoS-BFT in our small
and large networks. While the small network represents a smart city of 100 nodes with
10ms average latency, the large network consists of 2700 globally distributed peers. In
both figures, dashed lines represent the asymptotic limits of latency reduction induced
by lower waiting times between blocks. While in PoX we additionally investigate the
behavior of requiring 1 or 2 confirmations, in our DPoS-BFT experiment, we differen-
tiate between selecting the 21 best and worst BPs in terms of their connection degree.
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Naturally, and as previously seen in Figures 6.2b and 6.3, improving the consensus
nodes’ underlying network conditions allows performance to be increased altogether,
avoiding some of the most costly trade-offs. As already suggested by our mathematical
models, in both experiments, the asymptotic latency limits are significantly lower in the
city-wide network than in the global network. Similarly, selecting well-connected nodes
in the large network appears to be more critical than in the small network due to overall
better conditions. For both consensus protocols, latency boundaries around 100ms can
be observed if deployed entirely in the smart city environment. Depending on higher
layers of the targeted architecture, this could leave a sufficient margin to support some
of the edge computing use cases presented in this work, although for PoX the need for
additional confirmations, depending on required consistency and security, needs to be
considered.

6.3. Discussion

Overall, while it seems as though PoX could achieve latencies below 200ms (upper
latency bound of edge computing feasibility [3]) at high block rates, in practice it is
infeasible due to the large amount of stale blocks and resulting need for additional
confirmations to ensure security and consistency of auctions. The only way to improve
both latency and consistency (stale blocks) simultaneously, appears to be reducing the
network latency, by limiting its size. In comparison, the results of DPoS-BFT are much
more promising due to overall lower latency and essentially non-existing stale blocks.
However, compared to PoX, it offers no consensus replication and less fault-tolerance,
while benefiting equally from smaller network sizes.

In total, our results demonstrate the harsh limits and trade-offs of blockchain repa-
rameterization [150]. Once these limits are reached, improving the underlying network
conditions appears to be the only option of increasing transaction performance without
sacrificing crucial security or consistency requirements of the entire architecture. This
observation goes hand-in-hand with the scalability trilemma of blockchain, as originally
proposed by Ethereum [11] co-founder Vitalik Buterin. Therein, Buterin describes the
inevitability of trade-offs between the security, decentralization and scalability of DLT,
and proposes sharding as a potential solution [151]. In general, sharding describes the
idea of breaking up a larger architecture into multiple, smaller parts. The resulting
shards may be partitions in terms of the network, its users, or the created data and
transactions. Figure 6.7a summarizes some of the partially transitive relationships
and trade-offs that we identified throughout our evaluation, backed by the scalability
trilemma. Arguably, as security is an essential and inevitable requirement, especially the
depicted relationships between decentralization and scalability are relevant to us. These
specifically manifest in the latency trade-off resulting from an increased geographical
diversity and total number of consensus nodes.

In relation to this observation, our results show that in order to come even close to
the latency requirements of edge applications, while remaining secure, consistent and
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available, DLT needs to reside within the edge network in its entirety. Naturally, the
edge computing paradigm is very localized by design and as a result, it is only sensible
for its control plane to be part of the same environment. To avoid the bottleneck of
replicating data relevant to the edge in a global network, the market and the blockchain
are limited to the local edge, as proposed by the sharding paradigm. The resulting small
and restricted edge markets, backed by fragmented blockchains, could then eventually
be synchronized by a global interledger as shown in Figure 6.7b, reigniting the vision
of a global edge computing marketplace. Target applications aiming to work in a fully
decentralized fashion are deployed in localized markets and administered by global
accounts maintained on the inter ledger. Still, avoiding the global ledger becoming a
bottleneck is paramount to this idea. Specifically, it should enable a communication
and exchange between localized edge markets without introducing the risk of double-
spending.

Similarly, while improving usability and performance tremendously, limiting the
blockchain network’s size to local edge markets directly inhibits its own paradigm of
success, strength-in-numbers. By breaking the network up, especially security, privacy
and trust benefits of large blockchains start to crumble, opening up potential attack
vectors on the blockchain and, thus, the market. To this end, known vulnerabilities
of proof-based blockchains such as alternative history or 51% attacks conducted by
an outsider become even more apparent. On a similar note, DPoS blockchains like
EOS [84] are already suspected of suffering under the formation of malicious cartels
enabled by its public voting procedure on block producers [152]. Instead, these block
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producers may need to be operated or hand-selected by a governing authority in a smart
city environment. Finally, the requirement of high block rates to ensure low latency
of auctions and their resulting resource provisions leads to a significant reduction of
efficiency and consistency in permissionless DLT, due to probabilistic finality caused by
stale blocks.

In general, limiting network size and closing aforementioned attack vectors on DLT
implies a deployment in permissioned mode under a central authority, i.e., the smart
city administration. As a result, the original promises making blockchain attractive
in a crowdsourced edge computing marketplace, i.e., being inherently crowdsourced
themselves, offering open participation, trustless consensus, privacy and security by
design, become decreasingly noticeable or even disappear entirely. Instead, deploying
an edge marketplace under centralized authority, to begin with, seems to yield better
performance, usability and maintenance, albeit at the cost of trust and privacy. After
offloading registration and certification to a trusted third party to facilitate a permis-
sioned environment, centralizing resource auctions to a trusted auctioneer in a similar
way appears to be a logical step to improve QoS.

6.4. Limitations

Our results describe networks with very high bandwidths of 1 GB/s. Additionally,
unsolicited block push is used to further optimize latency at the cost of higher bandwidth
consumption. The effects of lower bandwidths are expected to be similar to those of a
higher latency, where a slower propagation of blocks leads to higher transaction latencies
and stale block rates.

The proposed models in Equations (6.1), (6.5), (6.6) and (6.9) simplify the underlying
network by reducing its parameters to solely the latency mean NL, present in the entire
network. As a result, the models’ fit is significantly worse when applied to networks
without a representative latency mean (mean ≈ median), i.e. the large network created
from global cloud measurements. Here, the long tail latency distribution of the cloud
network, and therefore its topology, is not properly represented by its mean. Similarly,
equations modeling DPoS-BFT make use of the mean latency between BPs (LBP). Here,
a BP with significantly worse connection than the mean will generate higher transaction
latencies and stale-block rates during its production interval. However, the remaining
BPs are largely unaffected during their own intervals, as only 2/3 acknowledgments
need to be received in order to publish a block, without having to wait for the slower
BP’s acknowledgment.

Due to scalability limitations of our emulator and the available test-beds (Section 5.3),
experiments were conducted using comparatively low transaction rates (TR) of 10
submitted transactions per second, to reduce CPU utilization. Therefore, throughput
measurements returned by the emulator (RTPS) were not representative of the maximum
throughput capabilities supported by the emulated blockchain architecture. Instead,
maximum throughput can be approximated using the percentage of stale blocks (RPSB),
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the block rate (BR) and the block size (BS) by calculating:

RTPS ≈
(

1− RPSB

100

)
· BR · BS, (6.10)

under the assumption that the bandwidth is high enough to support sending full blocks
of size BS without a significant increase in latency.

Driven by the exponential increase of possible experiments in the number of inputs,
many parameters of our emulator remained fixed to default values throughout all
evaluations and are excluded in our models. Instead, we focused on investigating the
most relevant parameters of blockchain performance. Nevertheless, in the following,
we summarize ancillary findings on these parameters and describe their expected
effects. Transaction time and fee distributions (TF, TPD, TTD) will improve the latency of
some transactions, if they receive a higher fee or are created by well connected nodes.
Increasing the verification time (VT) of blocks before they are propagated is expected
to have a similar effect as increasing the network’s latency. While fork resolution
according to GHOST promises stronger protection against alternative history attacks, it
is computationally more intensive than LCR [68]. While a random tie resolution (BTR)
does not increase the percentage of stale blocks in general, it increases the length of
created forks on average. Changing the distribution of lottery power in PoX (PD) might
improve performance if well connected peers receive the majority of lottery share.
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In this thesis, we evaluated the capabilities of a crowdsourced edge computing market-
place backed by decentralized DLT using emulation and experimentation. By shining
light into popular blockchain-based black boxes, we gave a more practical and realistic
outlook on DLT in edge.

7.1. Summary

Chapter 1 provided an introduction to the topic by motivating the idea of using DLT
in edge and specifically as a distributed auctioneer of crowdsourced edge computing
marketplaces. We identified the increasing research demand resulting from blockchain
being used as a black box solution in edge, and formulated our objective of using
emulation to investigate common assumptions, trade-offs and capabilities of DLT in
edge computing use cases.

In Chapter 2, we gave background on key concepts regarding edge computing, crowd-
sourcing and DLT. Here, we discovered the attractiveness of using edge computing
to enable latency stringent applications, but also identified challenges resulting from
managing resources in a distributed and heterogeneous environment at minimal laten-
cies. To this end, we introduced crowdsourcing and specifically DLT as a proposed,
self-sufficient solution of managing edge resources and applications in a secure and
decentralized way. Therein, we divided DLT into 4 sub-categories and provided valuable
ground work for our investigation of trade-offs and subsequent implementation.

As part of Chapter 3, we gave an overview of previous work relevant to us. After
presenting a survey of DLT and its use in edge and specifically edge marketplaces, we
discovered the temptation of adopting blockchain to leverage promises such as decentral
trust and security by design, while disregarding potential performance bottlenecks and
implications. As a result, we stated the pressing need for concise empirical evidence
on the performance of using blockchain in edge and described our emulation-based
approach in contrast to existing attempts at evaluating DLT.

Chapter 4, introduced our version of a crowdsourced edge computing marketplace
backed by blockchain. After reviewing related work and its drawbacks, we devised
a performance optimized marketplace architecture by aligning its components with
the capabilities of blockchain. By conducting a new resource auction as part of every
block on the chain, latencies are reduced and boundaries of the underlying blockchain
network are easily investigated.

Chapter 5 described the architecture of our emulator framework. During development,
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we paid close attention to the modularity of our approach, allowing us to support a
total of 26 parameters relevant to blockchain performance. As consensus protocols, we
implemented a generic proof-based solution and DPoS-BFT following our description
in Chapter 2 closely. Subsequently, we were able to define our emulator’s limits in
terms of vertical scalability, while demonstrating its ability to scale horizontally. Finally,
we validated our implementation against measurements of real cryptocurrencies at
managable relative error levels, showing an accuracy of above 85%.

In Chapter 6, we applied our emulator in order to evaluate latency boundaries of
blockchain transactions. Using experimentation, we discovered how limits of reparam-
eterization in PoX and DPoS-BFT consensus protocols lead to costly trade-offs in the
security and consistency of blockchain architectures. Overall, the most important results
of our experiments can be summarized as follows:

• High block rates are paramount to enable low latency of auction blocks and
transaction bids. However, in PoX these are practically infeasible due to the
probabilistic finality of auctions and resulting need for additional confirmation
blocks.

• DPoS-BFT achieves better consistency at high block rates by synchronizing and
centralizing consensus to a subset of block producers, thus avoiding concurrency
of several auctions. However, lower-fault tolerance implies the need for capable
consensus nodes.

• The only way to achieve latencies within the edge computing feasibility zone
of 200ms [3], while avoiding costly trade-offs in consistency, security and fault-
tolerance, is to improve underlying network conditions and increase centralization,
i.e. by limiting the blockchain to the edge network entirely and enforcing permis-
sioned participation.

Based on these results, we proposed the use of sharding as a potential solution to the
blockchain scalability trilemma. By splitting the global network into locally restricted
edge marketplaces and blockchains, synchronized by a shared interledger, network
conditions of local blockchains are improved sufficiently. Subsequently, we discussed po-
tential detriments of such an approach. These especially manifested in the attractiveness
and promises of blockchain in edge becoming increasingly unnoticeable, after violating
the DLT paradigm of strength-in-numbers.

7.1.1. Realized Goals

In total, we successfully summarized latency requirements of next-generation edge ap-
plications and identified parameters relevant to a blockchain’s performance in edge. By
implementing a generic emulation framework for network and blockchain architectures,
effects of these parameters were evaluated empirically. As a result, we proposed 4 sim-
ple, empirical models describing the latency and consistency of 2 consensus protocols.
Lastly, we investigated the suitability of blockchain as a decentralized auctioneer for
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edge computing marketplaces. Here, we proposed an optimized marketplace architec-
ture on top of DLT and discovered its need to reside within the edge network entirely.
Consequently, we proposed a sharding solution and discussed its limitations.

7.1.2. Open Goals

In this work, we especially focus on the transaction latency of blockchains as a require-
ment of enabling edge computing applications. However, for many use cases identified
in Section 2.1.2, sufficient transaction throughput represents a similarly important require-
ment. Our results in that regard are limited by 1) our simplified bandwidth emulation
not considering network congestion in case of multiple blocks being sent at once, and 2)
our hardware setup not supporting the experimentation of high transaction rates while
maintaining a larger network size. Instead, we present an approximate model to calcu-
late transaction throughput and implement a parameter BFB, allowing the emulation of
full blocks even at lower transaction rates. As shown by our results, the necessity of low
transaction latencies implies the configuration of high block rates. At equal transaction
rates, a higher block rate therefore naturally results in smaller blocks. Consequently,
we don’t expect the individual size of blocks to be a limiting factor of blockchain in a
high-bandwidth edge.

Additionally, we did not succeed in thoroughly evaluating the effects of all parameters
implemented by the emulator and did not include them in our mathematical models.
To the best of our knowledge, we instead focused on parameters most relevant to this
work and provided a brief summary of the remaining emulation parameters’ effects in
Section 6.4.

7.2. Implications

Summarizing our results, a clear mismatch between blockchain and edge technologies
can be observed. While DLT excels in openly large and globally distributed networks,
edge computing is localized and restricted by its very own definition. Edge computing is
centered around the idea of consuming data in close proximity to where it is produced,
whereas in DLT, transactions are replicated and shared between every single node
of a global network before they can be considered valid. Attempts at merging both
technologies seem forced, and limiting the open and decentral nature of blockchain
is counter-intuitive at best. Instead, these attempts may potentially be attributed to
the ever-lasting hype surrounding DLT and edge, hidden underneath the puzzling and
seemingly impenetrable blockchain black-box. For all other cases, this work offers an
extensible emulation framework enabling the detailed investigation of trade-offs and
capabilities of edge computing use cases built on top of DLT.
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7.3. Future Work

In addition to aforementioned open goals, for future work, we plan to extend the
emulator by implementing and evaluating the remaining two DLT categories identified
in Section 2.3, namely DAG and BFT-based blockchains. Furthermore, we eagerly await
upcoming developments of DLT to include in our evaluation. Similar to our suggested
interledger approach, Ethereum 2.0 [153] intends to split its network into 64 shard chains
synchronized by a central beacon chain, to improve transaction handling performance.
Solana [154] proposes a novel consensus protocol, proof-of-history, aiming to improve
the finality of existing proof-based protocols by verifying the order and passage of
time between events on the ledger. In a similar approach to Ethereum 2.0, Elrond [155]
explores adaptive state sharding by reassigning active nodes to necessitating shards.
Finally, we aim to build upon our emulator by further improving its realism, especially
in terms of cryptographic operations or the network bandwidth. Additionally, we plan
on supporting specific use-cases, i.e. a marketplace, natively as part of the emulation.

The insights of this thesis and the developed emulation framework open up further
investigations on blockchains. Here, our emulator can be used to generate empirical
evidence for the suitability of blockchain in upcoming edge computing use cases, thus
avoiding the pitfalls of adopting DLT as a black-box solution.
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A. Protobuf Message Definitions

Listing A.1: Coordinator message wrapper

1 message CoordinatorMessage {

2 optional AssignNodes assignNodes = 1;

3 optional NodesAssigned nodesAssigned = 2;

4 optional InitP2POverlay initP2P = 3;

5 optional ConsensusNodes consensusNodes = 4;

6 optional P2PReady ready = 5;

7 optional Start start = 6;

8 optional Stop stop = 7;

9 optional Result result = 8;

10 }

Listing A.2: Coordinator messages

1 // Orchestrator signals Coordinator to initialize peers within the given (inclusive)←↩
ID range

2 message AssignNodes {

3 required int32 from = 1;

4 required int32 to = 2;

5 }

6

7 // Coordinator informs Orchestrator of the initialized peers and their IP addresses

8 message NodesAssigned {

9 repeated Node node = 1;

10 }

11 // Mapping of node ID to IP address

12 message Node {

13 required int32 nodeId = 1;

14 required string address = 2;

15 }

16

17 // Orchestrator sends network graph as an adjacency list and a mapping of node IDs ←↩
to IP addresses

18 message InitP2POverlay {

19 repeated Node node = 1;

20 repeated Edge adjacency = 2;

21 }

22 message Edge {

23 required int32 node = 1; // from node

24 repeated Latency edge = 2; // list of edges

25 }
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A. Protobuf Message Definitions

26 message Latency {

27 required int32 to = 1; // to node

28 required int32 latency = 2; // latency to node

29 }

30

31 // In case of DPoS: Orchestrator informs other Coordinators of selected BPs

32 message ConsensusNodes {

33 repeated int32 node = 1;

34 }

35

36 // Coordinator signals Orchestrator that its side of the P2P network is ready

37 message P2PReady {

38 }

39

40 // Orchestrator signals other Coordinators to start

41 message Start {

42 required int64 time = 1; // when to start

43 }

44

45 // Coordinator tells other Coordinator to stop with the given reason, may be relayed

46 message Stop {

47 required string initiator = 1;

48 required string reason = 2;

49 required bool fatal = 3;

50 }

51

52 // Coordinator delivers results to Orchestrator

53 message Result {

54 required string coordAddress = 1;

55 required double maxCPULoad = 2;

56 required double avgCPULoad = 3;

57 // contains detailed measurements of created blocks, transactions and latencies

58 repeated ResultEntry entry = 4;

59 }

Listing A.3: Peer message wrapper

1 // Messages sent between emulated peers

2 message P2PMessage {

3 // Init:

4 optional AnnouncePeer announce = 1;

5 optional Latency latency = 2;

6 // Blockchain emulation:

7 optional Inventory inv = 3;

8 optional GetData getData = 4;

9 optional Block block = 5;

10 optional Transaction transaction = 6;

11 // DPoS only:

12 optional BlockProposal proposal = 7;

13 optional BlockAck ack = 8;

14 }
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Listing A.4: P2P Messages

1 // Peer tells other peer who they are (node ID)

2 message AnnouncePeer {

3 required int32 nodeId = 1;

4 }

5

6 // BlockchainPeer informs other BlockchainPeer

7 // of a new block in their inventory

8 message Inventory {

9 required int32 sender = 1;

10 required int32 id = 2;

11 }

12

13 // BlockchainPeer requests block

14 // with the given ID from other BlockchainPeer

15 message GetData {

16 required int32 sender = 1;

17 required int32 id = 2;

18 }

19

20 // Gossiped transaction

21 message Transaction {

22 required int32 txId = 1;

23 required int32 txFee = 2;

24 required google.protobuf.Timestamp ts = 3;

25 optional bytes data = 4;

26 }

27

28 // Gossiped block

29 message Block {

30 required int32 blockId = 1;

31 required int32 parentId = 2;

32 required int32 creator = 3;

33 required google.protobuf.Timestamp ts = 4;

34 repeated Transaction transaction = 5;

35 }

36

37 // DPoS BP proposes Block to other BPs

38 message BlockProposal {

39 required Block block = 1;

40 }

41

42 // BP acknowledges BlockProposal of block

43 // with the given ID

44 message BlockAck {

45 required int32 blockId = 1;

46 }
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B. Reproducibility

The following tables describe parameter overwrites of default values introduced in
Table 5.1 for each figure presented in this work. Parameter ranges are described either
as a comma-separated list or using a dash (-) in case of a linear increase/decrease, or if
the values can be read directly from the describing figure. The emulator in [141] was
configured to use either three or 15 coordinators, depending on the underlying hardware
setup (Table B.1). Network parameter N refers to the investigated small, medium and
large network topologies introduced in Section 6.1.

Table B.1.: Hardware configurations (Par. = H).

Name Cores Description

Small 10 Fully switched (100 MB/s); Win10, Ryzen 5 2600X, 16GB; Ubuntu
18.04, i5-5200U, 8GB; Ubuntu 20.04, i5-2410M, 6GB

Cluster 58 1 GB/s network; 15 VM cluster; Ubuntu 18.04; 58 GB

Table B.2.: Figure 5.7.

Par. Value

H Small
BR 6 - 30
TR 0
NN 200, 400, 600
NL 30 ms
NT random; d = 0.05, 0.025, 0.0167
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B. Reproducibility

Table B.3.: Figure 5.8a.

Par. Value

H Small
BR 0.0805, 0.001667, 0.01667,

0.00667
TR 0
B 1000, 100, 500, 250
BP false
NN 1000, 600, 600, 800
NL 766, 850, 326, 340 ms
NT scale-free; m = 3, 4, 6, 20
R 5

Table B.4.: Figure 5.8b.

Par. Value

H Small
BR 1.4, 0.7, 0.35, 0.14, 0.07, 0.035, 0.0233,

0.011667, 0.004667
TR 0
B 2000 - 200
BP false
NN 600
NL 273, 273, 280, 296, 333, 403, 476, 693,

1393 ms
NT scale-free; m = 5

Table B.5.: Figure 6.1.

Par. Value

H Small
BR 0.1 - 34
C 1, 2
B 500 - 8000
N Medium
NL 63ms, 44ms

Table B.6.: Figure 6.2a.

Par. Value

H Small
BR 2, 8, 22
N Medium
C 1 - 4
B 4000 - 10000

Table B.7.: Figure 6.2b.

Par. Value

H Cluster
BR 0.1 - 16
N Large, Small
C 1
B 500 - 6000

Table B.8.: Figure 6.3.

Par. Value

H Small
BR 0.1 - 30
N Medium
B 500 - 10000
BC DPoS
DN 21, 3
DB 180

Table B.9.: Figure 6.4.

Par. Value

H Small
BR 8, 22
N Medium
B 8000
BC DPoS
DN 3 - 65
DB 180
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Table B.10.: Figure 6.5a.

Par. Value

H Small
BR 0.1 - 30
B 500 - 8000
BC DPoS
N Medium
DN 3, 21
DS Worst, Best
DB 180

Table B.11.: Figure 6.5b.

Par. Value

H Small
BR 8, 14, 22
B 4000 - 8000
BC DPoS
N Medium
DN 21
DB 10 - 300
DK 0, 1, 2

Table B.12.: Figure 6.6a.

Par. Value

H Cluster
BR 0.1 - 8
N Large, Small
B 500 - 6000
C 1, 2

Table B.13.: Figure 6.6b.

Par. Value

H Cluster
BR 0.1 - 8
N Large, Small
B 500 - 6000
BC DPoS
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