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Abstract

As Internet connectivity and reachability grow day by day, so do the challenges
associated with them. Today, the infrastructure that powers the Internet is extremely
prone to failures and disruptions. Identifying these issues is a complex effort due to
the scale and heterogeneous nature of the Internet. The aim of this thesis is to develop
a measurement platform allowing users to analyse the current state of the Internet
and its services. To achieve this objective, a modular and distributed platform was
built from the ground up. The platform was designed to allow users to create and
execute measurements on probes that could be deployed globally. This was achieved by
means of allowing users to self host a software container on heterogeneous hardware.
This container was packaged with the required measurement services and utilities.
Measurement support was added for both simple utilities like Pings and Traceroutes,
as well as complex user defined code and scripts. To keep up with newly emerging
satellite Internet constellations such as Starlink, the capability to extract and download
satellite dish metadata was also added. Access for user, measurement, and probe
management as well as the ability to download measurement results was made possible
through a REST API. The platform and its services were deployed and Ping, Traceroute,
and iRTT measurements were successfully run on probes in multiple continents. For
the probes that were connected to a Starlink connection, satellite dish metadata was
also extracted successfully.
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1. Introduction

1.1. Problem

Simultaneous support for both basic tools and custom measurements in existing net-
work measurement platforms is very limited. The few that support them have other
limitations such as a lack of measurement scheduling, limited ease of use, or a lack of
public measurement data being made available to users. Additionally, some of them
only allow users to run measurements on their own hardware. There is very rarely
support for running custom measurements on crowd sourced and globally distributed
hardware probes.

Furthermore, with the rise of satellite Internet constellations like Starlink [1], there
is a need for measurement platforms to support these connectivity technologies and
the features they offer. Starlink connections in particular offer unique dish metadata
that enable users to see dish statistics in real time. They do this by exposing metadata
through a gRPC API [2]. None of the existing network measurement platforms today
have any support for extracting this data. Any metadata like this in combination with
measurements and their results can be quite valuable to networks researchers.

Due to these limitations in current measurement platforms, there is a need for giving
users the ability to perform all of these operations under one single system. This
system should be supported by a global network of users and probes distributed across
multiple continents. Users should be able to contribute to this network by easily hosting
their own hardware for the purpose of running measurements. Support should be
added for measurements ranging from simple Pings [3] to custom measurements that
measure Quality of Service and Experience, and more. The system should additionally
support the extraction of Starlink dish metadata in parallel while measurements are
running on probes. More importantly, measurement data and result data should be
made publicly available to all users for future networks research and analysis. Finally,
the platform should be made highly extensible in order to add additional functionality
and features as and when new trends and techniques emerge.
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1. Introduction

1.2. Objectives

The main objective of this thesis is the creation and development of an Internet mea-
surement platform that must allow users to create measurements that are not just based
on tools like Ping, Traceroute [4], DNS Lookup [5], etc., but also give users the ability
to execute custom measurements. Custom measurements can be based on existing
tools like iRTT [6], or iPerf [7], or they may be more complex and deal with packet
capturing and video streaming data analysis. The platform must also be extensible and
must allow for other measurement types to be added in the future. This will allow the
platform to support new measurement tools that will be developed over time.

All measurements are meant to be run on probes that users can self-host. This ensures
users can contribute to the platform and its network of resources, and allows them
to take advantage of various probes hosted across the world. Through the means of
hosting a client service within a Docker [8] container, users must be able to quickly
spin up a software probe without the hassle of acquiring and maintaing specialized
hardware for this purpose. To give users flexibility, these containers must be able to
run on heterogeneous hardware such as physical machines, virtual machines, and even
low powered hardware such as Raspberry Pi devices [9].

In combination with the support for custom measurements, if a user were to connect
measurement probes to a satellite Internet connection such as Starlink for instance, the
probes would need to gather dish metadata, if available. This would make the system
better than the current state of the art as no measurement platform currently supports
such satellite dish metadata extraction.

Finally, the platform must also allow its users to fetch and download results for all
measurements, both new ones and those created previously. This will ensure that other
users can reproduce existing results and measurements analysis.

1.3. Thesis Structure

This thesis introduces the foundational concepts of Internet measurements and mea-
surement platforms in Chapter 2. The chapter also briefly describes and analyzes
existing measurement platforms that were explored as part of the background work.
Chapter 3 introduces the proposed software system and its components. The system
requirements, both functional and nonfunctional are also listed here and system models
are analysed based on these. In Chapter 4, the architecture and concepts involved
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1. Introduction

in the design and development of the new system are described. Subsystem compo-
nents and their responsibilities are also discussed in detail along with other important
ideas that have been implemented such as API rate limits and deployment strategies.
Chapter 5 focuses on evaluating the newly developed system. Evaluation is based on
both functional and nonfunctional requirements and is carried out by creating a test
deployment environment and executing measurements on it. System performance is
also analyzed in this chapter. Finally, in Chapter 6, the findings and limitations of the
system are discussed and the chapter concludes this thesis by proposing new features
and enhancements to the system in the future.
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2. Background

This chapter introduces concepts and techniques related to measuring the Internet. First,
Internet measurements are described in brief. After this, measurement platforms and
what they entail are discussed. Finally, existing platforms and solutions are analyzed,
including their features and drawbacks.

2.1. Internet Measurements

The Internet is a global system of networks that are connected to each other. These
networks consist of inter-connected devices(nodes) made up of heterogeneous hard-
ware and infrastructure that communicate with each other over a network and share
information, resources, and services. This communication always takes place over an
access medium, namely, hardwired, wireless, cellular or satellite and is made possible
by large Internet service providers that establish connectivity between the various
networks.

In any network, when a device sends any form of data to another device, the data
often goes through several intermediary devices. How fast the data gets sent and
through how many devices always depends on various factors such as the topology
of the network, the number of devices in it, the underlying networking hardware or
technologies, etc. To try and get an accurate representation of these variable factors,
Internet measurements are used. In their simplest form, these measurements can simply
be Pings and Traceroutes sent from one device to another. In the former case, packets of
data, in bytes, are sent periodically to measure the time taken to both send and receive
a response. In the latter case, packets of data are sent in the form of multiple hops
from one device to another. Not only is the time taken for each hop measured but the
overall route or path taken to the target destination is traced as well. Both these utilities
are only a few examples used to measure both the connectivity and reachability in
any network. There are several other utilities that help with measuring other factors too.

When utilities like these are applied globally, targeting devices that span countries and
continents, the inner workings of the Internet can be measured quantitatively.

4



2. Background

2.2. Measurement Platforms

Due to lack of access to devices in random regions across the earth, performing global
Internet measurements can be seen as a fairly daunting task. This is where Internet
measurement platforms attempt to solve the problem at hand. These platforms often
leverage a global network of volunteer users and devices. Users sign up for hosting
probes(devices or nodes) that are connected to the Internet and are used as sources to
run measurements. These devices or probes located across the globe act as vantage
points and therefore enable measurements on an extremely large scale.

The measurement utilities that these platforms and probes support often vary in nature.
They might be basic utilities such as Pings, Traceroutes, DNS Lookups, and HTTP
queries, or they may be arbitrary in nature, allowing users to define their own custom
logic or scripts.

From a user perspective, when a user wants to run a measurement, they often access the
platform through some sort of an interface, either a graphical interface, or a REST [10]
API. Through the interface, the user can create measurements, retrieve results for them
and manage their probes or devices. From the perspective of the platform and its
business logic, workflows such as these would entail supporting not just measurement
management, but user and probe management as well. In addition to this, some
platforms make measurement request data and result data public, allowing for this
data to be used in research and analysis or for result reproduction in the future.

2.3. Related Work

The following are a list of existing Internet measurement platforms that were reviewed
as part of this thesis.

2.3.1. RIPE Atlas

RIPE Atlas is, at present, the largest Internet measurement platform [11]. It consists
of a network of over 12000 probes spread across the earth [12]. These probes are a
combination of both software and hardware probes. The software probes are Docker
based and the hardware probes are small USB powered devices that are connected to
an Ethernet connection. The hardware probes have been in existence for more than a
decade and have seen multiple revisions improving performance and capabilities with
each revision. Users(hosts) volunteer to host these probes and connect them to their
own networks. While the probes are connected, measurements can be performed from
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2. Background

them targeting any publicly accessible node on the Internet.

Measurement creation costs credits and costs vary depending on the measurement
type and duration. Hosts are rewarded with credits based on the duration of hosting a
probe. They can subsequently use these credits to execute measurements. They can also
transfer them to other users. The measurements that are supported are Ping, Traceroute,
DNS, SSL, HTTP, and NTP [13]. Each measurement type further supports customizable
parameters such as Packets and Size for instance, for a Ping type. Measurements can
be run on multiple probes and can also be scheduled to run at a specific start time.

Primary access to the platform is through a graphical user interface accessed via the
website. Secondary access is through a REST API that the platform exposes. Both
access interfaces allow most or all operations to be performed including but not limited
to measurement management, keys management, and probes management.

All data that RIPE Atlas collects is freely and publicly available [14]. Data includes, but
is not limited to, measurement request data, measurement result data, probe informa-
tion and location data. The platform also exposes a Streaming API through the means
of both an HTTP GET API and also a WebSocket [15] connection for real time data flow
of all public results data.

Although the platform actively supports Starlink based satellite Internet connectivity
for its probes, capabilities are on par with other hardwired or cellular probes. There is
no metadata extraction from either the satellite dish or the router. There is also a lack of
support for arbitrary execution of custom code or measurements on probes connected
to the platform.

Figure 2.1 shows the internal architecture of RIPE Atlas as of 2015 [16]. All commu-
nication across the system components are handled by message queue servers that
guarantee message delivery. These servers are connected to a Brain component that
handles all business logic and measurement scheduling on probes. When a probe first
starts up, the registration server receives a connection request from it. The server then
routes the probe to its nearest Controller which will then forward all measurement
request information to it.

All data is stored in two ways. First, an SQL database is used to store all the system
data that pertains to probes, measurements, users, etc. Second, all the result data is
stored in a big result store. This store is an HBase [17] cluster and uses MapReduce [18]
operations for batch processing and aggregation.

6



2. Background

Figure 2.1.: RIPE Atlas architecture and system components

All the components of the system can be scaled up and down independently.

2.3.2. EdgeNet

EdgeNet is a globally distributed Internet research platform that allows users to run
Internet experiments. Experiments can be run on nodes that are contributed by users.
They are arbitrary in nature, ranging from a simple shell script to a full fledged web
server. A node can either be a physical machine or a virtual machine.

7



2. Background

Users wanting to run experiments are vetted by means of a verification workflow. A
user first registers with an institutional email address, followed by an EdgeNet admin-
istrator verifying the user’s information, credentials and past research work. Once a
user has been successfully verified, they can proceed to run experiments.

Nodes, either virtual or physical, use Kubernetes [19] and Docker for running experi-
ments. The former is used in the form of kubelet [20] which is the agent that runs on
the nodes. It handles container orchestration and management workloads. The latter is
the container engine used to run user experiments. Nodes are required to have public
IP addresses and can support both ARM64 and x86-64 CPU architectures. In order
to host a node, a user downloads a shell script that proceeds to setup the required
dependencies.

Experiments are created in the form of a Docker container. A user creates an experi-
ment using tools or utilities and packages it all into a Docker image. Once the image
has been built, it is then pushed to a container registry. To run the experiment on
nodes, a user then creates a deployment using a Kubernetes configuration file. While
creating a deployment, the user can specify deployment selector values to choose node
locations, number of node targets, etc. Nodes can be requested with minimum resource
limits as well by specifying required cpu and memory specifications. All deployment
related tasks are carried out using Kubernetes’ kubectl command-line tool [21]. After
deployment has been completed, a user can monitor the experiment and retrieve logs
and results using the tool.

EdgeNet provides a detailed acceptable use policy that lists guidelines and rules for
general use of the platform and its services. Rules are listed for both node usage and
network usage and violations of rules have consequences such as disabling accounts.

A user needs to be quite familiar with both Docker and Kubernetes to use the platform.
There is, at present, no other user interface or API access to create experiments. As
a result, experiment request data and experiment results are not public or stored for
future retrieval. Users can only access results for the experiments they create.

2.3.3. SpeedChecker

SpeedChecker is an Internet measurement platform that sources, collects, and provides
user Quality of Service and Quality of Experience measurement data [22].

Data is collected through tests that are user initiated or scheduled on mobile devices

8



2. Background

and web browsers [23]. The former is enabled by both their own mobile applications
and also by providing Software Development Kits that integrate with other mobile
applications to run tests focused on Speed, Latency, Jitter, Video, Voice Over IP, and
Packet Loss. The latter is provided in the form of an HTML API that can be integrated
into websites. All measurements and tests target their CDN that has servers located in
over 285 locations across the globe. Custom servers can also be targeted based on the
SDK versions.

All crowd-sourced data can be accessed by means of two datasets, namely Speed Test
Datasets and Cellular Coverage Datasets. The former [24] is formatted to provide
information on Upload Speeds, Download Speeds, Ping, ISP, Latitude, Longitude, etc.
The latter [25] focuses on cellular data such as Mobile Country Code, Mobile Network
Code, Signal Strength, Frequency Channel, Signal Quality, etc.

Data is provided to Regulators, Mobile Network Operators, Fixed Network Providers(ISPs),
as well as researchers.

2.3.4. SamKnows

SamKnows is a network measurement company offering solutions catered to measuring
broadband and cellular performance for both home users as well as institutions such
as large Internet Service Providers and Internet Regulators [26]. Started in 2008, they
first offered measurements run on hardware devices(Agents) called as Whiteboxes [27].
These devices are connected directly to home routers and run tests to measure Internet
performance. Over time, the company has collaborated directly with ISPs and regula-
tors to establish performance standards and benchmarks.

SamKnows’ test suite is very large and supports various tests based on user Quality of
Service and Quality of Experience [28]. These include, but are not limited to, Speed
Tests, Latency and Packet Loss Tests, DNS Lookups, Voice Over IP Quality Tests, Tracer-
outes, Video Streaming Quality Tests, etc.

Out of all these tests, the latency, traceroute and DNS tests are used very commonly.
The latency test SamKnows uses is based on UDP and measures round trip time of
UDP packets sent periodically from an agent to a target test server. The test is config-
ured to run continuously over time and is set to send packets once every 1.5 seconds.
Metrics recorded are based on minimum, average and maximum round trip times. The
traceroute test they use is based on an open source client mtr [29, 30] and sends three
probes to each hop to measure round trip times and packet loss from the hop responses.

9



2. Background

Finally, the DNS test that SamKnows uses can be configured with optional settings
for additional endpoints, timeouts, and query values. It typically queries common
hostnames such as google.com and facebook.com.

Today, SamKnows offers many more Agents, either hardware or software for running
measurements [31]. New hardware agents supported are referred to as Router Agents.
These are offered as a firmware upgrade to existing Internet routers and are intended
for ISPs to embed into these routers to measure network performance. New software
agents offered are based on an iFrame web app, a Mobile SDK that integrates their
cellular and wireless measurement services, a Docker based measurement agent, and
their own smartphone application to measure the phone’s connection.

The Docker agent is available as an image and is distributed via DockerHub. It makes
use of an alpine linux base image and is approximately about 17MB in size [31]. It
supports hardware belonging to both the ARMv7 and x86 architectures which include
devices such as Raspberry Pis and general purpose computers. Due to the nature of
the Docker container running on top of the host machine, the container requires direct
access to host machine networking. When a user wants to host the agent, they are
provided with a one-line command to spin up the container. The agent supports all
tests and functionality of their hardware router agent including the QoS and QoE tests.

All tests that the agents perform target high capacity test servers that the company
maintains across the earth [32]. For tests that ISP Router Agents perform, ISPs can
deploy their own additional servers within their networks.

10



3. Requirements Analysis

This chapter proposes the new system, its architecture, and the requirements it must
fulfil. Requirements are identified using the FURPS+ model [33].

3.1. Proposed System

Figure 3.1.: Proposed system with major components and their interactions

Figure 3.1 shows an overview of the proposed system. The entire system is to be
decomposed into three major service components.

11



3. Requirements Analysis

The first service component, the API service, is the only user facing service. It exposes
a REST API interface for end users and takes incoming requests for all operations
including user management, measurement management, probe management, and
downloading measurement results. It forwards measurement execution information
to the intermediary Connector service component. Additionally, the API service is
directly connected to a data persistence component to store and retrieve information
pertaining to users, measurements, and probes, among other objects.

The second service component, the Connector service, is an internal intermediary
service. It receives measurement execution information from the API service and for-
wards a subset of relevant data to the probes connected to it, to facilitate measurement
execution on them. This service monitors all Probe service instances connected to it
for a healthy connection. It also receives measurement results data from these probes
as and when they complete measurement execution. Like the API service, it is also
connected to the database for data persistence and retrieval.

The third and final component is the Probe service. This service is a client service
intended to run within a container using Docker and executes measurements within
this environment. It must be capable of running on heterogeneous hardware including
Raspberry Pi devices. This service maintains a persistent connection to a Connector
service instance and receives measurement execution information from it. After the
measurements have been executed, it uploads the results back.

The Probe service has the added responsibility of extracting dish metadata from certain
satellite connections such as Starlink. Starlink routers and dishes expose dish metadata
which includes information on dish obstruction, dish angle, etc. This information is
provided by means of a gRPC API. The Probe service connects internally to this API
and fetches this information when a measurement is executing. It then sends this data
to the Connector service instance for persistence.

3.2. Requirements Specification

3.2.1. Functional Requirements

This subsection lists the functional requirements for the proposed system.

FR1 Support for standardized Predefined measurements: It should be possible for
users to create Predefined measurements based on Ping, Traceroute, DNS Lookup, and

12



3. Requirements Analysis

HTTP GET/POST.

FR2 Support for user created Arbitrary measurements: It should be possible for users
to create custom measurements based on arbitrary code so that they can use tools like
iRTT, iPerf, and packet capturing software.

FR3 Support for retrieving satellite dish metadata: It should be possible for the system
to retrieve satellite dish metadata(if available) for measurements run while connected
to satellite Internet connections like Starlink.

FR4 Support for storage and retrieval of measurement results data: It should be
possible for the system to store and fetch measurement results.

3.2.2. Nonfunctional Requirements

This subsection lists the nonfunctional requirements for the proposed system.

Usability

NFR1 Ease of use for probe hosting: The user must be able to retrieve probe configu-
ration data for self-hosting

Reliability

NFR2 Restart policies: The system must automatically attempt to restart on disconnects
or crashes.

NFR3 Result re-uploads: The client Probe service should automatically re-upload
results on disconnects or crashes.

NFR4 Security - Encryption: User passwords must be encrypted prior to storing them
in the database.

NFR5 Security - Role-based Access Control: Access to operations, and the operations
themselves must be split based on two roles - User role, and Admin role.

NFR6 Security - Unauthenticated and unauthorized access: Unauthenticated and
unauthorized users should not have access to application data including measurements
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and their results.

Performance

NFR7 API rate limiting: There should be artificial limits on measurement creation to
prevent the system from getting overloaded.

Supportability

NFR8 Extensibility: The system must be extensible. It should be possible to add
support for new measurement types and features in the future.

Implementation

NFR9 Docker: The client Probe services must be container based and must use Docker.

NFR10 Raspberry Pi hardware: The client Probe services must run on low powered
Raspberry Pi devices.

NFR11 Deployment: The internal services should be deployed using a container or-
chestration solution.

Interface

NFR12 Results - Formatting: Satellite dish metadata and results for Predefined mea-
surements should be JSON [34] based. All result downloads must be ZIP archive
based.

3.3. System Modelling

This section discusses aspects of the functional specification of the system.

3.3.1. Scenarios

This subsection lists scenarios focused on features of the system from the viewpoint of
a user.

User management
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3. Requirements Analysis

A user with an Admin role can create users with either an Admin role or a User role.
Each user is identified with a combination of a unique email address and a password.

Any user can login with their credentials to retrieve an authentication token. They can
also update their credentials and delete their user resource.

Probe management

A user with an Admin role can create a probe resource. Every probe is associated with
an existing user.

Any user can retrieve information on all probes. Any user can also retrieve hosting
configuration data for their probes.

Measurement management

Any user can create and stop their measurements. Any user can view all measurements.

Result management

Any user can download measurement results for any measurement.

3.3.2. Dynamic Modelling

The models presented in this subsection focus on the behaviour of the system. Some of
the most important interactions between a user and the system are depicted with the
use of UML sequence diagrams.

Fetch probes

Figure 3.2 shows the sequence of messages exchanged between the user and the
API service when the user wants to fetch all probes and their details. First the user
authenticates and receives an access token. Using the access token, the User makes
the request to fetch all probes. The API service verifies access and sends the probes
response.
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Figure 3.2.: UML sequence diagram depicting the sequence of messages exchanged
when a user fetches all probes

Create measurements

Figure 3.3.: UML sequence diagram depicting the sequence of messages exchanged
when a user creates a measurement

Figure 3.3 depicts a sequence diagram depicting system behaviour when a user creates
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a measurement.

First, the user authenticates and receives an access token. The user then uses this token
to create a measurement request to the API service. The API service schedules the
measurement by forwarding it to the Connector service. The API service then sends
a measurement creation response back to the user, indicating that the measurement
is created. The Connector service forwards measurement information to probes speci-
fied by the user. If the probe is not currently busy executing another measurement, it
then executes the new measurement and sends the results back to the Connector service.

The measurement creation response sent from the API service to the user contains the
measurement identifier.

View measurements and Fetch results

Figure 3.4.: UML sequence diagram depicting the sequence of messages exchanged
when a user views all measurements

Figures 3.4, and 3.5 are additional sequence diagrams for Viewing measurements and
Fetching results respectively. Like in the case of the previous interactions, user au-
thentication is performed to retrieve an access token prior to performing the required
operations.
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Figure 3.5.: UML sequence diagram depicting the sequence of messages exchanged
when a user fetches results for a measurement
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4.1. Overview

Broadly, there are two types of measurements the new system will support - Arbitrary
and Predefined measurements.

Arbitrary measurements: These are meant to give users the ability to execute custom
code of their choice packaged within a Docker container. They will run for a user
specified duration. Because these measurements are packaged within a container, the
new system will use a Docker based environment to spin up the container internally
using the docker run command.

Predefined measurements: These are meant to be measurements executed quickly in
a minute or two against a single target. Five sub-types are chosen based on common
measurements - Ping, Traceroute, Paris Traceroute, DNS Lookup, and HTTP GET/POST. To
take advantage of the Docker based environment created for Arbitrary measurements,
these predefined utilities will all be packaged into a small, lightweight container which
will run within the same environment. This will unify both execution pipelines inter-
nally.

As a result of supporting both these measurement types, the system will have to deal
with different types of result data. The Predefined measurements results will be for-
matted in JSON but the Arbitrary measurements results will be raw unstructured data.
Taking both this factor and the measurement execution pipeline into consideration,
a new system architecture was created. Figure 4.1 shows the top level component
diagram for the newly developed system.

It is an extension of the proposed system design described in Chapter 3(Section 3.1) with
the use of two databases for persisting all data - System DB for storage of users, mea-
surements, probes data, and Results DB for storing results and satellite dish metadata
exclusively. Using a separate database for storing results allows for easier horizontal
scaling of that database alone. Over time, the Results DB will accumulate in size
significantly more than the System DB due to the storage of unstructured data.
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Figure 4.1.: Top level system component diagram

The three major service components remain the same with the diagram also indicating
their exposed interfaces. The Connector service in particular exposes internal APIs
and interacts directly with both the API service and the Probe service(s) due to its
intermediary nature.

For all three services, Java based Spring Boot [35], an extension of Spring [36] was used
as the base framework. Spring Boot is a production-grade enterprise web framework.
It features comprehensive support for developing Java based web services and applica-
tions. It comes built-in with an embedded web server and has module support for web
security, database management, logging and metrics, etc. Based on the need of each of
the three services of the system, modules and dependencies were chosen appropriately.

For both the System Database and Results Database, MongoDB [37] was chosen due to
these reasons:

1. The nonfunctional requirement NFR12 listed in Chapter 3(Section 3.2), and Mon-
goDB’s inherent support for JSON.

2. Use of JSON within the services framework ecosystem and Spring Boot’s extensive
support for MongoDB [38].
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3. Supporting Arbitrary measurements meant that unstructured raw data storage
would be needed. MongoDB’s support [39] for BSON [40] and GridFS [41] was
taken into consideration.

4. The extensible nature of the platform meant that new measurement types would
keep getting added and existing measurement types would constantly keep
receiving schema updates. A NoSQL document database such as MongoDB
allows handling new data without disrupting the current structure [42].

4.2. Subsystem Decomposition

The three major subsystems are described in detail below.

4.2.1. API Service

The API service is the end-user facing service. It exposes a REST API for users and is
their only entry-point to the entire platform. Figure 4.2 shows the complete internal
architecture of the service.

The API service has multiple major responsibilities:

1. User management: The service exposes endpoints for the creation, updation
and deletion of all users of the platform. In order to facilitate operations such
as user creation, the service uses a Role-Based Access Control [43] mechanism
wherein there are two broad roles of users - an Admin, and a User. The former
has higher privileges and can create users. The latter can access all other user
operations. For security, a PBKDF2 cryptographic key derivation function [44] is
used for user passwords. In addition to this, all users have to request JSON Web
Tokens [45] for accessing API operations. Both security measures are Internet
Standards documented by their RFCs [46, 47]. The service persists all user data to
the System Database.

2. Probe management: The service exposes endpoints for the creation and retrieval
of probes and their details including probe configuration for self-hosting purposes.
Again, RBAC is used allowing only Admin users to create a probe. All the other
probe operations can be performed by any user. Every probe is linked to a user
that is already created and includes information such as Country, Region, Status,
IPv4, etc. All probe data is stored in the System Database.

When a user wants to host a probe, they make an API request to download probe
configuration data for that probe. When the API service receives this request, it
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Figure 4.2.: Architecture of the API service
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first ensures that the probe is linked to the requesting user. It then dynamically
embeds data within the configuration like security data, connection strings, etc.
The API then serves the user with a downloadable Docker Compose [48] based
configuration file which the user can use to deploy the Probe service.

3. Measurement management: Endpoints are also exposed for creating, stopping,
and viewing measurements. Any user can perform these operations. Users
can choose to create measurements of both types, Predefined and Arbitrary.
Every measurement is linked to the user that creates it and data includes various
information such as Type, Specification, Repeat Specification, Probe Specification,
Status etc. The Type and Specification in a measurement object contain data
specific to the measurement type and its parameters. The Repeat Specification
object deals with scheduling a specific measurement to repeat multiple times
based on an interval duration. The Probe Specification object deals with the
probes on which the measurement is intended to run. Again, like the previous
two cases, all measurement data is stored in the System Database.

When a user creates a measurement to be executed on some probes, the API
service receives the measurement request data. After verification of the data, it
then forwards it to the relevant Connector service instances that are connected to
their respective probes and returns the successful measurement creation response
back to the user.

Measurement scheduling takes place as they come in. At the time of measurement
creation, if probes specified are available and not busy, measurements are sched-
uled immediately and all data is forwarded to the Connector service. However, if
at the time of creation, any probes are not available or are busy, measurements
are not scheduled and are treated as conflicting. These scheduling conflicts are
also checked for repeating measurements. Their scheduling status is indicated to
users when they query for them.

4. Result management: Endpoint access also exists for downloading results for a
measurement. Any user can download results for any measurement. Results are
ZIP archive based and serve users with a downloadable ZIP file. The file contains
differing files inside based on the type of the measurement. If the measurement
was executed on any probe connected to a Starlink connection, the results can
possibly also contain satellite dish metrics associated with that probe collected
during the measurement execution time.

All results and dish metadata are fetched from the Results Database.
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4.2.2. Connector Service

The Connector service is an intermediary internal service. It exposes a REST API to
consume measurement information coming in from the API service. It also exposes a
WebSocket connection and other REST API endpoints to receive data coming in from
the probes. All of these interfaces are authenticated by means of API Keys.

Figure 4.3.: Architecture of the Connector service

Figure 4.3 shows the complete internal architecture of the service.

From a system design perspective, the Connector service instances are meant to be de-
ployed across different regions and are responsible for managing a set of probes within
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those regions. In order to achieve this, each service exposes a WebSocket connection
for these probes. The probes automatically initiate a connection to this socket when
they start up. After successfully authenticating the connection request, the Connector
service receives probe registration information that identifies each probe uniquely. The
Connector service then persists relevant information to the System Database including
probe status information thereby effectively linking itself to that probe. This linking
remains active as long as the socket connection remains alive.

Now, when a user creates a measurement involving one of those probes, the API
service, by fetching probe information from the System Database knows which Con-
nector service instance to communicate with for that probe. It then proceeds to send
measurement information to that instance using its API endpoint. Upon receiving
this data, the Connector service instance proceeds to schedule tasks internally for that
measurement. For scheduling, the Spring TaskScheduler interface is used [49]. When
these scheduled tasks run, measurement information is forwarded to the relevant probe
for execution using the active socket connection.

After the probe runs the measurement, it sends measurement results back to the Con-
nector service instance along with any optional satellite dish metadata it collected. The
results and metadata once received are then formatted into either JSON or BSON and
stored in the Results Database.

The Connector service through the socket connection to a probe is always actively listen-
ing to WebSocket disconnect events. When a probe connection breaks, it immediately
updates its status to indicate that the probe has been disconnected.

4.2.3. Probe Service

The Probe service is a client service intended to run measurements on hardware be-
longing to users. To satisfy the nonfunctional requirements NFR9 and NFR10 listed in
Chapter 3(Section 3.2), the service is packaged to run within a Docker container and
made lightweight enough to run on low powered Raspberry Pi devices.

The service itself does not expose any API endpoints. All communication is only one
way towards the Connector service other than the measurement information it receives
through a self-initiated WebSocket connection. This socket connection initiation takes
place on startup every time the probe container gets spun up. Once this takes places,
the service is ready to accept measurement requests.
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Figure 4.4.: Architecture of the Probe service
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Figure 4.4 shows the architecture of the Probe service.

For the execution of the measurements, Docker containers are used. Based on the two
major measurement types the system supports, Predefined and Arbitrary, different
container images are pulled and are spun up to act as execution environments. For
Predefined measurements, the container image is an extremely lightweight( 5 MB)
alpine linux image [50] with added utility support for ping, traceroute, paris-traceroute,
curl, and nslookup, which are the current supported measurement subtypes. In the
case of Arbitrary measurements, users package their own code into containers. These
containers are then spun up similarly for measurement execution. After measurements
have been executed, their results are then sent back to the Connector service for persis-
tence.

Figure 4.5.: Sysbox Docker in Docker approach

To enable such a Docker in Docker approach, the container runtime Sysbox [51] is
used. Sysbox is a runtime that enables containers to run software such as Docker and
Kubernetes. The software runs within containers without any modification required.
Sysbox also greatly improves container isolation and security [52]. It allows a user
to execute any code or software within Sysbox system containers safely preventing
them from accessing the host machine. Therefore, by using Sysbox, the Probe service
is first created as an outer system container. Then, once the Probe service container
is up and running, measurement containers inside are spun up as inner containers.
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Effectively, this allows both the outer system container and the inner containers to
execute privileged measurement code without access to the host machine or device.

Finally, the Probe service also has support for collecting satellite dish metadata when
measurements are running. Currently, there is support for extracting such data only
from Starlink based satellite connections. Starlink routers and satellite dishes expose
metadata using a gRPC API. By consuming this API from within the Probe service, dish
metadata is collected for the duration of measurement execution. Once measurement
execution is completed, this data is sent back to the Connector service for persistence.

4.3. Measurement Configuration

For both the Arbitrary and Predefined measurement types, the system supports config-
uration via parameters. These parameters are unique to each type of measurement and
take in values from users.

Since Arbitrary measurements are custom and container based, they support more
parameters. These are:

1. Container Duration

2. Container Image

This property refers to the identifier for the container image hosted on the
DockerHub container registry [53].

3. Container Entrypoint

This property is used to define the container’s default process when the container
is run [54].

4. Command Inputs

This property is used to define the container’s default process arguments when
the container is run [54].

5. Environment Variables

This property array is used to pass user provided environment variables to the
container when it is run [55].

6. Output Path
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This property refers to the directory path within the container where results are
stored. The Probe service internally maps a temporary directory to this path
within the user container in order to retrieve measurement results [56].

7. Linux CAP_NET_ADMIN capability [57]

This property allows the user to indicate if the privileged linux CAP_NET_ADMIN
capability should be granted to the user container. This capability is useful in
specific cases such as network packet capturing or network interface configuration
for instance.

For Predefined measurements and their five sub-types, these are their customizable
parameters:

• Ping

Target, Number of packets, Packet byte size

• Traceroute

Target, Maximum hops, Method(UDP, ICMP, or TCP)

• Paris Traceroute [58]

Target, Maximum hops, Method(UDP, ICMP, or TCP)

• DNS Lookup

Target

• HTTP GET/POST

Target, Method(GET, or POST), Query String - in case of POST

4.4. API Rate Limits for Measurements

The nonfunctional requirement NFR7 listed in Chapter 3(Section 3.2) requires limits to
be applied on measurement creation to prevent excess consumption of resources and
overloading the system.

To address this, artificial limits have been applied to the measurement creation API as
follows and apply at a user level:

• For Predefined measurements, there is currently a maximum limit of 25 simulta-
neous scheduled measurements.
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• For Arbitrary measurements, there is currently a maximum limit of 3 simultaneous
scheduled measurements, in combination with the following:

1. Maximum runtime of one hour per measurement run

2. Maximum 10 repetitions of the measurement

• To limit access to an excess number of probes, only a maximum of 100 probes can
be specified per measurement of any type.

When a user attempts to create a measurement that exceeds any of these limits, the
measurement is not scheduled to run and is deemed failed. These limits are an attempt
at giving every user fair access to compute resources.

4.5. Service Deployment - Orchestration

The API service and the Connector service were designed from the beginning to be con-
tainerized and deployed using an orchestration solution. For this purpose, Oakestra [59]
was chosen. It is a lightweight orchestration framework that was specifically designed
for heterogeneous hardware and edge infrastructures.

By using Oakestra, these are some of the major benefits for the system’s service
infrastructure:

1. Service deployment performance:

Both the system services are packaged within containers that may be deployed on
hardware ranging from low performance personal computers to high performance
cloud machines. Consistent deployment times for these containers is a major
concern due to the extensible nature of the platform. Oakestra solves this issue by
making deploy times extremely minimal irrespective of the hardware underneath.
Containerized service deployments in particular have shown to be faster compared
to other orchestration solutions such as MicroK8s [60] and Kubernetes [61]. As a
result, Connector service deployments in new regions can take advantage of this
even if the regions have degraded network performance.

2. Service networking performance:

Due to the geographically distributed nature of the services, connectivity and
issues such as latency and packet loss are a concern. Subpar connectivity between
an API service instance and a remote Connector service instance will fail to
guarantee time bound measurement execution in the real world. One of the
benefits of Oakestra that fits into this scenario is its support for inter-cluster
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networking. Oakestra’s networking component, the Network Manager enables
communication between services deployed across clusters. It achieves this with
two features - subnetworking, and semantic addressing policies [62].

The former ensures that every worker node has its own subnetwork and allocates
private namespace addresses to all services in a node. This allows every single
service instance to have its own IP address.

The latter builds upon this and enforces traffic balancing policies based on either
a round robin algorithm or a closest device algorithm. When multiple API service
instances are scaled horizontally and are deployed across different regions, the
round robin algorithm would help in uniform traffic balancing by routing user
requests to every service instance one by one. When multiple Connector service
instances are deployed similarly in different continents, the closest device algo-
rithm would help probes connect to their closest Connector instance to reduce
overall connection latency. Both strategies are extremely beneficial.

Taking advantage of these benefits, the system and its internal services can be deployed
using multiple deployment strategies:

1. One-machine minimal deployment:

Figure 4.6.: One-machine service deployment using Oakestra

In this scenario, all of the core components of Oakestra are first setup on a single
machine. The Root orchestrator, the Cluster orchestrator, the Node Engine and
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Network Manager components are all deployed. Next, using the deployment
descriptor and Oakestra’s REST API, both the internal services, the API service
and Connector service are deployed through containerization on the Node Engine.
One single instance of each service is started. Internally, Oakestra manages
orchestration of these instances. Networking for the service communication is
then setup to reflect the subnetwork addressing created by the Network Manager.
By using the instance IPs, both services can communicate with each other directly.
This scenario is suitable for a minimal deployment or a test environment where
the Connector service instances need not be distributed across different regions.
A working example of this setup was created for system evaluation, discussed in
Chapter 5(Section 5.1).

2. Distributed hybrid deployment:

Figure 4.7.: Distributed service deployment using Oakestra

In this scenario, Connector service instances are scaled and distributed across
different regions. This allows them to control a high number of probes across
those regions. It is therefore more representative of a production environment. For
this setup, multiple Cluster orchestrators or Node Engines or any combination
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of both can be used to scale the services as needed. These can be located in
different locations and can be based on different types of computing hardware
ranging from cloud based virtual machines to general purpose computers. This
will enable every Connector service instance to control its own regional set of
probes, thereby reducing overall load and increasing scalability. While all of these
services are distributed, inter-service communication is again handled by the
Network Manager component and its subnetwork addressing.
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This chapter aims to evaluate the functionality and performance of the newly developed
system. For this purpose, test infrastructure was setup and the system services were
deployed on it. Measurements and tests were then executed.

5.1. Setup and Infrastructure

The infrastructure and system configurations used are described below.

5.1.1. Internal Services Deployment

Both the internal API and the Connector service instances were deployed using
Oakestra’s one device one cluster strategy [63]. A single Oakestra cluster with one Root
Orchestrator, one Cluster Orchestrator, one Node Engine component, and one Network
Manager component were setup on a single virtual machine. Table 5.1 lists the machine
specifications.

Table 5.1.: Machine specifications for deploying internal services

Name Hardware OS (Ubuntu Server) (v) CPUs RAM (GB) Location

VM 1 Virtual Machine 20.04 4 4 Germany

The Oakestra deployment was made via container virtualization. One container instance
for each service was deployed by using a deployment descriptor. Inter-service commu-
nication is handled by Oakestra’s Network Manager and its support for subnetwork IP
addressing.

5.1.2. Database Deployment

Both the above services were connected to a MongoDB 6 Community Edition database
server running on a virtual machine. Table 5.2 lists the machine specifications.
The database connection was secured using Mongo’s SCRAM authentication mecha-
nism [64]. Additionally, incoming network access to this machine was IP restricted to
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Table 5.2.: Machine specifications for deploying the database
Name Hardware OS (Ubuntu Server) (v) CPUs RAM (GB) Disk Space (GB) Location

VM 2 Virtual Machine 20.04 2 2 50 Germany

allow access only from machine VM1.

Figure 5.1 shows the deployment diagram for both machines VM1, and VM2.

Figure 5.1.: Deployment diagram

5.1.3. Probes Deployment

Several Probe service instances were used and deployed on different hardware and net-
work conditions across three different continents to simulate a real world environment
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for evaluation.

Probe deployment process was also made to resemble a real world scenario simulating
how an end-user would carry out the process. Once the probes were created by an
Admin user, probe deployment configuration files(Docker based) were downloaded for
each probe. Configuration properties were modified following instructions that would
be presented to end-users. Finally, docker compose was used to start up the Probe service
containers.

All probe containers successfully authenticated and connected automatically to the
Connector service instance on startup. No intervention was required for any of the
probes. Self registration was performed and this was verified by means of fetching
probes data using the API service. Data showed all probes being connected successfully
to the platform, ready to accept measurement requests.

Table 5.3.: Probes used and their deployment details

Name Hardware OS (Ubuntu Server) (v) CPUs RAM (GB) Interface Location

Probe A RPi 4 Model B 22.04 LTS 4 4 Wireless Germany

Probe B RPi 3 Model B 22.04 LTS 4 1 Wireless Germany

Probe C Virtual Machine 20.04 2 2 Starlink Germany

Probe D AWS EC2 22.04 LTS 1 1 Wired USA

Probe E AWS EC2 22.04 LTS 1 1 Wired India

Table 5.3 shows the probes used and their details.

5.2. Evaluating Functionality

Evaluation was performed by executing measurements on the deployed probes. First,
two sets of Predefined measurements were run using Ping and Traceroute. Next, an
Arbitrary measurement using iRTT was run to demonstrate functionality of both the
major measurement types.

For both the Predefined measurements, the target selected was a Microsoft Azure App
Center server located in central Europe.
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5.2.1. Predefined Measurement - Ping

The Ping measurement parameters were selected as follows and the measurement was
repeated 10 times totalling to 11 measurement executions spread across a total time of
about 35 minutes across all 5 probes:

• Target IP: 4.232.99.0

• Number of Packets: 3

• Packet Byte Size: Default(56 Bytes)

Figure 5.2 shows the entire JSON payload for the measurement request.

{
"type": "PING",
"measurementSpecification": {

"target": "4.232.99.0",
"numberOfPackets": 3

},
"description": "Ping mmt-thesis",
"repeatSpecification": {

"numberOfRepeats": 10,
"interval": 180

},
"probeSpecification": {

"probeIds": [
"64c9f3571d52ec12b0f2feb4",
"64dd7d0320b80e736f5194ce",
"64dd7d2320b80e736f5194cf",
"64dd7c3720b80e736f5194cb",
"64dd7c5520b80e736f5194cd"

]
}
}

Figure 5.2.: JSON payload used for the Ping measurement request

Table 5.4 shows the overall results. The factors Measurements Coverage, Results Coverage,
and Dish Metadata Coverage were chosen to evaluate the functioning of the system.
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For Dish Metadata Coverage specifically, Probe C was connected to an active Starlink
connection and metadata gathering was enabled for this probe. Ideally, for every second
of measurement execution, one metadata record is fetched from the dish. For instance,
if a measurement runs for 3 seconds, ideally this should result in 3 metadata records
gathered.

Table 5.4.: Ping measurement evaluation results

Probes

Ping Results Probe A Probe B Probe C Probe D Probe E

Measurements Scheduled 11 11 11 11 11

Measurements Executed 11 11 11 11 11

Measurement Coverage 100% 100% 100% 100% 100%

Measurement Results Returned 11 11 11 11 11

Measurement Results Coverage 100% 100% 100% 100% 100%

Total Execution Time 44s 104s 33s 33s 33s

Dish Metadata Records - - 31 - -

Dish Metadata Coverage - - 93.93% - -

Results show complete measurement execution coverage. All scheduled measure-
ments were executed on all of the probes successfully. Complete coverage for results
downloads was also achieved. Probe C, which was the only probe connected to a
Starlink connection returned satellite dish metadata covering about 94% of the total
measurement execution time. Only two metadata records were missing.

Severe execution time discrepancies can be noticed across some probes. This is dis-
cussed in detail below in Subsection 5.3.1.

Round trip time results for the Ping measurements on all probes are visualized below
in Figures 5.3 - 5.7. Results are normal for ping values seen in devices located in the
probes’ locations and the server being located in central Europe. Probes A, B, and C
are located in Germany and have round trip time values between 25-50 milliseconds.
Probe D is located in the USA and has RTT values between 95-97 milliseconds. Finally,
Probe E is located in India and has RTT values between 129-130 milliseconds.
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Figure 5.3.: Ping RTT values for Probe A
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Figure 5.4.: Ping RTT values for Probe B
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Figure 5.5.: Ping RTT values for Probe C
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Figure 5.6.: Ping RTT values for Probe D
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Figure 5.7.: Ping RTT values for Probe E
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5.2.2. Predefined Measurement - Traceroute

For the Traceroute measurement, again, all five probes were chosen. The target selected
was the same server located in central Europe.

The Traceroute measurement parameters were selected as follows and the measurement
was repeated 10 times totalling to 11 measurement executions spread across a total
time of about 35 minutes across all 5 probes:

• Target IP: 4.232.99.0

• Maximum Hops: 30

• Packets Per Hop: 3

• Method: ICMP

{
"type": "TRACEROUTE",
"measurementSpecification": {

"target": "4.232.99.0",
"maxHops": 30,
"packetsPerHop": 3,
"method": "ICMP"

},
"description": "Traceroute mmt-thesis",
"repeatSpecification": {

"numberOfRepeats": 10,
"interval": 180

},
"probeSpecification": {

"probeIds": [
"64c9f3571d52ec12b0f2feb4",
"64dd7d0320b80e736f5194ce",
"64dd7d2320b80e736f5194cf",
"64dd7c3720b80e736f5194cb",
"64dd7c5520b80e736f5194cd"

]}}

Figure 5.8.: JSON payload used for the Traceroute measurement request
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Figure 5.8 shows the entire JSON payload for the measurement request.

Table 5.5 shows the overall results. The same factors as before - Measurements Coverage,
Results Coverage, and Dish Metadata Coverage, were chosen to evaluate the functioning of
the system.

Results again show complete measurement execution and result download coverage.
All measurements were executed and their results were downloaded successfully. Probe
C, connected to a Starlink connection, returned 12 metadata records for an execution
time of 11 seconds. Data indicates that this is mostly due to an internal rounding error
with timestamps. More importantly, no record was outside the boundary values of
execution timestamps.

Table 5.5.: Traceroute measurement evaluation results

Probes

Traceroute Results Probe A Probe B Probe C Probe D Probe E

Measurements Scheduled 11 11 11 11 11

Measurements Executed 11 11 11 11 11

Measurement Coverage 100% 100% 100% 100% 100%

Measurement Results Returned 11 11 11 11 11

Measurement Results Coverage 100% 100% 100% 100% 100%

Total Execution Time 22s 92s 11s 22s 22s

Dish Metadata Records - - 12 - -

Dish Metadata Coverage - - 100% - -

Hop results for the Traceroute measurements are visualized in Figure 5.9.

Results show that the probes located in Germany - Probes A, B, C had path lengths of
19-20 to the target server located in central Europe. Probe D, located in the USA had a
higher path length in the range of 25-26. The highest path length of 27 was recorded
for Probe E, located in India.
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Figure 5.9.: Traceroute hops to target for all probes

5.2.3. Arbitrary Measurement - iRTT

For the Arbitrary measurement, iRTT was chosen to demonstrate the ability to create
custom measurements. iRTT is a measurement tool used to test round-trip time, delay,
packet loss, etc. It performs all testing between a server and a client, both of which
come bundled with the tool.

For the evaluation, an iRTT server was setup within internal infrastructure that can only
be accessed by Probe C. Hence, only Probe C was selected to run the measurement. For
the client, a Docker container was built using an alpine linux image as the base image
and iRTT was installed on top of it. By using this container, the one-off measurement
was created with the payload shown in Figure 5.10.
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{
"type": "ARBITRARY",
"measurementSpecification": {

"durationInMinutes": 5,
"containerImagePath": "cmnetworkplatform/irtt",
"containerEntrypointString": "sh",
"cmdInputStrings": [

"-c",
"irtt client -d 10s 131.159.25.81:64381 >> /home/output.txt"

],
"outputPath": "/home",
"addLinuxNetworkAdminCapability": "false"

},
"description": "iRTT mmt-thesis",
"repeatSpecification": {

"numberOfRepeats": 0,
"interval": 180

},
"probeSpecification": {

"probeIds": [
"64c9f3571d52ec12b0f2feb4"

]
}
}

Figure 5.10.: JSON payload used for the iRTT measurement request

After the measurement execution, results were saved to the file output.txt as specified
within the measurement request above and were uploaded successfully from the Probe
service to the Connector service. For the duration of the measurement, satellite dish
metadata was also extracted.

The measurement results are shown in Figure 5.11. They show that the iRTT client
within Probe C successfully connected to the server and all tests were run without any
issues. Round trip times were consistent with both the devices sharing the same local
network.
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Figure 5.11.: iRTT results
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5.3. Evaluating System Performance

5.3.1. Measurement Execution Time

Every time a probe runs a measurement, it records local timestamps for start time and
end time of the execution. The time delta results in total measurement execution time.

Based on both the Ping and Traceroute measurements performed in Section 5.2 above,
results showed severe discrepancies in total execution time.

Table 5.6.: Execution time differences for measurements

Probes

Execution Time Results Probe A Probe B Probe C Probe D Probe E

Ping Measurements Executed 11 11 11 11 11

Total Ping Execution Time 44s 104s 33s 33s 33s

Traceroute Measurements Executed 11 11 11 11 11

Total Traceroute Execution Time 22s 92s 11s 22s 22s

Taking a look at Ping times first, Probes C, D, and E perform the best with a total time
of 33 seconds each. This is ideal and in line with the standard Ping utility sending
one packet every second. However, the Raspberry Pi 3 based probe, Probe B shows
extremely poor performance. Second, Traceroute values yet again show degraded
performance for Probe B, performing significantly worse than the other probes.

Overall, looking at both sets of results, there is a severe lack of performance in the
Raspberry Pi 3 based probe. The lack of performance was found to be due to very high
CPU usage when the inner Docker container was spun up to execute the measurements.
This occurred both during the image pull process and the actual measurement execution
process. In combination with the CPU bottleneck, memory usage was also extremely
high. Possible solutions to improve performance are discussed in Chapter 6(Section
6.2).

5.3.2. API Throughput and Response Time

To measure the end-user REST API throughput, Apache JMeter [65] was used. JMeter
is a load and performance testing tool used extensively to test web applications.
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Figure 5.12.: Response times over time for 30m load

Figure 5.13.: Response times over time for 10s burst load
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For testing consistent load over time, 1000 threads were run, ramping up uniformly over
a period of 30 minutes. The endpoints targeted were GET Probes and GET Measurements.
Pagination was implemented for both endpoints on the API service. Throughput was
found to be 33.4 requests/min with 0% error. The response time graphs are shown in
Figure 5.12. Average response latency for the GET Probes endpoint was 64ms and 33ms
for the GET Measurements endpoint with only one outlier for the former being in the
300ms range.

For testing burst loads, 1000 threads were run, ramping up quickly over 10 seconds.
Same endpoints were targeted again. Throughput was found to be 99.9 requests/min
with 0% error. The response time graphs are shown in Figure 5.13. Average response
latency for the GET Probes endpoint was 69ms and 30ms for the GET Measurements
endpoint.
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6.1. Findings

This section describes the current status and overall findings of the work done as part
of this thesis.

First, we revisit the functional and nonfunctional requirements of the system as listed
in Chapter 3(Section 3.2), and state their completeness. Completeness is assessed based
on whether a requirement has been fully implemented or not.

Table 6.1.: Status of requirements completeness

Requirement Status

FR1 - Support for standardized Predefined measurements Implemented

FR2 - Support for user created Arbitrary measurements Implemented

FR3 - Support for retrieving satellite dish metadata Implemented

FR4 - Support for storage and retrieval of measurement results data Implemented

NFR1 - Ease of use for probe hosting Partially Implemented

NFR2 - Restart Policies Implemented

NFR3 - Result Re-uploads Not Implemented

NFR4 - Security - Encryption Implemented

NFR5 - Security - Role Based Access Control Implemented

NFR6 - Security - Unauthenticated and Unauthorized Access Implemented

NFR7 - API Rate Limiting Implemented

NFR8 - Extensibility Implemented

NFR9 - Docker Implemented

NFR10 - Raspberry Pi Hardware Implemented

NFR11 - Deployment Implemented

NFR12 - Results - Formatting Implemented
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Table 6.1 shows that all requirements except for NFR1 and NFR3 were fully imple-
mented and tested. Full coverage of functionality was achieved.

Second, we focus on the system evaluation performed in Chapter 5. Evaluation has
shown that the overall functionality of the system was in line with expectations and all
of the objectives discussed in Chapter 1(Section 1.2) were realized. First, deployment of
all services was carried out successfully and did not result in any unforeseen problems.
Second, all measurements of both supported types, Predefined, and Arbitrary were run
successfully on the test deployment infrastructure without any errors during execution.
Additionally, all the result data for the measurements created was retrieved and was
formatted as expected without anything missing. Finally, even Starlink dish metadata
was extracted successfully from probes that were connected to an active Starlink con-
nection during measurement execution.

However, evaluation also shows that overall system performance was not as expected
on low compute performance probes like the Raspberry Pi 3.

Finally, we compare features of existing Internet measurement platforms with the
system developed as part of this thesis. Table 6.2 shows the comparison.

Table 6.2.: Measurement platforms feature comparison
Measurement Platforms

Feature This System RIPE Atlas EdgeNet SpeedChecker SamKnows

Interface REST API Web UI + REST API Kubectl Web UI + Mobile Client(s) Web UI + Mobile Client(s)

Standardized Measurements No Yes No Yes Yes

User Defined Preset Measurements Yes Yes No Yes No

User Defined Custom Measurements Yes No Yes No No

Run Measurements on Own Probes Yes Yes Yes Yes Yes

Run Measurements on Others Probes Yes Yes Yes Yes No

Public Measurement Data Available Yes Yes No Yes No

Satellite Connectivity Metadata Starlink Only No No No No

Cellular Connectivity Metadata No No No Yes No

To elaborate further on some features selected:

1. Standardized Measurements here indicate that these measurements cannot be modi-
fied by users. Their types and parameters are chosen by the platform itself.

2. User Defined Preset Measurements are measurements created by users that have
preset types such as Ping, Traceroute, etc. whose parameters can be modified.
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3. User Defined Custom Measurements are measurements created by users with their
custom code or logic packaged within a script or a container.

4. Satellite Connectivity Metadata refers to metadata that includes data such as dish
angle, dish obstruction data, dish elevation data, etc.

5. Cellular Connectivity Metadata refers to metadata that includes data such as cellular
signal strength, cellular signal channel, etc.

6.2. Limitations

There were several limitations found that are important to consider for future work.
This section lays out some of the most important ones and describes possible solutions
to overcome them.

• Performance and optimization: Evaluation showed significant performance
issues for the Probe service running on the Raspberry Pi 3 device. During both
measurement runs, performance was worse compared to the other probes. Both
CPU usage and memory usage were found to be extremely high when the Probe
service spun up the inner Docker container for measurement execution. The first
ever measurement run took a little longer than the rest of the runs due to the
initial image pull.

There are some steps that can be taken to improve overall performance and
reduce measurement execution time. First, even though logging is minimal on the
probes, reducing it further to only record errors may improve service performance.
Second, reducing overall Class footprint may result in lesser JVM heap and non-
heap memory usage. Setting limits on JVM memory usage may help in improving
performance here. Finally, pre-pulling the Predefined measurement Docker
container on setup will reduce time taken for the pull on first measurement
execution.

• Lack of requirements completeness:

Section 6.1 of this chapter showed that two specific nonfunctional requirements,
NFR1, and NFR3 were not implemented completely.

NFR1 - Ease of use for probe hosting was only partially implemented. The
ability for an end-user to host a probe was made possible through access to
an API endpoint which allowed the user to download a probe deployment
configuration file. This file was based on docker compose and required the user
to make some property modifications within. Instructions for performing these
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actions were embedded within the file. While this was a working method, it
was extremely unintuitive from an end-user perspective. This was exacerbated
by the lack of a full fledged user interface or website which meant that the user
had to first download the file, open it, go through every single instruction, make
modifications, and then finally spin up the container. A better solution would
have been to offer the user a downloadable script which upon running would
take user input interactively, download the configuration, modify it based on
user input and automatically spin up the container. As an alternative, if a user
interface were to be developed in the future, this process could be offloaded to
that instead.

NFR3 - Result re-uploads was not implemented. This was found to be a fairly
important limitation for the overall reliability of the system. If any Probe service
instance or container were to crash during measurement execution for any reason
at all, even though the container attempts to restart and reconnect automatically,
it does not attempt to re-upload results for the previously executing measurement.
This was found to be linked to the way results are currently processed on the
probe. For Predefined measurements, all result data is only stored in memory. It
is not persisted to disk. For Arbitrary measurements, all result data is stored on
disk. This prevented a common solution from being developed for attempting
a result re-upload. This issue could, in the future, be resolved by persisting all
results to disk on the probe and validating on restart if previous result data was
sent successfully or not. If not, an attempt could be made to re-upload the result
thereby improving the reliability of the system.

• Lack of measurement failure information:

At present, Arbitrary measurements are designed to work based on code packaged
within Docker containers. The system does not check for the correctness of this
code or any data that is present within the container. It merely runs the container
for the user specified duration and uploads results based on the user specified
output path. For any reason, if the container were to not run correctly, or failed to
start running, there is no debugging information supplied back to the user. The
only way for the user to check for a successful run is by downloading the results
for the measurement. Providing failure information back to users would allow
them to fix any unresolved issues occurring as a result of faulty code within their
containers and would greatly improve user experience. As an added benefit of
doing this, it would also enable them to stop repeat-measurements preemptively
and would save overall system resources too.

52



6. Conclusion

6.3. Future Work

This section describes future work and development that remains.

6.3.1. User Interface

Currently the system is only offered with a Swagger based web interface [66] that uses
an OpenAPI specification [67]. This interface can be used to interact with the system. It
can also be used to view API documentation.

While the system is perfectly usable in this state, it is not user friendly and combines
operations that both a User role and an Admin role can perform, in one single web
page. Due to the nature of the Swagger interface, users also have to manually look up
API details and payload schemas when they first interact with the interface.

Another issue is the lack of information or guidance on performing the several oper-
ations that the system supports. For a User role, these would be authentication and
authorization, fetching probes and their information, or creating measurements and
fetching their results. For an Admin, two such operations would be user and probe
creation.

Due to these limitations, a likely next step would be to develop a more robust user
interface or a dashboard that not only allows for separate workflows for both a User
and an Admin, but also one that is more user friendly and allows for displaying all the
information on how one would use the system, in one single place.

6.3.2. Continuous Integration and Deployment Pipeline

Another future goal would be to implement a CI/CD pipeline to handle the entire
DevOps [68] workflow from code changes to testing and release.

During the development of this system, all tasks including planning, code changes,
testing and validation, packaging, and service deployments were handled manually.
This was challenging due to the nature of the services made to run on heterogeneous
hardware and infrastructure, coupled with measurement execution being Docker con-
tainer based. For instance, a lack of a CI/CD pipeline meant that container image
builds had to be executed manually every single time there was a change to the relevant
code base. Additionally, testing on different hardware and various network conditions
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was a rigorous process too.

With a CI/CD pipeline, most of these challenges can be overcome and would reduce
overall development and maintenance time significantly. Unit tests and API tests that
exist currently can be automated to check for correctness on code changes. Testing
can be performed on cloud based infrastructure, configured to simulate heterogeneous
hardware and network conditions. Packaging and deployment can be automated once
tests run successfully. Configuration mapping and secrets for all the services could be
handled more efficiently and securely.

6.3.3. Enhancements

Even though the system in its current state satisfies all the functional requirements, it is
still lacking in features and more functionality. Over time, adding more of them and
enhancing existing ones would benefit the system and its users.

1. Packet capturing: Currently, when a user wants to execute an Arbitrary measure-
ment on a probe, custom code can be added to perform packet capturing in the
background. Packet capturing or sniffing is often used to analyze networks and
identify potential network performance issues including packet loss or network
congestion. Even though a user can add this functionality manually to measure-
ments, supporting this directly as an optional feature when a measurement is
created would benefit users and help them save time. An additional benefit would
be the existing nature of the archival of measurement results. Packet capture
data from measurements could be stored along with measurement results for
reproduction and analysis in the future.

2. Tagged probes: In its current state, when users fetch probes and their details,
they have to manually look up if a probe is connected to a satellite Internet
connection or what network interfaces it supports. These can either be a wired
network interface, a wireless interface, or a cellular interface. Repeating this task
for multiple probes is a daunting process. Adding support for tagged probes
would allow users to filter and search for probes that are tagged with a certain key
quickly. For example, a user wanting to execute measurements only on probes
connected to a cellular interface could quickly filter for these probes by looking
up the cellular tag. This would save time and would make the system more user
friendly.

3. Rate limiting with credits: In Chapter 4(Section 4.4), measurement rate limits
were discussed. They limit consumption of resources in the overall system

54



6. Conclusion

by preventing users from creating measurements that span an extremely long
duration or from creating measurements on an extremely large number of probes.
This helps in managing overall system resources more efficiently and is an attempt
to give users equal access to them. In combination with some of these limits,
support for user credits could be introduced. First, creating measurements would
require a certain number of credits. Second, users choosing to host probes would
accumulate credits based on their probe host time. Third, these users would then
use these accumulated credits to perform measurements or send them to other
users for measurements created by the latter. This would incentivize users to
host probes and contribute to the overall system growth. In combination with
existing rate limits, this would also help in maintaining overall health and access
to system resources.

4. Securing services with SSL: All inter-service communication at present is secured
via the means of an API key. Encrypting this communication would be a key
security milestone. Since all the services use the Spring framework, adding
SSL support with the help of SSL Bundles [69] would add an extra layer of
security. The evaluation deployment as part of this thesis was based on isolated
infrastructure that was highly controlled with access limitations. However, for a
production deployment, SSL security would be a necessity.

5. Add IPv6 support: Currently, all Predefined measurement types support only
targets based on the IPv4 address family. With IPv6 access growing year by year,
it would greatly benefit new research focused on both adoption and coverage. In
addition to this, there is no automatic network discovery on the Probe services to
check if IPv6 is supported on the client side. Adding this functionality would help
users filter for probes that support IPv6 before they execute their measurements.
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A. Reproducibility

This appendix lists the steps required for reproducing user operations on the newly
developed system, such as user authentication and authorization, fetching probes and
their information, measurement creation, and measurement result downloads.

A.1. Login

First, in order to perform operations on the API web interface, a user needs to login
and retrieve a JWT for authentication and authorization. Figure A.1 shows the login
API endpoint.

Figure A.1.: The login API endpoint for fetching a JWT

If the request is successful, a server response containing the Bearer JWT is returned as
part of the response headers, as shown in Figure A.2. The Bearer JWT must be used for
every subsequent API call to the system.
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Figure A.2.: A successful login response containing a Bearer JWT

A.2. Fetching Probes and their Information

In order to choose the probes for measurement execution, their details have to be
fetched first. Figure A.3 shows the API endpoint for this.

Probes can be filtered based on their country and status.

The response is paginated and will contain a list of all probes based on filter crite-
ria. Probe information returned will include their IDs which will be used during
measurement creation.
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Figure A.3.: The API endpoint to get all probes and their details
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A.3. Measurement Execution

Once probes and their IDs have been chosen, the next step is to create a measurement.

The request body of this API call takes in either a Predefined measurement schema
or an Arbitrary measurement schema. Other parameters can be modified too, and all
available parameters and their details can be found in the Schema section of the API
web interface.

Figure A.4 shows the API endpoint for creating a measurement with the request body
containing example values.

Figure A.4.: The API endpoint to create a measurement

Once a measurement has been created successfully, a response containing the measure-
ment ID is returned. Figure A.5 shows one such response.

59



A. Reproducibility

Figure A.5.: Successful measurement creation response

A.4. Result Downloads

After the measurement has been created and executed, the next step is to download the
measurement results. Figure A.6 shows the API endpoint for this.

Figure A.6.: The API endpoint to get results for a measurement

One single ZIP archive file is downloaded as part of a single measurement result. In
the case of a Predefined measurement, the results are bundled in a single JSON file
within. In the case of an Arbitrary measurement, the results are directory based. The
ZIP archive file can optionally contain another JSON file containing the satellite dish
metadata gathered on the probes during the measurement execution.
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