Analyzing and Realizing Multipath TCP Schedulers in Linux

Hendrik Cech

hendrik.cech@tum.com
Technical University of Munich

ABSTRACT

Today’s devices are often equipped with multiple network inter-
faces. Multipath TCP (MPTCP) provides the opportunity to utilize
the capabilities of all available flows for a single logical connection.
Because of its huge impact on MPTCP’s performance, packet sched-
uling has been an active research area. Many approaches have been
published that aim to improve MPTCP’s latency or its behavior
given heterogeneous paths. The performance of these solutions can
however not easily be compared due to the fragmentation of the
existing implementations.

We performed the necessary work to compare a number of
promising scheduling solutions. First, we unified the implementa-
tions of minRTT [26], roundrobin [26], MuSher [29], BLEST [9],
ECF [22], and STTF [14], by bringing them to the same Linux
MPTCP [6] version. Then, we setup a testbed based on two Linux
machines and two routers that is able to emulate different network
scenarios over a variable number of paths. The results obtained
from the conducted tests allow the direct and fair comparison of the
published scheduling approaches. Key findings are the profound
impact of the network queue sizes on the schedulers’ behavior and
the disparate performances given delay heterogeneous paths.

Subsequently, we analyze the characteristics of LTE networks
and sketch a scheduling solution to improve MPTCP’s performance
in this environment. A focus is on handover detection and recovery.
We present benchmarks from a preliminary implementation that
attest a good baseline performance.

1 INTRODUCTION

Today’s computing devices are often equipped with multiple net-
work interfaces: smartphones are able to connect to WiFi networks
and simultaneously maintain one or even multiple LTE connections.
Servers in data centers are connected by multiple wired paths to
increase the network’s fault tolerance. The TCP/IP stack however
is only designed for single path connections.

Multipath TCP (MPTCP) is a recent extension of TCP that allows
the communication between two end-hosts over multiple paths [10].
One promising application area are mobile scenarios where the
available data connections can be used in conjunction to increase
the total throughput and the resilience against temporary link fail-
ures [25]. Another one are data centers where multipath transport
leads to a higher throughput and better load balancing [27]. The
broadest production deployment of MPTCP is likely managed by
Apple in their i0OS devices where MPTCP improves the user experi-
ence of their digital voice assistant [4].

The most capable open-source implementation is based on the
Linux kernel [6]; it is currently rewritten to be eventually included
in the official Linux repository [23]. In this implementation, the
use of MPTCP is transparent to the application which needs no
changes to take advantage of multipath transport. Similarly, MPTCP

is transparent to the network which continues to serve regular
single-path TCP (SPTCP) connections.

Despite these promising applications, MPTCP struggles to effec-
tively utilize the available paths if their characteristics in terms of
round-trip time (RTT) or bandwidth differ [9]. Similarly, MPTCP
does not yet fully exploit its potential for latency-sensitive applica-
tions [11].

Packet scheduling has a huge impact on the performance of
MPTCP especially in challenging environments [1]. Its core task is
to decide over which flow a packet shall be sent. Wrong decisions
can lead to head-of-line blocking or prohibit further transmissions
due to receive window limitations [9].

Over the last years many approaches to different application
areas have been proposed (see Table 1). It is however hard to iden-
tify the best performing approaches as the evaluation strategies
differ widely. Some publications chose to simulate their scheduler’s
behavior, while others have based their evaluation on a Linux im-
plementation; but even then only seldom on the same version.
Furthermore, the test settings are often not directly comparable.

We set out to provide a fair comparison of published schedulers
to gauge their performance in different scenarios and to present an
informed view about the current state of research.

The decision about the type of test environment entails a trade-
off between flexibility and the closeness to reality. On the one hand,
network simulators such as NS-3 provide great flexibility with
regards to the environment that the code is executed in. However,
the scope of simulations is limited and the obtained results can
only be applied with care to the real world. Field measurements
on the other hand are cumbersome to conduct and are hard to
reproduce. They are however closest to the actual application area
of the subject.

We identify a middle ground between those two extremes and
implement a testbed that involves multiple physical machines which
execute the Linux MPTCP kernel. The testbed is able to emulate
different network scenarios over a variable number of paths.

To attribute differences in the measurements results solely to
the tested scheduler, we gather published scheduler implementa-
tions for the Linux kernel and bring them to a common framework
version. Using this methodology, we are able to fairly compare the
minRTT [26], roundrobin [26], MuSher [29], BLEST [9], ECF [22],
and STTF [14] schedulers.

In addition to the scheduler comparison, we describe the design
of an MPTCP scheduler for the requirements of LTE environments
which is in particular the detection of and recovery from handovers.
Preliminary benchmarks show its promising performance.

The rest of this document is structured as follows. Section 2
provides an overview over the scheduler literature and motivates
the need for our work. Section 3 introduces the MPTCP stack and
describes the idea behind the algorithms that we examine. Section 4

Guided Research, Summer Semester 2020, TUM

describes our testbed and the testing methodology, before present-
ing and discussing our results. Section 5 highlights the challenges
MPTCP schedulers face in an LTE environment and outlines a novel
solution to these problems. Section 6 discusses a selection of prob-
lems that we encountered. Finally, section 7 draws a conclusion.

2 RELATED WORK

A lot of research effort was already directed at improving the
MPTCP scheduling performance. A central motivation is the poor
performance of the default minRTT scheduler given that the per-
formance characteristics (in terms of delay, loss, bandwidth, etc.) of
the subflows are different (“heterogeneous networks”) [18]. The pro-
posed scheduling solutions are either general-purpose or application-
specific. Table 1 provides a non-exhaustive overview.

In the literature, the performance of MPTCP schedulers is evalu-
ated differently. If no implementation is provided, the core idea is at
least theoretically verified (e.g., [7]) or implemented for a network
simulator (e.g., NS-2/3 as used by [20]/[30]). The most powerful
option is to implement the scheduler for the Linux kernel [6, 26]
as it can then be tested in the wild. An interesting alternative to
developing the scheduler directly in C is to use the ProgMP [12]
framework that executes schedulers in the Linux kernel that are
defined in a domain-specific language.

The evaluation of most publications that propose a new sched-
uler are limited in one way or another. Often the breadth of other
schedulers that were subject to their tests is limited to the built-in
minRTT, roundrobin and redundant schedulers (e.g., [11]). If sched-
ulers proposed in the literature are included, it is often unclear
if their Linux implementations are based on the same kernel ver-
sion (e.g., [8, 14, 22]). If they are not, performance differences can
not necessarily be solely attributed to the scheduling algorithm.

Kimura et al. set up a controlled testbed to simulate different bot-
tleneck characteristics and conducted systematic tests that bench-
marked pairs of scheduling strategies and MP congestion control
algorithms. Their test procedure is very thorough and unique be-
cause it examines the interplay of schedulers and congestion control
mechanisms. The selected schedulers are however not taken from
the literature but algorithms that are based on a single critertion
(e.g., the available sending window space) [17, 18].

Finally, it is often impossible to fairly compare the evaluation
results of different papers due to the differences in their imple-
mentations, their test environment and their test methodology.
To arrive at a meaningful comparison of MPTCP schedulers, we
first moved all scheduler implementations onto the same version
of the Linux kernel and the MPTCP framework. Next, we set up
a testbed that evades a lot of the pitfalls of simulated setups. In
our testbed, the sending and the receiving parts are on two dif-
ferent physical machines. Similarly, network shaping was applied
on physically-separated routers that control all traffic between
the interacting machines. Given those conditions, we were able to
repeatedly conduct the same tests with all schedulers and draw
meaningful conclusions.

3 MULTIPATH TCP SCHEDULERS

The MPTCP Linux project [6] maintains the most popular open
source MPTCP implementation that integrates the MPTCP protocol

Hendrik Cech

into the Linux kernel. Our work is based on MPTCP v0.94 from
March 2018 that is bundled with kernel version 4.14. The logical
structure of an MPTCP connection as it is integrated into the Linux
kernel is shown by Figure 1.

The setup of an MPTCP connection happens transparently to the
application which does not need to be modified but can continue
to use the kernel socket interface. The application interacts with
the MPTCP meta socket that manages the connection-level send
buffer and assigns data a connection-level sequence number. The
path manager is responsible for setting up regular TCP connections
over which data is transported (“subflows”). Multiple strategies
are available; the most common one is fullmesh which attempts to
establish connections between all combinations of local and remote
endpoints.

The congestion control of the individual subflows is coupled to be
fair to concurrent TCP connections and reach a higher performance.
Four algorithms are available: LIA [28], OLIA [16], BALIA [33], and
wVegas [35]. A concise summary of those approaches are given
by [19].

The task of deciding which data shall be sent on which sub-
flow is assigned to the scheduler. The MPTCP framework invokes
it whenever space is available in the connection-level send win-
dow or when a retransmission is triggered on the meta level. Most
schedulers base their decisions upon metrics provided by the TCP
network layer such as the state of the flows’ congestion windows
and RTT estimates. Some however also use information from other
layers. QAware [30] for example directly interacts with a lower
layer and retrieves information about the queue state from the NIC
driver. The “Cross-Layer Scheduler for Video Streaming” [7] on
the other hand retrieves information about the type of data that is
encapsulated in a packet from the application layer.

An scheduler implementation for the Linux kernel needs to
implement two functions that are called by the MPTCP framework
at the appropriate times. The function next_segment is expected
to select a segment and a subflow on which the MPTCP framework
will schedule that segment. Most often, the segment will be taken
from the MPTCP meta send queue but a second source is the reinject
queue from which a scheduler is expected to read with priority.
Segments that were scheduled on a particular flow but could not
be sent are moved to the reinject queue such that they undergo the
flow assignment process again. One reason can be that a subflow is
closed; unsent packets are moved to the reinject queue such that
they are sent on another subflow.

The function get_subflow receives a segment and is expected
to return a subflow on which that segment shall be sent. Most of-
ten, get_subflow is invoked by next_segment but the framework
also calls this function directly if a particular segment shall be
retransmitted.

The MPTCP source files are based in directory net/mptcp and
its headers in include/net/mptcp.h. The implementation is not
entirely self-contained; the Linux network stack and in particu-
lar its TCP implementation is augmented in various places with
MPTCP-specific code. A central mechanism that is used to inject
MPTCP specific behaviour is the tcp_sock_ops struct that holds
function pointers for various tasks. A MPTCP connection has one
set of callbacks defined for the meta socket and one set for the

Analyzing and Realizing Multipath TCP Schedulers in Linux

Guided Research, Summer Semester 2020, TUM

Table 1: MPTCP schedulers

Core idea

Name References Application area
minRTT v0.94 (in-tree), [26], Heterogeneous net-
Section 3.1 works
roundrobin v0.94 (in-tree), [26], Research
Section 3.2
redundant v0.94 (in-tree) Research, Low-
latency
DAPS v0.891, 2014, [20] Wireless networks
OTIAS (Out-of- ns-2, 2014, [36] Real-time applica-
Order Transmis- tions
sion for in order
arrival)
BLEST (Blocking v0.95 (in-tree), 2016, Heterogeneous net-
Estimation) [9], Section 3.4 works

Cross-Layer Sched-

no implementation

Video streaming

uler for Video available, 2016, [7]

Streaming

ECF (Earliest com- v0.89, 2017, [22], Heterogeneous net-

pletion first) Section 3.5 works

Scheduling for Thin 2018, [11], progMP Long running,

Streams implementation low throughput,
latency sensitive
connections

QAware v0.93, 2018, [30] Bulk data transfers

MuSher (Agile v0.94, 2019, [29], Dual WiFi setups

MPTCP scheduler) Section 3.3

STTF (Shortest 0.91.2, 2019, [14], Heterogenous net-

Transfer Time Section 3.6 works

First)

Assigns packets to the subflow with the smallest RTT among the
subflows that are not CWND-limited.

Picks one flow after the other when assigning packets but skips un-
available ones. For bulk-transfers, the scheduling decision becomes
ACK-clocked.

Sends each segment on all available flows. Can not exceed the goodput
of single-path TCP.

Its goal is to reduce receiver buffer blocking by increasing the in-order
arrival at the receiver. DAPS generates a sending schedule based on
the paths’ RTTs.

OTIAS assigns a packet to the flow where it estimates that the packet
will arrive soonest. The scheduler appends packets to flows whose
CWND is currently full as they will be sent as soon as space is available
again.

Tries to avoid head-of-line blocking at the receiver by optimizing the
occupation of the MPTCP send window. BLEST may skip sending on a
slower subflow if that would prevent the faster subflow from sending
once it is available again.

Improve the playback quality by only sending those video units that
are likely to arrive in time to be played. Couples information about the
data that is being sent with knowledge about the network (“cross-layer
approach”).

Assigns a packet to the subflow over which it will arrive soonest. To
achieve this, ECF might decide to not utilize a slower subflow and
instead wait for a faster subflow to become available again.

The scheduler builds upon minRTT by actively refreshing the delay
estimates of the slower and therefore unused subflows. In addition,
it estimates the one-way delay instead of assuming it to be equal to
RTT/2.

Uses the occupancy of the NIC queues together with RTT estimates
to achieve its goal of increasing the overall throughput.

Sets the packet assignment ratio to the throughput ratio of the flows.
The scheduler is designed to target the challenges of a dual 802.11ac /
802.11ad setup.

STTF assigns all unsent segments to subflows, based on the shortest
predicted transfer time. This rescheduling is redone on every inter-
ruption, e.g., on every ACK arrival.

TCP subflows. The same mechanism is used to allow the imple-
mentation of different schedulers: Each scheduler registers itself
with an instance of the mptcp_sched_ops struct that holds function
pointers.

3.1 minRTT (the “default” scheduler)

The default scheduler of the Linux MPTCP implementation sched-
ules packets to the subflow with the lowest RTT and space in its
congestion window (CWND). If a flow is available, it will be used
to send a queued segment; the scheduler will not proactively decide
to leave a flow idle. minRTT’s mechanism to limit the effect of out-
of-order delivery and head-of-line (HoL) blocking is opportunistic
retransmission and penaliztion. The scheduler retransmits packets

on a faster flow if head-of-line blocking on MPTCP-level is experi-
enced and reduces the CWND of the flow that triggered the HoL
block. This mechanism is commonly classified as reactive [26].

3.2 Roundrobin

The roundrobin scheduler picks one flow after the other when
assigning packets without preferring, e.g, flows with a smaller
RTT. It does however skip flows whose send or congestion window
currently prohibits sending. During bulk transfers (i.e., the send
queue is backlogged) the scheduler will become ack-clocked and
not realize a true roundrobin packet assignment. In this scenario,
each subflow is limited by its CWND. Once an ACK arrives on a
certain flow, the scheduler will assign the next segment to this flow
as it is the only available option [26].

Guided Research, Summer Semester 2020, TUM

MPTCP Meta Socket
MPTCP Send buffer EEEERE
Framework I
on send window | o
availability on retransmissions
Coupled
Scheduler Congestion
Control
next_segment
get_subflow

Draws an skb from the

MPTCP meta or »{ Returns a subflow »MPTCP Flow

retransmit queue and for a particular
picks a subflow to send skb (segment).
\ that skb on.) \) OoOTTI-0
4 init(sk)) 4 A
release(sk)
Called for each new MPTCP Flow

subflow. Opportunity to Called yvhen a
_ initialize data, etc. / subflow is closed. 110

Path

Manager

Hendrik Cech

MPTCP Meta Socket

Receive queue

0

T

Reassambler

Out-of-order queue

o0
A
MPTCP Flow
[EEEEE |
MPTCP Flow
o110

Figure 1: Schematic depiction of the Linux MPTCP components on the sending and the receiving sides. The setup equals our
testbed: the connected parties communicate over two paths that include a router which is able to emulate different network

scenarios.

3.3 MusSher (Agile MPTCP Scheduler)

MusSher is designed for the requirements of 802.11ac / 802.11ad dual
WiFi setups, e.g., frequent recovery from link failures. Their central
finding is that optimal MPTCP performance is obtained if the packet-
assignment ratio matches the throughput ratio of the two subflows.
To do so, the scheduler refreshes its estimate of the path bandwidths
whenever the total MPTCP throughput decreases or the send-queue
occupancy of any flow decreases. The optimal ratio is found by
iteratively changing the ratio and observing the throughput. The
search is started into the direction where a throughput increase is
detected and stopped once the total throughput drops again [29].

3.4 BLEST (Blocking Estimation)

Algorithm 1: BLEST scheduling algorithm (taken and
adapted from [14, Algorithm 1])

1 if fastest subflow (i.e., smallest RTT) x¢ is available then
2 ‘ return xy

3 else if slower subflow xs is available then

s | rtts =RTTs/RTTy

5 X =MSS¢ - (CWNDy + (rtts — 1)/2) - rtts

6 Y = [MPTCP send window| — MSS; - (inflight, + 1)
7 if X-A>Y then

8 L return xg

9 return no available flow

BLEST is designed to increase MPTCP’s performance over hetero-
geneous paths. The authors identified head-of-line (HoL) blocking
on the MPTCP meta level as the main cause for performance issues
in this setting. BLEST monitors the MPTCP send window to reduce
the times where the faster subflow can not send a packet due to in-
sufficient space. Similar to minRT T, BLEST schedules packets to the
fastest (lowest RTT) subflow if available. If not, it wagers if sending
the segment on a slower subflow would presumably block the faster
flow from sending once its available again. This would happen if no
space in MPTCP’s send window is available at that later point. The
algorithm involves a scaling factor A that is tuned during execution
based on the accuracy of the scheduling decisions [9, 14].

3.5 ECF (Earliest Completion First)

ECF aims to increase the utilization of the faster of multiple het-
erogeneous paths. It takes the subflow’s RTT estimates, their con-
gestion window occupation, and the size of their send buffers into
account. Algorithm 2 describes the scheduling algorithm for two
subflows. If available, ECF uses the fastest subflow, i.e., the one with
the smallest RTT. Otherwise, it estimates if waiting for the faster
subflow to become available would result in a faster completion
than using the slower subflow right now (line 7). The second condi-
tion (line 8) verifies the same question but by looking at the CWND
usage. The scheduler adds some hysteresis to its scheduling deci-
sion by setting the variable waiting to slow the rate of switching
between the available flows [22].

Analyzing and Realizing Multipath TCP Schedulers in Linux

Algorithm 2: ECF scheduling algorithm (taken and
adapted from [22, Algorithm 1])

1 if fastest subflow (i.e., smallest RTT) x is available then
2 ‘ return xs

3 else

4 Select x5 using the default minRTT scheduler

- k
5 n=1+ CWND;

6 8 =max(of,05) // o denotes the RTT variation
7 if n- RTTr < (1 + waiting - f)(RTTs + §) then

9 waiting = 1

10 return no available subflow

11 return xg
12 waiting = 0
13 return x;g

3.6 STTF (Shortest Transfer Time First)

Algorithm 3: STTF scheduling algorithm (taken and
adapted from [14, Algorithm 2 and 3])

1 remove all packets on all subflow for rescheduling
2 for each unsent segment p do

3 for each available subflow s do
4 L TSp =TransferTime(s, p)
5 assign p to s with smallest TSIJ
6 function TransferTime(s, p):
7 if cwnd_free > 0 and data_to_send < cwnd_free then
8 L return rtt /2
9 transfer_time += rtt
10 cwnd = increase_cwnd(current_cc_state)
1 if data_to_send < max_segments_in_ss then
12 transfer_time += rtt - (round_in_ss - 1) + rtt/2
13 return transfer_time
14 else
15 if cwnd < ssthresh then
16 transfer_time += max_rounds_in_ss - rtt
17 if ends_in_ss(data_to_send) then
18 L return transfer_time
19 cwnd = ssthresh
20 transfer_time += rtt - (rounds_in_ca - 1) + rtt /2
21 return transfer_time

STTF assigns packets to the flow which it expects to deliver the
packet to the receiver in the shortest time. The estimation takes
the current congestion control state into account to predict the
increase of the CWND during the current RTT. Using the predicted
CWND, STTF calculates when the packet will be sent and arrive
(see Algorithm 3) [14].

Guided Research, Summer Semester 2020, TUM

4 TESTBED DESIGN & MEASUREMENTS

Our testbed is based upon two Linux machines and two routers. One
machine is generating traffic which is directed to the other machine.
They are connected by two disjoint paths. Each path contains a
router that shapes the machines’ traffic according to configurable
rules. The Linux boxes are NRG Systems IPU443 machines equipped
with a dual core Intel i5-4300Y CPU, 8GB of RAM, and 4 Gigabit
Ethernet ports. We installed Ubuntu 16.04.6 on the machines as its
Kernel version (4.4.0) is closest to the Kernel version of MPTCP
release v0.94 (4.14.x) among the Ubuntu LTS releases. The routers
are Ubiquiti EdgeRouter Xs which provide 5 Gigabit ports. They
were setup with OpenWRT 19.07.3 which provides direct SSH access
and great flexibility with regards to the routers’ function.

For all MPTCP performance tests, iperf3 was used to generate
traffic. During the tests, tcpdump saved the first 88 bytes of each
packet to include the header of each TCP packet. In addition to
data mined from the network traces, the state of key TCP values
from the kernel was captured. To that end, an adapted version of
the scheduler and queue probe functionality published by [29] was
employed. Those kernel modules are modeled after tcp_probe [32];
they expose a virtual file to which data is written that can be read
from user space. We used these probes to capture kernel values
such as the congestion window or the out-of-order queue size.

Unless otherwise noted, each test scenario was executed for 60
seconds and repeated 5 times. Parameters such as the congestion
control algorithm and the TCP window sizes are left unchanged,
i.e., the default values set by MPTCP v0.94 were used. The first 5
seconds of each test execution were excluded from the calculation
of metrics to let the configuration reach a stable state.

4.1 Scheduler implementations

Table 1 lists a selection of proposed scheduling strategies. Only
some of them developed an implementation for the Linux MPTCP
framework and even fewer were published. To compile a fair com-
parison between those schedulers, we selected version 0.94 of the
Linux MPTCP project as the common base for all implementations.
The kernel version 4.19 is still supported and some schedulers were
already developed for it. In addition, the most recently released
version 0.95 appears to require far more porting effort.

As far as possible the schedulers were merged into a single code-
base which avoids inconsistencies and improves usability. The sysctl
interface can for example be used to quickly switch between the
available schedulers. This however brings the risk of introducing
interference between the competing implementations. We consoli-
dated implementations of the following schedulers for evaluation.

e minRTT and roundrobin are part of the 0.94 distribution.

e MuSher’s implementation was already based on 0.94 and
required no changes. The code however provokes kernel
panics at irregular times. We were not able to find and fix
the root cause but were able carry out all experiments.

o ECF was published for version 0.89 that was based on kernel
3.14. To integrate ECF into the unified codebase, the code
needed to be restructured. In addition, changes to the TCP
stack had to be taken into account (e.g., replacing
tcp_time_stamp with tcp_jiffies32).

Guided Research, Summer Semester 2020, TUM

e BLEST was integrated into the upstream project and released
as part of v0.95. Only minor changes were necessary to
migrate BLEST to v0.94.

o STTF was ported to version 0.94 from 0.91.2. Its implementa-
tion depends on changes to the TCP and MPTCP stack which
obviously also affects other schedulers. We did therefore not
integrate STTF into the unified codebase.

Even though we were able to obtain and compile the DAPS
source code as provided by the authors, we were not able to use the
scheduler due to kernel panics. As the cause could not be identified
and fixed, DAPS was not included in our evaluation.

4.2 Network emulation

The traffic shaping on the middleboxes is realized using Traffic
Control’s (tc) queuing discipline (gdisc) features that are built into
the Linux kernel. In particular, the NetEm (“Network Emulator”)
module was used to delay and drop packets, and to cap the paths’
bandwidths.

A central NetEm parameter that affects all its operating modes is
limit. It controls the size of the buffer that is used to queue packets
while, e.g., an additional delay is emulated or the bandwidth is
limited. Its minimum size depends on the network delay and the
packet rate. If the buffer is too small, packets are dropped and the
desired throughput can not be reached. If the queue has a high
capacity, bufferbloat [5] can occur.

When NetEm is configured on an interface, only outgoing traffic
is affected by its rules. The routers that are used in our testbed con-
tain sender and receiver in their personal VLANSs that are exposed
as network interfaces. Traffic is bridged between them. Which traf-
fic direction is affected by a NetEm rule therefore depends on the
interface that this rule is attached to.

4.3 Number of available paths

path2 path3 path4

0
2500 A\ N

2000
2 150

1000

500

0

RTT
RR
BLEST
ECF
RR

STTF

BLEST
ECF
STTI

MuSher
minRTT
RR

Mush
BLEST
ECF
STTI
RTT

Figure 2: The goodput achieved by different schedulers
given two, three, or four Gigabit paths.

MPTCP is designed to work with a variable number of flows.
The focus in the literature is however predominantly on the use of
MPTCP with 2 flows. While popular end-user applications indeed
work with two flows (e.g., a smartphone that concurrently main-
tains an LTE and a WiFi connection), other applications commonly
make use of more flows (e.g., server to server connections in data
centers) [3].

Figure 2 shows the goodput of a MPTCP connection between a
sender and a receiver that are connected point-to-point by 2, 3, and
4 Gigabit Ethernet cables (i.e., no in-between router). All schedulers

Hendrik Cech

are able to almost completely utilize the available bandwidth of two
paths (except BLEST, who only used one path). Given three paths,
all schedulers increase their total goodput but only roundrobin,
MusSher, and STTF maintain a high path utilization (82%) while
BLEST and ECF only utilize 62% of the available bandwidth. Given
four paths, each scheduler further increases its total goodput but
the difference is smaller than between two and three paths (STTF’s
average goodput actually decreases by 136 Mbit/s, but the difference
to three paths is within the error margin). The bandwidth utilization
drops to an average of 60%.

These results challenge the measurements of [22, Figure 15] who
compared the bandwidth utilization of minRTT and ECF when
using 4 subflows. In their comparison ECF performs better than
minRTT, especially with higher bandwidth. Still, the results are not
fully comparable as Lim et al. conducted their tests with a maximum
path bandwidth of 8.6 Mbit/s.

We verified that the TCP buffers sizes do not limit the throughput
and that our hardware is able to fully utilize four Gigabit paths. To
achieve this, the number of MPTCP connections had to be scaled;
if the receiver runs two iperf processes and the sender uses four
processes to generate traffic, a total goodput of 3.8 Gbit/s can be
maintained by the minRTT scheduler. This suggests that a code-
optimized scheduler and MPTCP stack could increase the through-
put of a single connection.

4.4 Heterogenous bandwidths

Figure 3 shows the scheduling performance given paths with hetero-
geneous bandwidths once with large and once with small queues.

The results show that minRTT and STTF don’t perform well if
the network queues are large. Not only is their total goodput below
average but they drastically increase the out-of-order queue usage
and the SRTT compared to the setting with small queues. Once
the paths’ bandwidths differ, minRTT and STTF fall back to using
only the unimpaired path. RR, BLEST, and ECF on the other hand
actually show better performance than with small network queues.
Their goodput is slightly higher and their OFO queue occupation
lower than in the small queue setting.

Overall, the first flow’s goodput is unaffected by the reduced
bandwidth of the second path. An exception is MuSher which does
not detect the paths’ asymmetric bandwidth capabilities correctly
and schedules an equal number of packets to each flow. Its overall
goodput is therefore limited to twice the second path’s bandwidth
capability.

The measured RTT over the impaired path increases with in-
creased bandwidth heterogeneity. Looking at the unimpaired path,
this effect is also triggered by large network queues while the delay
does not change in the tests with small queues.

Finally, a greater bandwidth-heterogeneity increases the out-of-
order queue size at the receiver. Interestingly, this effect is more
pronounced in the tests with small network queues. In this regard
our results match [9, Figure 8] who also found a greater out-of-order
queue size usage of minRTT compared to BLEST.

4.5 Path delays

Figure 4 depicts the impact of network delay on the scheduling
performance. The change of the base delay is clearly visible in

Analyzing and Realizing Multipath TCP Schedulers in Linux

Large queue
2nd flow 100 Mbit/s

Large queue
2nd flow 75 Mbit/s

Large queue
2nd flow 50 Mbit/s

Small queue
2nd flow 100 Mbit/s

Guided Research, Summer Semester 2020, TUM

Small queue
2nd flow 75 Mbit/s

Small queue
2nd flow 50 Mbit/s

200
ot ||| T T || T g
%‘E 100 .
82 50 . I I
0
150
ggloo %—%% % % + +
“Wanan || wntuz || 1 2P0 N annmns o pou 82 1084
1000
%E 750
%éé 500
ic L
° UlTaeaa?|TalodT||Pd %& &é%é$$ ﬁ&%&& #
S i
Flow 1 CEJEEE EEZEUE EEZEO0F EEZEHE EEZEHUE EEZEOE
I Flow 2 g s = E s = E s~ g s A~ ! s A E = A

Figure 3: Comparison of the scheduling performance on paths with heterogeneous bandwidths. The bandwidth of the first
flow was capped to 100 Mbit/s while the bandwidth of the second flow was reduced iteratively. Each setting was tested with
two different queue sizes at the intermediate router: once with “small” queues (300 packets) and once with “large” queues

(1000 packets).

all runs which results in an decrease of the overall throughput. If
the network provides large queues (controlled by the NetEm limit
parameter), the schedulers provide comparable performance while
MusSher has a bit of an edge in the low-delay scenario. An outlier is
STTF, which shows similar weaknesses as described in Section 4.4.

The situation is flipped given small queues: the goodput of min-
RTT, RR, BLEST, and ECF shrinks significantly, MuSher’s goodput
drops to a very low point, and STTF performs bets. While RR, BLEST,
and ECF almost exclusively use one flow, minRTT and MuSher are
able to utilize both flows equally. This comes at the cost of retrans-
missions but not at the cost of a high out-of-order (OFO) queue
utilization.

In this regard MuSher does exceptionally well and is able to keep
its usage low throughout all six tests. With large queues, BLEST,
ECF and minRTT vyield a high OFO queue usage which is also
reflected in the utilization ratio: the higher the OFO queue size, the
bigger was the polarization towards one flow. Those schedulers’
OFO queue usage drops with small queues; as the total goodput
is also lower, the size of this effect is smaller than it seems at first.

The opposite effect comes forth with the roundrobin scheduler: its
average OFO queue size is the largest.

Figure 5 shows the schedulers’ performance on path with het-
erogeneous delays. With the exception of RR, MuSher, and STTF,
the schedulers only utilized one flow.

Considering the resulting goodput and the required OFO queue
usage, BLEST performs best across the scenarios by simply deciding
to only use one flow. These results don’t contradict [9, Figure 8]
who found that BLEST at least matched the throughput of the
faster path while keeping its OFO queue usage slightly lower than
minRTT’s. Similarly, [30] benchmarked minRTT, BLEST, and ECF
in a comparable scenario and also found that minRTT produces
slightly more traffic in delay-homogenous settings but is passed by
BLEST and ECF once the delay difference increases.

Hurtig et al. compared the performance of minRTT, BLEST, and
STTF over two bandwidth-limited paths where the delay hetero-
geneity was progressively increased [14, Figure 9]. They found
that MPTCP’s goodput dropped below single-path TCP’s goodput
once the delay difference between the two paths got too large. We

Guided Research, Summer Semester 2020, TUM

Large queues Large queues

Large queues

Hendrik Cech

Small queues Small queues Small queues

20/ 20 ms 40 / 40 ms 60 / 60 ms 20/ 20 ms 40 / 40 ms 60 / 60 ms
_ 300 { | | .
%é 200 }—‘ ’—‘ T - - _ B
S = N 7 Wjj "TT Ll W* , o
100 M T T - 7 '—‘ : : . A*h
0 = -
: T o TR
: el IR
% 8 40 = LL&] %[E%&%
. [a1y
0
g,g 1000
Izt
A Tt A A !
o
0 &'EE &&EE & EJEB &j & &&&I& EB %&’%& é&@%%&
§ 600
§ 400 .
A O
2 20 -
i EEEEEE EEINEE EEIRGE EZSNBE EEINEE EEIGEE
Flow 2 § 22 7 § 22 ° § 8 °” § 28 7 § 22 ° § & °7

Figure 4: Comparison of different schedulers on paths with increasing delays once with large (2000 packets) and once with
small (500 packets) network queues . The delay of both flows was equally increased by 20, 40, and 60ms respectively. In all cases
half of the total delay was added to the up-link while the other half was added to the down-link, i.e., data and acknowledgement
segments were equally delayed. The bandwidths of the Gigabit-paths were not limited.

can’t reproduce this behavior as the goodput stays constant with
increasing delay discrepancy; the schedulers decide to ignore the
impaired flow rather than to reduce the total goodput by using both
subflows.

4.6 Heterogeneous packet loss

All schedulers are able to efficiently deal with a lossy flow as shown
by Figure 6. The throughput on the first flow, that experiences only
very infrequent packet loss, stays close to its maximum. Only once
the loss on the second path is increased to the extremely high value
of 5%, the throughput on the first flow takes a small hit as well.

The out-of-order queue size and the number of packet retrans-
missions increases alongside the loss probability as expected. The
measured sRTT of the second flow however drops close to zero once
its loss probability is higher than 0.5%. This effect can be attributed
to congestion control which keeps the number of in-flight packets
on the impaired flow low. The occupancy of the involved queues
stays low and the RTT is not noticeably increased above its base
level.

These results suggest that the scheduler’s response to packet loss
is adequate and not a pressing research issue. A simple explanation
for their uniform behavior is that they have only little influence
on the packet loss response: retransmissions are handled on the
individual subflows by the unchanged TCP stack and by the MPTCP
framework.

4.7 Influence of congestion control

Figure 7 shows the scheduling performance in combination with
the coupled congestion control mechanisms that are available in
the MPTCP Linux kernel implementation: LIA [28], OLIA [16],
BALIA [33], and wVegas [35]. While LIA, OLIA, and BALIA only
react to congestion once packet loss occurs, wVegas tries to estimate
the queue delay of bottleneck links to predict congestion and react
proactively [19]. The measurement results show that wVegas is not
able to work effectively in our test environment. This behavior is
surprising as recent measurements showed wVegas’ competitive
performance in very similar environments [18].

Analyzing and Realizing Multipath TCP Schedulers in Linux

Large queues
20 /30 ms

Large queues
20 / 40 ms

Large queues
20/ 60 ms

Guided Research, Summer Semester 2020, TUM

Small queues
20 /30 ms

Small queues
20 / 40 ms

Small queues
20/ 60 ms

300 1 77%\ | (- | b
T A A
(_8,5100 *h ,h TT % \
0 = —
150
[E::EIOO
’ s gl 7T * e AT
50
3 =#iteid| 28757 258 (2% & 320 || PEFLCE L0 0o g ol
g,g 1000
Izt
t-:%gsoo g]
A € o1 | A e | A = g
é 200
é 100 -
N L L '
i CEEGOE CEIGEGE CEPRGE LEIRUE EEERUE EEIRGE
Flow 2 £ 282 7 § B 7 § 2m ” § 28 7 § 248 §g =2 7

Figure 5: Comparison of different schedulers on paths with heterogeneous delays once with large (2000 packets) and once with
small (500 packets) network queues. The delay of the first path was fixed to 20ms while the additional delay of the second path
was incrementally increased by 30ms, 40ms, and 50ms respectively. In all cases half of the total delay was added to the up-
link while the other half was added to the down-link, i.e., data and acknowledgement segments were equally delayed. The

bandwidths of the Gigabit-paths were not limited.

The three similar algorithms LIA, OLIA, and BALIA also show
comparable performance. Interestingly, minRTT’s persistent prob-
lem with large queues does not occur if paired with BALIA. This
should be investigated further.

5 DESIGNING AND IMPLEMENTING A
SCHEDULER FOR LTE

LTE networks exhibit specific characteristics that were analyzed
by [2]. They find that the data capacity of LTE up- and down-links
are nearly symmetric and that packet losses happen very rarely
and are even then mostly due to congestion in the carrier backlink
network. This is achieved by the Hybrid Automatic Repeat Request
(HARQ) technique which retransmits erroneous or lost blocks on
the link layer.

An inherent behaviour of mobile data connections are handover
events which happen when the client physically moves and needs
to switch from one radio mast to another. Measurements at high
speeds show that handovers cause a throughput drop by a factor

of 10 while the RTT increases 3-fold [21]. Their duration varies:
85% of successful (“type 1”) handovers complete in less than 100ms
while the duration increases to more than one or even several
seconds during more difficult scenarios (“type 2 and 3”) [34]. In this
scenario handovers happen frequently (multiple times per minute)
but the probability of concurrent handovers on independent carrier
networks is very low. This provides an opportunity for MPTCP to
compensate the temporary failure of one path by rerouting traffic
over another one.

Figure 9 shows the default behavior of MPTCP in an emulated
dual LTE environment. Every 15 seconds a handover lasting 2 sec-
onds was emulated on the second subflow (the parameters were
taken from [21, 31] as previously described). Strikingly, the through-
put of both flows dropped during the handover. The recovery from
the handover is delayed.

The main challenge for a scheduler designed for LTE networks
is to improve MPTCP’s response to handover events. To quickly

Guided Research, Summer Semester 2020, TUM

0.005% 0.025%

Hendrik Cech

0.5% 1.25% 5%

200

150

Mbit/s
g

Goodput

I-*III gp—

SRTT

- wdl g

5l =54 s

&=l e & L —_l _—l il _—lee e l= L=

1250

5 g 1000
=k
Hq)”
25;750
658
L& 500
o
Sdad I_od
JELed L LB - =
. 3000
=1
2
2 2000
&
=}
&
§ 1000
S
o
: [] i i
PN SN [} [——
Y b H b o - - -
o EErREE EEILOE EEEZREE L[ELEUE EEZEOE
£ E} E E} £ = £ 5 2 K g 2
I Flow 2 g s @ = g z M E = E =

Figure 6: Comparison of different schedulers on paths with heterogeneous packet loss probabilities. The up-link bandwidth of
both flows was limited to 100 Mbit/s. The packet loss probability of the first path was fixed at 0.005%, while the loss probability
of the second path was incrementally increased. The loss was applied equally to the up- and the down-link.

respond and recover from handovers, the scheduler should behave
as follows.

(1) If a flow experiences a handover, the scheduler should not
push new packets to this flow. To prevent head-of-line block-
ing on the MPTCP meta level, scheduled and in-flight packets
of the affected flow should be proactively resent.

(2) After the handover is completed, the round-trip-time esti-
mate of the flow that is now served by a different radio mast
is likely inaccurate. The scheduler should therefore refresh
that flow’s RTT estimate to improve its scheduling decisions.

To achieve goal (1), the on-setting handover has to be detected
as quickly as possible. A promising approach is to monitor the time
between packet send (inter-send) events and acknowledgement
arrivals (inter-ack). On an uncongested flow, the inter-send time
will closely match the inter-ack time once TCP reaches a steady
state because the sender will become ACK-clocked, i.e., will be

10

limited by its send window. An increase of inter-ack time relative
to inter-send time would signal a rising path delay which in turn is
a typical symptom of an LTE handover.

To achieve goal (2), the scheduler needs to schedule packets on
the path so that TCP’s smoothed round-trip-time (sRTT) calculation
can work with relevant data. These packets should be concurrently
sent on another flow to prevent head-of-line blocking.

To realize this behavior, the scheduler assigns the states disabled
and/or stale to each subflow (see Figure 8).

5.1 Implementation

An implementation of the described scheduler is in development.
While the crucial part — the detection and recovery from handovers
— is not yet ready for comparison general performance results are
promising.

Analyzing and Realizing Multipath TCP Schedulers in Linux

lia
. iIIII
. IIIII
100

balia

olia wvegas

Large queues
Mbit/s
H
2

Small queues
Mbit/s

50 .
[| | -
-
0
P x;Hu.E :;—u.E P
i 2 ¢® i 2 ® i 2¢E i 2=

Figure 7: Comparing the impact of the congestion control
algorithm on the performance on bandwidth heterogeneous
links. Each test was performed with small and with large
network queues.

Disabled & non-stale

No new segments are scheduled

Enabled & non-stale
Default state.

Inter-ACK time is on this flow. In-flight and unsent

consistently higher packets are rescheduled on
than inter-send time another flow.
(potential handover).
|: Flow was not
used in a
/ N\ |_| "long time".

The last staleness

PR

breaker segment
has been
acknowledged. <::|
Schedule 10
staleness breaker
segments.
Enabled & stale Disabled & stale

Figure 8: The scheduler marks each flow disabled and/or
stale.

Throughput in Mbit/s

et U W

—— Flow2

00:00:00 00:00:15 00:00:30 00:00:45 00:01:00 00:01:15 00:01:30

Figure 9: The response of the minRTT scheduler to han-
dover events on one of the two flows in an emulated dual
LTE environment. The goodput of each flow and their sum
are plotted.

Four comparisons with the minRTT scheduler are presented in
Figure 10. Overall, the plots show that our scheduler is not affected
by minRTT’s undesirable interaction with large network queues.

11

Guided Research, Summer Semester 2020, TUM

(a) (b) (©) (O]
Large queues Large queues Large queues Small queues
20/30 ms 20/ 60 ms 100/ 50 Mbit/s 100/ 50 Mbit/s

250
200

1200

Goodput
Mbit/s

1000
800
£

o EE

0

Out-of-Order Queue

vie f T+

LTE

£

minRTT
minRTT

Figure 10: Preliminary performance tests of our LTE sched-
uler in comparison with the reference minRTT scheduler.

In contrast to minRTT, our scheduler is able to utilize both flows in
the large queue scenarios (b) and (c). It does however decide on only
using the first flow in scenario (a) where the delay heterogeneity
is still smaller than in scenario (b). As the delay-heterogeneity
increases, the LTE scheduler carries more data over the impaired
flow which is counter intuitive and needs to be examined further.
In this scenario, minRTT yields higher total goodput but foregoes
an even path utilization.

Plot (d) reveals that our LTE scheduler is on par with minRTT
if the bandwidths are heterogeneous and the network queues are
small. With the exception of (a), LTE also induces a noticeable lower
average out-of-order queue utilization.

6 LESSONS LEARNED

—_

=)

=3
L

Expected delay

One-way delay

~
a
L

Symmetric delay

IN)
<
L

Observed delay (in ms)
g

=
L

T
0 20 40 60 80 100
Additional delay target of NetEm (in ms)

Figure 11: The actually measured delay that is emulated
by NetEm. “One-way” delay is only applied to the up-link.
“Symmetric” delay means that one half of the expected total
delay is applied to each up- and down-link.

We used the NetEm module of Linux’ traffic control (¢c) to em-
ulate network delays, packet loss rates, and more. To limit the
available bandwidth of a path, multiple options are available. Either
the NetEm parameter rate or a second queuing discipline such as
tbf (Token Bucket Filter) or htb (Hierarchy Token Bucket) must
be employed. During testing it became apparent that the choice of
mechanism has an influence on the observed behavior of MPTCP.
The range of configuration options of tbf (in particular rate, burst,
and latency / limit) and multiple integration options (“Should the
packets be first processed by NetEm and then rate-limited or the
other way around?”) make it complex to understand the impact of

Guided Research, Summer Semester 2020, TUM

each configuration. The NetEM rate option accepts no parameters
that were meaningful for our use-case. In the end, we used that to
carry out the final tests.

Throughout the process, possible side effects of NetEm had to
be taken into account. A documented problem is the interaction
of NetEm and TCP Small Queues (TSQ) if NetEm is configured on
the sender; in this case, TSQ does not consider packets as “queued”
that are currently delayed by NetEm [13, 24]. We have tried to
avoid such implementation-specific issues by configuring NetEm
on physically-separated middleboxes.

However, neither is this setup foolproof as it can still suffer from
problems that impair the quality of the network emulation. As Moe
and Jurgelionis et al. have shown, the granularity of the kernel timer
greatly influences the accuracy of the delay emulation [15, 24]. To
simulate very low delays (e.g., 2ms), High Resolution timer support
is necessary as even a 1000 Hz tick rate induces a much higher
average additional delay of 5.5ms [24]. While the routers we used
run a kernel with support for HRTimers, we still see that the induced
delay is always higher than expected (see Figure 11). The problem
is exacerbated if it is applied “symmetrically”, i.e., to both up- and
down-link.

Even though NetEm is a well-known tool that is used by many
researchers, care has to be taken when using it to emulate spe-
cific network conditions. The described problems lower the trust
in the measurement results obtained with emulated network set-
tings. Apart from measuring the actual behavior of NetEm, doing
comparison runs over real networks could help sanity checking
measurement results.

7 CONCLUSION

Today’s devices are often equipped with multiple network inter-
faces and MPTCP is a promising approach to capitalize on that
opportunity. Central to MPTCP’s performance is the behavior of
the packet scheduler. We have gathered available scheduler imple-
mentations, ported them to a common framework base version and
setup a controlled testbed to present a fair performance comparison
that could previously not have been given.

We find that the size of the intermediate network queues has a
significant effect on the schedulers’ performance. On the one hand,
minRTT struggles to utilize both flows if those queues are large; on
the other hand, MuSher shows strikingly low goodput with small
queues. Using our testbed, we are able to accurately control this
parameter. Its impact on the scheduling performance has not been
reported to the best of our knowledge.

The out-of-order queue size has shown to be the parameter next
to goodput on which a scheduler’s performance has to be measured.
Even if two performances are equal in terms of goodput they often
show differences concerning the OFO queue size.

REFERENCES

[1] Behnaz Arzani, Alexander Gurney, Shuotian Cheng, Roch Guerin, and Boon Thau

Loo. 2014. Impact of path characteristics and scheduling policies on MPTCP

performance. In 2014 28th International Conference on Advanced Information

Networking and Applications Workshops. IEEE, 743-748.

Nico Becker, Amr Rizk, and Markus Fidler. 2014. A measurement study on the

application-level performance of LTE. In 2014 IFIP Networking Conference. IEEE,

1-9.

[3] Olivier Bonaventure, Christoph Paasch, and Gregory Detal. 2017. Use Cases and
Operational Experience with Multipath TCP. RFC 8041. https://doi.org/10.17487/

[2

=

12

[10

[11

[12

=
&

[14

[15

[16

[19

[20

[21

~
5,

(23]

[24

[25

[26

~
=

[28

[29

Hendrik Cech

RFC8041

Olivier Bonaventure and S Seo. 2016. Multipath TCP deployments. IETF Journal
12, 2 (2016), 24-27.

Yung-Chih Chen and Don Towsley. 2014. On bufferbloat and delay analysis of
multipath TCP in wireless networks. In 2014 IFIP Networking Conference. IEEE,
1-9.

Christoph Paasch, Sebastien Barre et al. [n.d.]. Multipath TCP in the Linux Kernel.
https://multipath-tcp.org

Xavier Corbillon, Ramon Aparicio-Pardo, Nicolas Kuhn, Géraldine Texier, and
Gwendal Simon. 2016. Cross-layer scheduler for video streaming over MPTCP.
In Proceedings of the 7th International Conference on Multimedia Systems. 1-12.
Pingping Dong, Jingyun Xie, Wensheng Tang, Naixue Xiong, Hua Zhong, and
Athanasios V Vasilakos. 2019. Performance evaluation of multipath TCP sched-
uling algorithms. IEEE Access 7 (2019), 29818-29825.

Simone Ferlin, Ozgii Alay, Olivier Mehani, and Roksana Boreli. 2016. BLEST:
Blocking estimation-based MPTCP scheduler for heterogeneous networks. In
2016 IFIP Networking Conference (IFIP Networking) and Workshops. IEEE, 431-439.
Alan Ford, Costin Raiciu, Mark J. Handley, and Olivier Bonaventure. 2013. TCP
Extensions for Multipath Operation with Multiple Addresses. RFC 6824. https:
//doi.org/10.17487/RFC6824

Alexander Froemmgen, Jens Heuschkel, and Boris Koldehofe. 2018. Multipath
tep scheduling for thin streams: Active probing and one-way delay-awareness.
In 2018 IEEE International Conference on Communications (ICC). IEEE, 1-7.
Alexander Froemmgen, Amr Rizk, Tobias Erbshaeusser, Max Weller, Boris Kolde-
hofe, Alejandro Buchmann, and Ralf Steinmetz. 2017. A Programming Model for
Application-defined Multipath TCP Scheduling. In ACM/IFIP/USNIX Middleware.
Alexander Frommgen. 2017. Mininet/Netem Emulation Pitfalls: A Multipath TCP
Scheduling Experience. Technical Report (2017).

Per Hurtig, Karl-Johan Grinnemo, Anna Brunstrom, Simone Ferlin, Ozgii Alay,
and Nicolas Kuhn. 2018. Low-latency scheduling in MPTCP. IEEE/ACM Transac-
tions on Networking 27, 1 (2018), 302-315.

Audrius Jurgelionis, Jukka-Pekka Laulajainen, Matti Hirvonen, and Alf Inge
Wang. 2011. An empirical study of netem network emulation functionalities. In
2011 Proceedings of 20th International Conference on Computer Communications
and Networks (ICCCN). IEEE, 1-6.

Ramin Khalili, Standard Track, Nicolas Gast, and Jean-Yves Le Boudec. 2014. Op-
portunistic Linked-Increases Congestion Control Algorithm for MPTCP. Internet
Engineering Task Force, draft-khalili-mptcp-congestion-control-05 (2014).

Bruno YL Kimura, Demetrius CSF Lima, and Antonio AF Loureiro. 2017. Alter-
native scheduling decisions for multipath TCP. IEEE Communications Letters 21,
11 (2017), 2412-2415.

Bruno YL Kimura, Demetrius CSF Lima, and Antonio AF Loureiro. 2020. Packet
Scheduling in Multipath TCP: Fundamentals, Lessons, and Opportunities. IEEE
Systems Journal (2020).

Bruno Yuji Lino Kimura and Antonio Alfredo Frederico Loureiro. 2018. MPTCP
Linux Kernel Congestion Controls. arXiv:1812.03210 [cs.NI]

Nicolas Kuhn, Emmanuel Lochin, Ahlem Mifdaoui, Golam Sarwar, Olivier Mehani,
and Roksana Boreli. 2014. DAPS: Intelligent delay-aware packet scheduling for
multipath transport. In 2014 IEEE International Conference on Communications
(ICC). IEEE, 1222-1227.

Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang, Xiangxiang Wang,
Meng Shen, and Rashid Mijumbi. 2018. A measurement study on multi-path
tep with multiple cellular carriers on high speed rails. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. 161-175.
Yeon-sup Lim, Erich M Nahum, Don Towsley, and Richard J Gibbens. 2017.
ECF: An MPTCP path scheduler to manage heterogeneous paths. In Proceedings
of the 13th International Conference on emerging Networking EXperiments and
Technologies. 147-159.

Mat Martineau and Matthieu Baerts. 2019. Mutipath TCP Upstreaming. Linux
Plumbers Conference 2019 (Sep 2019).

Anders G. Moe. 2013. Implementing Rate Control in NetEm. http://home.ifi.uio.
no/paalh/students/AndersMoe.pdf

Christoph Paasch and Olivier Bonaventure. 2014. Decoupled from IP, TCP is at
last able to support multihomed hosts. ACM Queue (Print): tomorrow’s computing
today 12, 2 (2014).

Christoph Paasch, Simone Ferlin, Ozgu Alay, and Olivier Bonaventure. 2014.
Experimental evaluation of multipath TCP schedulers. Proceedings of the 2014
ACM SIGCOMM workshop on Capacity sharing workshop - CSWS °14 (2014). https:
//doi.org/10.1145/2630088.2631977

Costin Raiciu, Sebastien Barre, Christopher Pluntke, Adam Greenhalgh, Damon
Wischik, and Mark Handley. 2011. Improving datacenter performance and ro-
bustness with multipath TCP. ACM SIGCOMM Computer Communication Review
41, 4 (2011), 266-277.

Costin Raiciu, Mark Handley, and Damon Wischik. 2011. Coupled congestion
control for multipath transport protocols. Technical Report. IETF RFC 6356, Oct.
Swetank Kumar Saha, Shivang Aggarwal, Rohan Pathak, Dimitrios Koutsonikolas,
and Joerg Widmer. 2019. MuSher: An Agile Multipath-TCP Scheduler for Dual-
Band 802.11 ad/ac Wireless LANs. In The 25th Annual International Conference

https://doi.org/10.17487/RFC8041
https://doi.org/10.17487/RFC8041
https://multipath-tcp.org
https://doi.org/10.17487/RFC6824
https://doi.org/10.17487/RFC6824
https://arxiv.org/abs/1812.03210
http://home.ifi.uio.no/paalh/students/AndersMoe.pdf
http://home.ifi.uio.no/paalh/students/AndersMoe.pdf
https://doi.org/10.1145/2630088.2631977
https://doi.org/10.1145/2630088.2631977

Analyzing and Realizing Multipath TCP Schedulers in Linux Guided Research, Summer Semester 2020, TUM

on Mobile Computing and Networking. 1-16. [34] Jing Wang, Yufan Zheng, Yunzhe Ni, Chenren Xu, Feng Qian, Wangyang Li,
[30] Tanya Shreedhar, Nitinder Mohan, Sanjit K Kaul, and Jussi Kangasharju. 2018. Wantong Jiang, Yihua Cheng, Zhuo Cheng, Yuanjie Li, et al. 2019. An active-

QAware: A cross-layer approach to MPTCP scheduling. In 2018 IFIP Networking passive measurement study of tcp performance over lte on high-speed rails. In

Conference (IFIP Networking) and Workshops. IEEE, 1-9. The 25th Annual International Conference on Mobile Computing and Networking.
[31] Lars Stratmann, Brenton Walker, and Vu Anh Vu. 2020. Realistic Emulation of 1-16.

LTE With MoonGen and DPDK. In Proceedings of the 14th International Workshop [35] Mingwei Xu, Yu Cao, and Enhuan Dong. 2016. Delay-based Congestion Con-

on Wireless Network Testbeds, Experimental evaluation & Characterization. 87-94. trol for MPTCP. Internet Engineering Task Force, Internet-Draft draft-xu-mptcp-
[32] The Linux Foundation. [n.d.]. TCP Probe. https://wiki.linuxfoundation.org/ congestion-control-04 (2016).

networking/tcpprobe [36] Fan Yang, Qi Wang, and Paul D Amer. 2014. Out-of-order transmission for in-
[33] Anwar Walid, Qiuyu Peng, Jachyun Hwang, and S Low. 2016. Balanced linked order arrival scheduling for multipath TCP. In 2014 28th International Conference

adaptation congestion control algorithm for MPTCP. Internet Engineering Task on Advanced Information Networking and Applications Workshops. IEEE, 749-752.

Force, Internet-Draft draft-walid-mptcp-congestion-control-04 (2016).

13

https://wiki.linuxfoundation.org/networking/tcpprobe
https://wiki.linuxfoundation.org/networking/tcpprobe

	Abstract
	1 Introduction
	2 Related Work
	3 Multipath TCP Schedulers
	3.1 minRTT (the ``default'' scheduler)
	3.2 Roundrobin
	3.3 MuSher (Agile MPTCP Scheduler)
	3.4 BLEST (Blocking Estimation)
	3.5 ECF (Earliest Completion First)
	3.6 STTF (Shortest Transfer Time First)

	4 Testbed Design & Measurements
	4.1 Scheduler implementations
	4.2 Network emulation
	4.3 Number of available paths
	4.4 Heterogenous bandwidths
	4.5 Path delays
	4.6 Heterogeneous packet loss
	4.7 Influence of congestion control

	5 Designing and implementing a scheduler for LTE
	5.1 Implementation

	6 Lessons learned
	7 Conclusion
	References

