
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

FLOps: Practical Federated Learning via
Automated Orchestration (on the Edge)

Alexander Malyuk

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

FLOps: Practical Federated Learning via
Automated Orchestration (on the Edge)

FLOps: Anwendungsorientiertes Föderales
Lernen durch Automatisierte Orchestrierung

(am Netzwerkrand)

Author: Alexander Malyuk
Supervisor: Prof. Dr-Ing. Jörg Ott
Advisor: Dr. Nitinder Mohan, Giovanni Bartolomeo
Submission Date: 15.09.2024

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.09.2024 Alexander Malyuk

Acknowledgments

Words can only attempt to express my gratitude towards the individuals who paved
the path, guided, and accompanied me on this journey through hardships and triumphs
in these thunderous times.

I thank all the people at TUM, from the prominent to those working in the background,
who helped to expand my knowledge and skill set. I thank the people from the Chair
of Connected Mobility for enabling me to do and finalize my thesis.

I am incredibly grateful for the dedicated time, expertise, and supervision of Giovanni
Bartolomeo and Dr. Nitinder Mohan.

I thank the Oakestra team for their continuous support and pleasant camaraderie.
Thank you, Simon Zelenski, for sharing your networking prowess with me, and thank
you, Ernst Bayer, for providing the evaluation infrastructure.

I thank my instructive work colleagues at Cartken for enduring my limited part-time
capabilities so I could pursue a full-time master’s degree.

A heartful thank you to my dear friends Julian, Felix, Ksenia, Dominik, and Jack, with
whom I shared laughter, who lifted my spirits, and reminded me of life beyond work.

No words can describe or outweigh the endless love, patience, and peace of mind I owe
to my parents.

To those that we have lost
My heart breaks that you are no longer with us to enjoy the fruitful years to come.
I hope that you have found your peace.

“May the wind under your wings bear you where the sun sails and the moon walks.”
—J.R.R. Tolkien

Abstract

Federated Learning (FL) is a significant distributed machine learning technique that
enables training on sensitive private data instead of centrally collecting it and violating
laws and regulations. The field of FL is a young and thriving domain that focuses
on improving and inventing new algorithms and methods to advance performance
and security. These numerous optimizations gave way to various FL sub-categories
with specific strategies and architectures. Only a minuscule number of FL researchers
focus on the practical setup, configuration, deployment, and practical application of
FL. Most works do not mention the tools they used to execute their FL experiments,
making replicating or extending their findings infeasible. In this work, we implemented
a novel system for performing, developing, and experimenting with FL regardless
of one’s individual level of expertise. This is possible by combining state-of-the-art
solutions and techniques from different domains, such as automation, DevOps, MLOps,
containerization, and orchestration, and applying them to FL. Thus, users can provide
their pure ML code for automatic FL augmentation, containerization, deployment, and
execution. After training and evaluation, users can access their FL-trained models or use
automatically built and deployed matching inference servers. Users can freely configure
various aspects of these steps, such as the FL type, which includes conventional and
clustered hierarchical FL. These steps can run on multiple architectures, including AMD
and ARM. We evaluated and verified our solution on different device constellations
with diverse configurations and found that it automatically creates properly trained
final models. Our solution is a proof of concept and a foundational piece that can and
should be enhanced further to increase the number of supported FL techniques. This
work demonstrates the benefits of utilizing the mentioned cross-domain capabilities and
aims to inspire FL practitioners and researchers to investigate and use these methods
to make FL more accessible and application-oriented, thus helping the entire field to
prosper.

iv

Kurzfassung

Föderales Lernen (FL) ist ein bedeutsames Verfahren des verteilten maschinellen Ler-
nens, welches es ermöglicht, sensible private Daten zum Trainieren zu verwenden,
anstatt diese zentralisiert zu sammeln und dadurch gegen geltende Gesetzte und
Regularien zu verstoßen. Das Feld des FL ist ein junges und aufstrebendes Gebiet,
welches sich auf das Verbessern und Erfinden von neuen Algorithmen und Meth-
oden fokussiert, um seine Leistungsfähigkeit und Sicherheit voranzutreiben. Diese
Optimierungen haben vielfältige Unterkategorien mit spezifischen Strategien und Ar-
chitekturen hervorgebracht. Nur eine winzige Anzahl an FL Forschern fokusiert sich
auf das anwendungsorientierte Aufsetzten, Konfigurieren, Bereitstellen und Einsetzen
von FL. Die meisten Arbeiten erwähnen nicht, welche Werkzeuge benutzt wurden, um
ihre FL Experimente durchzuführen, wodurch das Replizieren oder Erweitern dieser
nur schwer oder kaum möglich ist. In dieser Arbeit haben wir ein neuartiges System
implementiert, welches es Nutzern mit unterschiedlichster Vorerfahrung ermöglicht,
FL auszuführen, zu entwickeln und damit zu experimentieren. Die Kombination von
modernsten Techniken aus unterschiedlichsten Gebieten ermöglicht dies. Zu diesen
Disziplinen zählen Automatisierung, DevOps, MLOps, Containerisierung und Or-
chestrierung. Nutzer können ihren reinen ML Code bereitstellen, welcher dann automa-
tisch zu FL-fähigem Code erweitert, containerisiert und ausgeführt wird. Nachdem ihr
ML Modell trainiert und evaluiert wurde, können Nutzer auf ihr resultierendes Modell
zugreifen oder automatisch als Dienst für ML Anfragen bereitstellen lassen. Nutzer
können frei zahlreiche Eigenschaften dieser Schritte einstellen. Zum Beispiel können sie
zwischen konventionellem und cluster-basiertem hierarchischem FL entscheiden. Diese
Schritte können auf unterschiedlichen Architekturen, einschließlich AMD und ARM
ausgeführt werden. Wir haben unsere Lösung auf verschiedenen Zusammensätzungen
von Geräten mit diversen Konfigurationen evaluiert und überprüft. Wir fanden heraus,
dass unsere Lösung ML Modelle korrekt automatisch trainiert und bereitstellt. Unsere
Lösung ist ein grundlegendes Werk, welches erweitert und verbessert werden kann und
sollte, um zusätzliche FL Techniken zu unterstützen. Diese Arbeit zeigt die Vorteile auf
welche durch das Verwenden und Kombinieren der genannten Disziplinen ermöglicht
werden. Eines unser Ziel ist es, andere FL Anwender und Forscher zu motivieren,
diese angewandten Techniken zu untersuchen und deren Vorteile zu nutzen, um das
gesamte FL Gebiet zugänglicher und anwendungsorientierter zu gestalten.

v

Contents

Acknowledgments iii

Abstract iv

Kurzfassung v

Abbreviations 1

1. Introduction 2
1.1. Problem Statement . 2
1.2. Motivation . 3
1.3. Objectives . 4
1.4. Contribution . 4
1.5. Thesis Structure . 6

2. Background 8
2.1. Federated Learning . 8

2.1.1. FL Basics . 8
2.1.2. Supplementary FL Concepts . 12
2.1.3. FL Architectures . 13
2.1.4. FL Research . 16
2.1.5. FL Frameworks & Libraries . 22
2.1.6. Flower . 23

2.2. Machine Learning Operations . 24
2.2.1. DevOps . 24
2.2.2. MLOps . 25
2.2.3. MLflow . 27

2.3. Orchestration . 30
2.3.1. ML Containerization & Orchestration 30
2.3.2. Oakestra . 31

2.4. Related Work . 32

vi

Contents

3. Requirements Engineering & System Design 35
3.1. Requirements Elicitation & Specification 35

3.1.1. Functional Requirements . 35
3.1.2. Nonfunctional Requirements . 36

3.2. System Models . 39
3.2.1. Use Case Model . 39
3.2.2. FLOps Overview . 41
3.2.3. Analysis Object Models . 43
3.2.4. Dynamic Models . 48
3.2.5. Subsystem Decomposition . 55

4. Implementation Details 58
4.1. User Interactions with the FLOps Manager 59

4.1.1. API . 59
4.1.2. SLAs . 60

4.2. Image Building . 62
4.2.1. Dependency Management . 62
4.2.2. Image Builders . 65
4.2.3. FLOps Image Builder Details . 66
4.2.4. Multi-Platform . 69

4.3. Local Data Management . 71
4.3.1. Appropriate Data for FL . 71
4.3.2. ML & Big Data Formats . 72
4.3.3. FLOps’ Local Data Management Architecture 73
4.3.4. Mock Data Providers . 76

4.4. MLOps via MLflow . 77
4.4.1. MLOps Components & Architecture 78
4.4.2. GUI . 79

4.5. Clustered HFL . 84
4.6. CLI . 86

4.6.1. CLI Requirements Discussion . 87
4.6.2. High Level CLI Details . 89

5. Evaluation 90
5.1. Rationale . 90
5.2. Experimental Setup . 93

5.2.1. Evaluation Procedure . 94
5.3. Results . 95

5.3.1. Basics . 95

vii

Contents

5.3.2. Image Builder . 102
5.3.3. Fundamentally Different Projects 104
5.3.4. Multi-cluster & HFL . 107

6. Conclusion 112
6.1. Current Status, Limitations & Future Work 112

List of Figures 117

List of Tables 120

Bibliography 121

Appendices 131

A. Additional FL Research Paper Analysis 131

B. CLI Technicalities 136
B.0.1. CLI Commands . 136
B.0.2. CLI Showcase . 139

C. Additional Evaluation Plots 143

viii

Abbreviations

This is a list of repeatedly occurring acronyms in the thesis. Abbreviations that are only
used once are explained in the text and omitted from this list, to focus on the important
once. This list also includes acronyms that are well known and that are not explicitly
explained in the text. For completion they are included here.

Specific Acronyms :

FL Federated Learning
CFL Clustered Federated Learning
HFL Hierarchical Federated Learning
PFL Personalized Federated Learning
MLOps Machine Learning Operations
CI Continuous Integration
CD Continuous Delivery & Deployment
IID Independent and Identically distributed
DP Differential Privacy

Common Acronyms :

AI Artificial Intelligence
ML Machine Learning
DL Deep Learning
DNN Deep Neural Network
LLM Large Language Model
API Application Programming Interface
GUI Graphical User Interface
SLA Service-Level Agreement
CLI Command-Line Interface
IoT Internet of Things
P2P Peer-to-peer
UML Universal Modeling Language

1

1. Introduction

In the last several years, the number of smart devices has been rapidly growing and
generating enormous amounts of data (BigData). Improvements in connectivity (Cloud
Computing & Internet of Things—IoT), connection speeds (5G), and computing power
enable this development. Combined with the expansion of AI/ML, this data is a driving
factor for current successful workflows and future advancements. This complementing
union of technologies plays a key role in elevating various domains to Industry 4.0 and
beyond. Examples include agriculture, healthcare, education, and the security sector
[13]. Diverse and complex challenges arise from this swiftly evolving landscape.

1.1. Problem Statement

With great access to data comes great responsibility that can be easily exploited. Many
of the aforementioned machines are personal user devices or belong to companies
and organizations that handle customer or internal resources. These devices store and
handle sensitive private data. In classic (large-scale) Machine Learning, data gets sent
from client devices to a centralized server, which usually resides in the cloud. The
collected data is used on the server to train ML models or perform inference serving.
This approach provides direct access to this sensitive data and the power to trace back
its origin, creating a breach of privacy.

Companies, organizations, and governments have created regulations and laws to
protect sensitive data and prevent potential misconduct. These measures aim to support
business and international cooperation while protecting trade secrets. However, some
laws and regulations prohibit sharing or moving data to other countries or even off-
premises. Examples include the European Parliament’s regulation to protect personal
data, the GDPR (General Data Protection Regulation) [94], or the California Consumer
Privacy Act (CCPA) [68]. Ignoring and no longer using this large amount of data would
heavily limit current workflows and further developments for many data-dependent
and data-hungry technologies.

In 2017, a team of Google researchers introduced Federated Learning (FL) as one
possible solution to utilize sensitive data while keeping it private [75]. In FL, instead of
collecting the data on a server and training ML models centralized, the model training
occurs directly on the client devices. Afterward, the individually trained models get

2

1. Introduction

sent to the server, which combines the collected models into a single shared one. This
so-called global model can then be distributed to the clients again for further training
cycles. Therefore, FL enables training a shared model on sensitive data while keeping
that data secure on the local client devices.

Most researchers working in the field of FL focus on enhancing existing FL com-
ponents, strategies, and algorithms or developing novel ways of doing FL. There is a
noticeable scarcity of work that concentrates on the crucial aspects of the initial setup,
deployment, and usability of FL. Because FL is a relatively modern technique, it lacks a
sophisticated production-grade ecosystem with frameworks and libraries that improve
ease of use by automating its setup and execution. As a result, contributing to the field
of FL or reproducing findings is a task ranging from non-trivial to improbable. This
is due to the lack of documented steps regarding setup, deployment, management,
and execution. Instead of using a shared set of bootstrapping tools to make progress
on novel work more efficiently, one needs to set up and manage FL from the ground
up (2.1.4). A small set of emerging libraries and frameworks does exist for FL (2.1.5).
Instead of orchestrating FL on real distributed devices, they focus on executing FL
algorithms and processes, often via virtual simulations (2.1.4). Furthermore, the field
of FL lacks more advanced techniques to increase productivity that other domains have
already been using for several years, such as modern DevOps or MLOps practices
(2.2).

1.2. Motivation

Building or contributing to an FL framework or library focusing on the previously
mentioned challenges could soften or entirely alleviate those problems. Such a tool
should have Docker and Kubernetes as role models regarding their mature features to
improve application-oriented practical workflows and accessibility. It should strive to
be comparable to them but for the discipline of FL. It should specialize in the setup,
deployment, component management, and automation, in short, FL orchestration.
Allowing researchers, developers, and end-users to set up, perform, reproduce, and
experiment with FL in a more accessible way. The goal of this tool should be to auto-
mate and simplify complex tasks, reducing the required level of expertise in various
domains. These areas range from ML/FL, dependency management, containeriza-
tion technologies, and orchestration to automation. This tool would streamline and
accelerate existing workflows and future progress by utilizing reliable automation to
avoid error-prone manual tasks. With its potential to optimize, standardize, and unify
processes, this envisioned tool could become a significant part of the emerging FL
ecosystem. Such a tool could enable less experienced people to perform FL, engage

3

1. Introduction

with, and contribute to the field of FL. As a result, these techniques could improve the
entire discipline of FL, and more individuals in more areas could access and benefit
from FL.

1.3. Objectives

The motivation allows the following key objectives for such a tool to emerge.

Improve Accessibility
Making FL more accessible by abstracting away and automating complexities enables
further individuals to engage with it. Expanding FL to more areas will increase its
usage and user base, raising general interest and relevance for its field, which should
aid its development.

Benefit from Automation
Automating tedious, error-prone, and repetitive manual tasks necessary to perform FL
will save time and resources for critical work that advances the field.

Prioritize Practical FL Application
This tool should focus on being usable in real physical conditions on distributed devices.
FL struggles with a gap between research/virtual-simulation and practical application
in real production environments. It should be feasible to incorporate this tool into
existing workflows.

Embrace Flexibility
Because FL is such a young and active field, it faces constant change. This tool should
welcome change in the form of extendability and adaptability. It should be flexible and
applicable to a multitude of use cases and scenarios. This tool should be easy to modify
to accommodate evolving needs. It should profit from existing technologies to offer a
higher level of quality than creating everything from the grounds up.

1.4. Contribution

This thesis proposes a novel solution called FLOps to fulfill the objectives above. It
enables individuals to use, develop, and evaluate practical FL. FLOps enriches FL with
modern best practices from automation, DevOps/MLOps, and orchestration. The term
FLOPS is known as a measurement unit for computer performance (floating point
operations per second). FLOps means something different and has not been used or

4

1. Introduction

applied in the context of FL. However, MLOps has been used to describe DevOps
techniques for ML. The name FLOps takes inspiration from that. This thesis is intended
to be a foundational work to help establish FLOps as a discipline. It is also the name of
this thesis’ standalone software solution. The work aims to showcase the benefits of
utilizing the mentioned techniques and open the doors for future developments for FL.
FLOps improves accessibility by enabling users without experience in FL, MLOps, or
orchestration to do FL and still benefit from these technologies.

FLOps streamlines and accelerates FL processes. To do FL, users simply provide
a link to their ML git repository. This repository code needs to satisfy some simple
structural prerequisites. It gets automatically augmented by FLOps to support FL.
FLOps creates a containerized image with all necessary dependencies to do FL training.
These images are automatically built and adhere to best practices, ensuring they are as
fast and lightweight as possible. FLOps can build these images for multiple different
target platforms. Thus, FL components can run on ARM edge devices like Raspberry
Pis or Nvidia Jetsons. FLOps enables FL on all devices that support containerization
technologies like Docker or containerd [25]. This approach eliminates the need for
tedious device setup and the struggle to configure heterogeneous dependencies to
match the training requirements. FLOps automatically performs FL training based
on the user-requested configuration. Users can specify resource requirements, the
number of training rounds, the FL algorithm, the minimum number of participating
client devices, and more. During runtime, users can observe this training process via a
sophisticated GUI, which allows users to monitor, compare, store, export, share, and
organize training runs, metrics, and trained models. FLOps can automatically build
inference servers based on the trained model. This inference server can be pulled as a
regular image. FLOps can also directly deploy this trained-model image as an inference
server. As a result, FLOps helps users at every step of their FL journey.

Diverse technologies from various disciplines are necessary for FLOps to provide its
services. Instead of reimplementing complex features in a subpar way from scratch,
FLOps benefits from combining and extending existing solutions and technologies in
unique and novel ways. This includes using Anaconda [4] and Buildah [16] to manage
dependencies and build images. FLOps utilizes a pioneering FL framework called
Flower [43] to execute its FL training loops. The mentioned runtime observability
features are available via a mature MLOps tool called MLflow [79]. Because FL pushes
model training to client devices, especially edge devices, FLOps uses an orchestrator
native to the edge environment. With the help of Oakestra [10], FLOps can deploy
and orchestrate its components. FLOps has been implemented as a separate addon
for Oakestra. Because they interact via general API endpoints and SLAs, FLOps can
be modified to support other orchestrators. It is noteworthy that these different tools
do not natively support each other. FLOps combines them in unprecedented ways to

5

1. Introduction

achieve its goals. For example, FLOps supports hierarchical FL (HFL), which Flower
does not directly support or offer. To the best of our knowledge, FLOps is the first work
that combines Flower with MLflow, and allows HFL, and automatically converts ML
code into FL-enabled containerized images. In conclusion, FLOps combines these tools
in novel ways to guarantee a high level of quality and to achieve its objectives.

Besides the end-user perspective, FLOps aims to be easily modifiable and extendable
by developers and researchers. It uses state-of-the-art libraries and frameworks. FLOps
includes many development-friendly features. It enforces proper styling and typing via
formatters and linters, including CI. Ready-made extendable multi-platform images
and services automate development and evaluation workflows. These images, as well
as the entire code, are openly accessible on GitHub [36]. FLOps includes additional
base images with optional development flags to speed up the build and execution times.
Therefore, developers can verify and check their changes more rapidly. On top of that,
we also implemented a new CLI tool for Oakestra and FLOps from the ground up [88].
It interacts with Oakestra’s and FLOps’ APIs. This configurable CLI tool is also capable
of visualizing current processes in a human-friendly way in real-time. Additionally, the
CLI can trigger evaluation runs and other automated tasks, such as installing necessary
dependencies. These additional efforts should enable FLOps to meet custom and future
demands.

1.5. Thesis Structure

The following background chapter discusses vital concepts required to understand
FLOps as a whole and in detail. It covers fundamental and detailed aspects of FL,
such as the basic process, various architectures, frameworks, and tools. It analyses the
research field of FL in great detail. The background chapter continues to showcase
essential FLOps parts, including ML operations and orchestration. The concluding
background section highlights related work.

Chapter three performs requirements engineering and showcases significant parts
of FLOps’ system design. Firstly, it elicits and specifies functional and nonfunctional
requirements. Secondly, it discusses system models that depict the FLOps system and
satisfy these requirements. This chapter aims to provide a comprehensive understand-
ing of the system through its requirements and simplified architecture and processes
without delving into underlying technicalities.

The fourth chapter analyses concrete implementation details. It starts by explaining
how users can request workloads via FLOps’ API and SLAs. It elaborates on the
image-building processes in FLOps. It delves into the rationale, challenges, and internal
solutions for building suitable containerized images. Afterward, this chapter explains

6

1. Introduction

how local data is managed on the learning worker nodes. Next, it showcases the
architecture of its MLOps components and how its GUI works. The penultimate section
of this chapter discusses how FLOps realizes clustered hierarchical FL. The last section
discusses the accompanying new CLI and how it makes working with FLOps and its
orchestrator easier.

The evaluation chapter assesses the soundness and performance of FLOps. It com-
pares different setups, experimental configurations, and their results.

The final chapter draws conclusions about the current FLOps project and implemen-
tation. It discloses FLOps’ limitations and alludes to possible future work to improve
the system further.

7

2. Background

To properly understand FLOps as a whole and why it combines different techniques, it
is necessary to analyze them individually. This analysis includes critical background
knowledge of their benefits and downsides. Only afterward does it make sense to
discuss how FLOps merges them to create something new.

This background chapter provides a general overview of each sector and discusses
aspects necessary for FLOps in greater detail. The first section explores the field
of federated learning. FL is the core task at hand that FLOps aims to optimize. A
thorough understanding of this discipline is required to determine its shortcomings.
The following section discusses established best practices from DevOps and MLOps
to improve upon these weaknesses. Techniques like automation and CI/CD require
infrastructure and resources. Orchestration enables provisioning, management, and
deployment of such infrastructure and resources. Its section reviews orchestration
technologies and provides a short overview of Oakestra as the chosen platform for
FLOps. In the final background section, a couple of existing works resembling FLOps
are examined and compared.

2.1. Federated Learning

This section contains necessary background information and context regarding FL. The
first subsection covers fundamental FL building blocks and terminologies. The next
subsection explains vital supplementary FL concepts. Oakestra orchestrates FLOps.
It uses an unconventional three-tiered structure that allows support for geographical
clusters [10]. This structure opens up unique opportunities for FL applications. More
advanced FL architectures are necessary to benefit from these opportunities. The
following subsection discusses these architectures. These three subsections build a solid
FL understanding. A great summary and source of information for deeper insights into
the field of FL can be found in [73].

2.1.1. FL Basics

Figure 2.1 depicts the classic centralized ML model training process. Starting from (1),
where clients have their data (D) and the server hosts the untrained (gray) ML model

8

2. Background

Figure 2.1.: Centralized ML Model Training

(M). In (2), the clients send their data to the server. The server can now train the model
using data from the clients. (3) depicts the final state after training. (The pink/purple
model color symbolizes that different data sources have been used during training.)
The client data remains on the server and is exposed to potential exploitation. As
discussed in the introductory chapter, this centralized approach often leads to privacy
breaches.

FL was introduced to use sensitive data on client devices for training ML models
while keeping that data private. Thus, FL complies with laws and regulations. Many
different algorithms and strategies exist for FL. The following example focuses on the
widely used base-case/classic FL algorithm FederatedAveraging (FedAvg) [75].

Figure 2.2 shows the basic FL training loop. The number of learners can vary. The
first differences are the component names. In FL, the server is frequently called an
aggregator, and it coordinates the FL processes. Clients are called learners. Using
the terms server and clients in FL is still common 1. Another difference is that all
components must know and possess the ML model locally. They also need to set up
their environment for training properly.

As a reminder, one can split up ML models into two parts. One part is (usually)
a static lightweight model architecture. It includes layer specification (in DNNs),

1FLOps uses various components, including non-FL servers and clients. Therefore, this work prefers
aggregators and learners because they highlight FL components and help with comprehension.

9

2. Background

Figure 2.2.: Basic Federated Learning

10

2. Background

training configuration, and hyperparameters like learning step sizes, loss, and activation
functions. Model weights and biases are the dynamic components of an ML model.
A model without them is not useful because weights and biases are what get trained.
They allow the model to fulfill its intended use, such as prediction, inference, or
generation tasks. These weights and biases are the major contributors to a trained
model’s overall size (space utilization). Model architecture is static in classic ML/FL.
Thus, FL components can transmit and share weights and biases instead of the entire
trained model. This work calls model relevant data sent between the learners and
aggregators (model) parameters and depicts it with (P).

The concrete classic FL steps are as follows. Initially, at (1), all models are untrained.
At (2), the aggregator starts the first FL training cycle by telling the learners to start
their local training. The local training rounds (epochs) are completed at (3). (The ’M’s
are now colored.) In (4), the learners have extracted their model parameters and sent
them to the aggregator. The aggregator now has access to these parameters but not the
sensitive data used to train them. That is how FL can profit from sensitive data while
maintaining its privacy. Possible attack vectors still exist. They expose sensitive client
information by abusing this parameter-based aggregation process.

In (5), the server aggregates these collected parameters into new global parameters.
This aggregation process is also called model fusion [73]. The aggregator applies these
global parameters to its model instance. Learners can be heterogeneous and possess
varying amounts of data. Therefore, some learner updates might be more impactful
than others. To respect this circumstance, learners typically also send the number of
data samples they used for training to the aggregator. That way, the aggregator can
prioritize its received updates proportionally. Otherwise, in classic FL aggregation, the
mean of the parameters is used for the global model. The result is a global model that
was trained for one FL cycle.

In (6), the aggregator sends its global parameters back to the learners. The learners
apply these parameters to their local model instance to make it identical to the aggre-
gator’s global model. By doing this, learners discard their locally trained parameters.
The FL training loop could terminate, and the learners or servers could use their global
model copy for inference. Otherwise, as depicted in (6), another FL training cycle
begins. There can be arbitrarily many FL cycles, similar to conventional training rounds
in classic ML. FL training eventually terminates due to time/resource constraints
or a failure to reach a satisfying performance. If not terminated, the accuracy and
loss will worsen due to overfitting, assuming the available training data is finite and
unchanging.

11

2. Background

2.1.2. Supplementary FL Concepts

This subsection explores essential supplementary FL concepts to understand the field
better.

FL compared to Distributed Learning

FL and Distributed Learning (DL) are two related disciplines. Instead of executing com-
plex ML computations on a centralized resource-rich monolithic machine or data center,
both techniques distribute this computational load among multiple more resource-
constrained machines that train individually. These approaches increase convergence
times and avoid needing expensive singular devices with sufficient resources. After
distributively training models, a server aggregates a global model.

The differences between both mechanisms are the following. FL can use highly
heterogeneous non-IID training data. Quantity and distribution can vary significantly
between learners. FL can handle this varied data without having access to explicit
information about their properties before or during training. FL only utilizes the
data that learners offer. FL can work with a fluctuating number of learners that
only participate in a small fraction of training rounds. This dynamicity leads FL to
handle various unique challenges, such as handling errors caused by crashed, failed,
or disconnected learners during training. On the contrary, DL initializes with total
centralized access and control to all data before distributing it among its fixed and
predefined clients [73]. DL does not support FL’s privacy concerns because it has
complete oversight and control of all data.

FL Variety

FL is a diverse discipline with various possible applications and use cases. Most FL work
focuses on end-user/edge/IoT devices. FL is not exclusive to these environments and
can work in conventional cloud environments. As discussed in the first subsection, FL
can train DNNs. FL can also apply to classic ML models, such as linear models (logistic
regression, classification, and more) or decision trees for explainable classifications. FL
also supports horizontal, vertical, and split learning. This work omits discussing these
techniques to avoid bloat. More information about these and other methods is available
in [73]. Plenty of FL optimizations exist for each ML variant, such as custom algorithms
and strategies.

Personalization can help if the global model is too general and does not satisfy a
learner’s individual needs. Different personalized FL (PFL) approaches exist. Some
take the final trained global model and further train it on local data (fine-tuning).
Other techniques train two local models concurrently. The first model gets shared

12

2. Background

and updated with the global parameters. The second one stays isolated and only gets
influenced by local data. A mixture between the global and purely local model can be
used for inference. PFL is a deep and growing subfield of FL [73, 120, 61].

FL Security & Privacy

The field of FL prioritizes security and privacy because protecting those was the key
motivation for FL’s creation. FL should use secure and authenticated communication
channels to prevent messages from being intercepted, read, or impersonated by a
man-in-the-middle adversary. One should ensure that learners and aggregators are
the only actors with access to those messages and can decipher them. A variety of
FL adversaries and threats exist. Fortunately, there exists a growing array of defenses
against those threats. It is crucial to pick and combine these defenses wisely based on
the use case and environment. Two prominent techniques to protect against threats are
differential privacy and secure aggregation. [73]

We omit further detailed discussions because FLOps does not focus on privacy or
security.

2.1.3. FL Architectures

FL comes in two broad structural categories. Cross-silo or enterprise FL gets used
in large data centers or multinational companies. Each learner represents a single
institution or participating group. There are only around ten to a few dozen learners
involved. Cross-silo FL considers the identity of the parties for training and verification.
Generally, every individual local update from every learner at every training round is
significant. Fallouts and failures of individual learners are serious. Cross-device FL
can include hundreds or millions of devices, primarily edge/IoT devices. Due to this
great pool of learners, only a subset typically trains per round. The identities of the
participating learners are usually unimportant. Due to the nature of these devices and
their environments, cross-device FL needs to manage special challenges. Challenges
include non-IID data, heterogeneous device hardware, different network conditions,
learner outages, or stragglers. Various techniques exist to navigate these challenging
conditions, including specialized algorithms for aggregation or learner selection. These
strategies can consider bias, availability, resources, and battery life.

From now on, when we mention FL in this work, we mean cross-device FL because
FLOps focuses on cross-device workloads.

Different FL architectures exist to support large-scale FL environments. FLOps wants
to benefit from the unique three-tiered Oakestra [10] architecture. Such a scenario has

13

2. Background

two main challenges. The first challenge is managing a massive number of connections
and aggregations. The second one is reducing the negative impact of straggling learner
updates. The problem with using a single aggregator, as seen in 2.2, is that this single
aggregator becomes a communication bottleneck. Additionally, per-round training
latency is limited by the slowest participating learner. Thus, stragglers turn into another
bottleneck. The following is an overview of prominent FL architectures.

Clustered FL

Figure 2.3 shows the Clustered FL (CFL) architecture that groups similar learners
into clusters. CFL can form clusters based on local data distribution, training latency,
available hardware, or geographical location. The issue of the singular aggregator as
a bottleneck persists. The main challenge for CFL is choosing a suitable clustering
strategy and criteria for the concrete use case. If the criteria are biased, updates
from preferred clusters might be heavily favored, resulting in a biased global model
with bad generalization. Another task is to properly profile the nodes to match
them to the correct cluster. The entire cluster suffers if a slow outlier is present
in a cluster. Node properties can vary over time, so cluster membership has to be
dynamic. Too intrusive profiling can lead to compromised privacy. The benefits of
CFL are its ease of implementation, familiar architecture to classic FL, and flexibility to
tune clustering/selection dynamically. CFL can be combined with other architectures.
A downside of CFL is that a proper clustering strategy is use-case-dependent and
challenging to optimize. CFL does not really solve scalability issues on its own. Its
clustering overhead becomes critical with larger numbers of nodes. [65, 19, 73, 70]

Figure 2.3.: Clustered FL Architecture

14

2. Background

Hierarchical FL

Figure 2.4 depicts the hierarchical FL (HFL) architecture. In HFL, the root aggregator
delegates and distributes the aggregation task to intermediate aggregators. HFL
can have multiple layers of intermediate aggregators. Each intermediate aggregator
and its connected learners resemble an instance of classic FL. After aggregating an
intermediate model, the intermediate aggregators send their parameters upstream to
the root aggregator. The root combines the intermediate parameters into global ones
and sends them downstream for further FL rounds. HFL’s structure requires changing
the underlying FL architecture.

The proper design and implementation, and the assignment of learners to aggregators
determine the success of one’s FL setup. For example, if too many learners are
attached to a given aggregator, that aggregator becomes a bottleneck. The intermediate
aggregated model can be biased if too few learners are assigned. Thus, the infrastructure
resources and management costs become unjustified for the small number of learners. A
management overhead arises with more components, including handling fault tolerance,
monitoring, synchronizing, and balancing. Bad synchronization can amplify straggler
problems. Balancing refers to combining and harmonizing intermediate parameters to
get a good global model. These findings show that special FL architectures, such as
HFL, require careful consideration and correct implementation. [73, 70, 120]

The benefits of HFL are its dynamic scalability and load balancing. One can easily
add or remove intermediate aggregators and their connected learners. Due to this distri-
bution of load and aggregation, each aggregator, including the root, is less likely to face
bottleneck issues. One can combine HFL with CFL, where each intermediate aggregator
is responsible for one or multiple clusters. The downsides of HFL are communication
and management overheads. More components lead to more transmitted messages.
These messages all need to be secured and encrypted. With more components and
nodes, adversaries can take advantage of more possible backdoors. HFL provides a

Figure 2.4.: Hierarchical FL Architecture

15

2. Background

powerful way to improve scalability for FL if done right. [12, 119, 20, 70, 73, 120]

Decentralized FL

Decentralized FL does not require a central aggregator. Instead, it operates on a peer-
to-peer basis via a blockchain. That way, the centralized communication bottleneck gets
resolved. The blockchain represents the global model. Learners train in parallel. Each
locally trained update gets a version. Based on this version, random clients are chosen
for aggregation. The results get appended to the blockchain, and the model version is
incremented. [73]

Asynchronous FL

Asynchronous FL allows learners to train continuously and freely push their updates
to the aggregator. This method eliminates stragglers and dropout problems because a
training round does not need to wait or handle outliers and timeouts. A new issue of
staleness arises when updates are merged into the global model that took a very long
time to complete. Such an update used a now outdated version of the global model.
As a result, the global model is partially reverted to an older state. Asynchronous FL
can be combined with other architectures. [73]

2.1.4. FL Research

Figure 2.5.: Evolution of FL Publications

16

2. Background

Figure 2.5 shows the exponential growth of FL documents since 2016. (This data
comes from searching for "federated learning" in article title, abstract, or keywords via
Scopus [109].) The idea for this graph is based on [107]. Graph 2.5 uses a different
query with the latest available data.

Before creating FLOps, we looked for research gaps in the fields of ML at the edge,
specifically FL. We have read and examined 47 papers in detail, with 26 papers focusing
on FL. Additionally, we consulted several articles, joined and participated in discussion
forums, and completed a couple of paid courses. Discussing each paper in detail
would heavily bloat this thesis. This subsection presents key and meta-findings instead.
While working through the material, we created and incrementally updated a database
in which we noted specific properties of each paper. These properties include one
or multiple categories in which the paper fits in. Additional properties include the
initial problems or challenges the authors tried to resolve, their contributions, results,
limitations, and envisioned future work. We also noted what ML or FL frameworks or
libraries they claimed to use.

Table 2.1 depicts a subset of the analyzed FL papers. It presents the documented
contributions, limitations, and future work properties. The remaining FL papers are
available in Appendix A. Note that we omit some of the 26 FL papers from these
tables because we discuss them in greater detail throughout the background section.
These tables provide a good impression of the examined FL papers. The following is a
broad aggregated overview of a subset of these papers and their technical outcomes.
More precise individual insights of the examined paper are available in the mentioned
tables. Several papers [72, 119, 63, 116] proposed novel learning methods that improve
handling non-IID data, reduce resource usage, improve model quality, or train models
quicker than previous methods. Besides inventing or improving learning methods,
others [1, 54, 19] focus on new learner selection or aggregation algorithms to benefit the
most from the available resources, especially from heterogeneous data. Many works
[122, 106, 61] investigate the benefits and downsides of using different architectures
for FL that lead to more efficient, performant, and scalable FL. Other works [20, 65,
62] focus on new privacy and security schemas or improve existing secure aggregation
algorithms to reduce existing overheads and bottlenecks when using conventional
protection. A large portion of the examined works investigated and proved novel
concepts to achieve a range of goals, from better privacy, scalability, and less overhead
to better resource utilization. Examples include [70, 120, 18]. Patterns and trends can
be extracted from these papers based on the documented properties.

Patterns and trends help to better understand the research field of FL as a whole.
Figure 2.6 shows the different categories and their distribution. Most examined papers
focused on performance, trying new concepts, finding best practices, and exploring
different FL architectures. Only two papers focused on deployment and orchestration.

17

2. Background

ID Contributions Limitations & Future Work

[1]

A novel selection and staleness-aware aggregation
strategy. Analysis of resource wastage and the im-
pact of stragglers. A smart participation selection
based on learner availability.

Privacy or security were not considered. Evalua-
tions are based on classic datasets (MNIST, CIFAR-
10), which do not reflect real non-IID data. Only
homogeneous resources were assumed. Use of
a simple linear regression model for availability
prediction. More sophisticated alternatives exist.
Factors such as battery level, bandwidth, and user
preferences should also be considered for avail-
ability prediction.

[65]

A novel cluster-based secure aggregation strategy
for diverse nodes. Clustering based on processing
score & GPS information/latency leads to better
throughput and reduces false-positive dropouts.
A new additive sharing-based masking scheme
that is robust against dropouts.

All participants are assumed to be honest. Mali-
cious users were not considered. The aggregator
might become a bottleneck, which can be resolved
via HFL (with cluster heads). Image classification
was the only evaluated ML task.

[121]
An FL caching scheme including novel algorithms
and architecture. Utilization of an AI training
model that considers user history.

A convergence analysis was not provided. For
further security and privacy improvements,
blockchain-empowered FL should be investigated.

[86]

Analysis of the impact of pre-training ML models
for FL initialization compared to the common ran-
dom approach. Findings show pre-trained model
superiority.

It is challenging to get a pre-trained model if the
necessary data is not available or private. Using
pre-trained models can lead to biases. Only a
specific (warm-start) initialization strategy was
considered.

[70]

A novel incentive/resource-based allocation
schema that utilizes game theory. Learners with
more data are more valuable and they can com-
pete for higher participation rewards. Multiple
model owners compete for cluster heads with the
most data.

The effects of social networks and their impact on
worker’s cluster selection decisions should be re-
searched. Malicious workers were not considered.

[19]
Synergy of asynchronous and synchronous FL
via asynchronous tiers, which is able to handle
stragglers.

The tiers all update the server individually. Fur-
ther improvements are possible via HFL with in-
termediate cluster heads to do the aggregation.
Additional security could be applied at these clus-
ter heads.

Table 2.1.: FL Papers considered for FLOps - Part I

18

2. Background

Figure 2.6.: FL Paper Categories

Figure 2.7.: Achieved Results of FL Papers

19

2. Background

The achieved results match these categories. Figure 2.7 shows that these contributions
lead to more efficient FL. Improved aspects include speed, resource utilization, training
results, and handling of heterogeneous data. Additional insights about the research
problems, contributions, limitations, and future work of the examined FL papers are
available in the appendix A.

These documented properties might be biased, and the inspected sample size of
papers is relatively small. To improve confidence in these findings, we compare them
with the total number of published works about FL. Figure 2.8 depicts how many works
have been published in FL with specific keywords that match our custom categories. We
applied the same method to gather the data as for 2.5. The global results paint a similar
picture as our samples. The most popular topics in FL are related to privacy/security,
performance, or algorithms. Only a tiny portion of FL papers focus on usability,
automation, orchestration, or other initial steps.

It seems that researchers assume others to already have working FL environments.
Furthermore, they seem to motivate their readers to optimize these setups based on
their findings instead of replicating and configuring such an FL setup initially. These
tendencies are visible when inspecting the ML and FL frameworks and libraries the
authors mentioned they used. The following figure is again based on our examined
papers. Figure 2.9 shows that most authors did not explicitly state what ML framework
or library they used for their work. Many researchers used Pytorch and TensorFlow.
The figure also shows that FL researchers rarely mention what FL frameworks they use
for their work. It is much more common for authors to mention what ML framework
they used than what FL framework they used. Possible reasons for this might be that
ML as a field is a lot older, more sophisticated, widespread, and established. The same
applies to ML frameworks. On the other hand, FL is a very young subfield of ML
research. FL frameworks are still in their early stages. FL researchers might be using
FL frameworks. However, due to the framework’s immaturity, the researchers might
not deem it important to explicitly point out that they used them. Another possible
explanation is that FL researchers are experts in FL and can set up and configure
FL from the ground up. Either way, this lack of transparency makes reproducing or
extending their work challenging, if not infeasible. These gaps in FL research motivated
the creation of FLOps.

20

2. Background

Figure 2.8.: Evolution of FL Publications based on Keywords

Figure 2.9.: Distribution of mentioned ML and FL Frameworks in FL Papers

21

2. Background

2.1.5. FL Frameworks & Libraries

This subsection examines the current landscape of available FL frameworks. The goal
is to better comprehend why most researchers did not specify or use FL frameworks in
the previous findings. This discussion will be brief because Saidani already analyzed
and evaluated FL frameworks in great detail in his master’s thesis [107] from 2023. He
examined FL libraries, frameworks, and benchmarks. Many FL tools exist for specific
niche use cases and architectures [107]. This finding contradicts the opinions of his
questioned FL practitioners and experts. They expected FL libraries and frameworks to
focus on basic FL features, such as communication, aggregator-learner orchestration,
security, and data aggregation. Many libraries and frameworks, most of which were
not production-ready, were still in an experimental research state [107].

To reduce complexity, he focused on the five most promising open-source frameworks.
For a framework to be allegeable, it had to fulfill 2/3 of the following criteria. It needed
more than one thousand starts and 350 forks on GitHub. The interviewed experts had
to mention it. The framework had to support all major operation systems. Because FL
is rapidly evolving, we updated his findings and expanded upon them. We included
the number of releases (including patches) in 2024 so far and the number of open issues
in the repository.

Table 2.2 shows the updated FL Framework comparison (16.08.2024). These FL
frameworks are in active development. Only FedML has not been updated for several
months now.

Saidani’s main original contribution was a novel FL benchmarking suite called FMLB
(Federated Machine Learning Benchmark). Its goal was to evaluate and compare the
mentioned FL frameworks efficiently. His previous analysis and summary of existing
frameworks were sound and helpful. However, we are critical of his evaluation results,
especially the poor performance of Flower. We tried to replicate his experiments, but his

Framework Version Releases in 2024 Stars Forks Open Issues
Pysyft [97] 0.9.0 62 9.4k 2k 2
Tensorflow
Federated
[112]

0.85.0 18 2.3k 578 168

FedML [34] 0.8.9 0 4.1k 776 118
Flower [45] 1.10.0 4 4.7k 815 284
OpenFL [92] 9.3.4 2 1.9k 426 256

Table 2.2.: Updated FL Framework Comparison

22

2. Background

provided code [108] lacks instructions on how to set up this benchmark application. We
simulated the experiments with the latest official flower version at the time and made
sure to stick as closely as possible to the same experimental setup and configuration.
Our findings show very different results. Flower manages to solve the experiment
quickly and efficiently. Our results match the verdicts of other works comparing FL
frameworks, such as [105] or [55]. [105] is the latest work that compares FL frameworks
that we considered, and its verdict is that Flower outperforms all its competition. FLOps
uses Flower as its FL framework of choice.

2.1.6. Flower

Flower [11] is a research-backed open-source FL framework. One major target in
Flower’s paper was to narrow the gap between research and production. It allows
researchers to run high-performance FL simulations and rapidly transition to tangible
production environments using the same tool. Another focal point of its paper was
scale and parallelization.

Flower is a sophisticated, feature-rich FL framework. Flower’s first release (0.10.0)
was published in November 2020, and its first major release (1.0.0) was published
in 2022 [45]. Flower supports all major operating systems, containerization, and ML
libraries. It aims to be easily customizable and extendable via a programming language
and ML framework agnostic design. Flower strives to offer all popular FL features,
such as support for different data types and distributions. Further features include
pre-implemented popular FL algorithms and vertical and horizontal data splitting
support. Flower supports traditional ML tasks, like regression or clustering, DNNs,
LLMs, and security mechanisms, such as secure aggregation. It enables the use of
FL via CPUs or GPUs. The default communication protocol is gRPC, which can be
replaced. Flower supports various FL variants, including PFL, edge computing, cross-
silo, and cross-device. It handles and implements core FL components but does not
handle many other aspects, like deployment, orchestration, dependency management,
or containerization. Flower offers a mature set of FL simulation techniques.

Users can easily change and add functionality to the framework by interacting
with flexible abstractions and interfaces. The heart of Flower is its strategy concept.
The aggregator uses this strategy to manage the FL processes. A strategy contains
all necessary configurations, such as the FL algorithm and the minimum number of
learners required for training or evaluation. Users can pick from more than 30 existing
strategies [9] or extend from basic strategies and develop their own behavior. It does
not have native out-of-the-box support for model pruning, advanced security/privacy
techniques, CFL, HFL, MLOps, or orchestration. Due to Flowers’ flexible design, users
can implement their custom features and strategies based on the available basic Flower

23

2. Background

components.
It is straightforward to set up Flower and start working with it. Flower is directly

available via Python’s default package manager pip. One has to define the server/ag-
gregator, strategy, and clients/learners. Users can implement the simplest case with
a few dozen lines of Python code. The crucial part is to configure the strategy and
clients properly. One needs to create a client class that extends from a Flower client and
implement four essential methods that the framework will call during training. These
methods include a getter and setter for the model parameters and one method each for
training/fitting and evaluating the model. In conclusion, Flower provides a rapid and
easy onboarding experience.

Flower has a modern, user-friendly, growing ecosystem. A dedicated sub-project
called Flower Datasets [41] is part of this ecosystem. This project is still in its infancy
(v0.3.0). It allows users to pull HuggingFace [59] datasets easily and split them into
FL-optimized data fragments. Users can configure how to split this data up. Flower
Datasets can turn standard non-federated homogeneous/IID datasets into challenging,
federated, non-IID data, which is ideal for FL research and development. This ecosystem
includes a well-structured and rich homepage [46], an extensive set of tutorials, guides,
example projects [44], and documentation [47, 43] that ranges from beginner-friendly
to advanced. They have open monthly community events [48], yearly summits [38], a
blog [39], a discussion forum [42], a Slack space [50], and a YouTube channel [52].

2.2. Machine Learning Operations

Investigating modern best practices is necessary to improve and benefit the field of FL.
Patterns emerged during the history of applying computer science to solve problems
and develop solutions. This includes various software engineering techniques and
models. Famous examples are the waterfall model or agile development, such as Scrum.
They all share the same goal of delivering high-quality, production-ready software.
Over the last decades, many contrasting and interconnected disciplines have emerged.
They must cooperate smoothly to develop, deliver, and operate modern software. These
tasks can be grouped into two broad categories: development and operation.

2.2.1. DevOps

The history of software development shows an evolution from static and isolated to
dynamic and intertwined workflows. Older methods like the waterfall model split up
the development and operations tasks and involved individuals. Software was first
developed by one team and then operated by another. There was a massive increase
in modern requirements for flexibility and the ability to change. Developmental and

24

2. Background

operational tasks now form an interconnected infinite loop. For example, a company
develops the first version of a software product in-house. They build distributable
software artifacts based on their source code for distribution among clients. These
artifacts might be container images or executable binaries. They publish these artifacts
to online registries and roll live services out in the cloud. Users enjoy this product and
request further features. The loop starts anew. The new features lead to unexpected
bugs. The loop starts again, and so on. A software loop is only as fast as its slowest
step.

In today’s world, software development loops are rarely linear sets of steps. Such
loops are running in parallel at different stages several times per day. This concurrency
is especially noticeable in projects that divide software into multiple decoupled parts.
For example, in micro-service architectures, one service might be buggy and need
fixing while another receives a feature update. These dynamic and strong dependencies
require developmental and operational tasks to work tightly together. This coupling
also applies to IT professionals who must cooperate and understand each other’s areas
well. This combined effort has become its own broad disciple called DevOps.

The synergy between development and operations created new techniques, tools,
and professions. This combination includes various tasks such as building, deploying,
testing, and monitoring. Automation is one core activity in this connected discipline
because repetitive manual labor is an inefficient and expensive bottleneck. Prominent
tools include Ansible and Gitlab-CI/CD. DevOps is a very broad discipline without
concrete borders. Building artifacts or container images, orchestration, or knowledge
sharing can all be considered part of DevOps. This notion makes Git, Docker, and
Kubernetes the primary tools in this field.

An essential concept in DevOps is CI/CD, which stands for continuous integration,
continuous delivery, and deployment. CI/CD focused on automating this software
loop via custom pipelines. A DevOps pipeline is comparable to an assembly line in a
factory. A software product needs to pass several connected stages with multiple steps.
These stages can include testing, building, releasing, and deployment.

DevOps as a term was first mentioned around 2009 [66]. This field is still very active
and rapidly evolving. Unfortunately, many other disciplines are not taking inspiration
from or taking advantage of DevOps.

2.2.2. MLOps

MLOps is a young discipline that uses many best practices and techniques from DevOps
and applies them to ML. Most DevOps techniques are applicable and beneficial for ML.
Further considerations and tooling are required to support specialized ML requirements.
ML differs from pure software development because it requires deep knowledge with

25

2. Background

different focal points, such as math and data science. In addition, training, replicating,
or understanding an ML model and its code requires extensive and usually untracked
background knowledge. This includes dependencies, environments, used training
data, and whether the model is production-ready. Additionally, a model only supports
specific input and output values of certain types. These unique requirements distinguish
MLOps from conventional DevOps.

Inspecting the processes and challenges of a typical modern enterprise ML workflow
demonstrates the need for MLOps. An exemplary company wants to develop a new
ML-based feature to satisfy customer needs. Firstly, managers develop ideas for
utilizing ML to solve these needs. These ideas get evaluated, accessed, and distilled
into formal requirements. ML solutions require data for training and evaluation. The
company starts gathering suitable data by scouting for data sources and providers. It
collects and stores the found data in a custom data lake. Data engineers can now start
preparing this data for training. Data preprocessing includes various steps, such as
cleaning the data by removing outliers, wrong data samples, and undefined values.
Other steps transform the data to make it more suitable for training. This includes
applying normalization and standardization to slim down the feature space to reduce
the curse of dimensionality. Other steps involve data analysis and visualization to find
insightful patterns and ensure that the available data is sound and useful. These data
preprocessing and data acquisition steps are an iterative process. With this data, ML
engineers can start designing ML models.

ML model training and deployment are resource- and time-consuming steps. First
model iterations are rarely ideal. To reach optimality, models require multiple train and
test cycles with different architectures, configurations of layers, and hyperparameters.
Just deploying a model is insufficient. Models need to work as intended for expected
and unexpected use cases. The model performance can degrade over time. This
can occur if the model is allowed to change after the initial training and deployment
phase. Performance can also worsen for frozen models if circumstances change, such
as the evolution of client needs and requests. Therefore, deployed model instances
and their inference serving quality need monitoring. In case of bad performance, the
model needs to be retrained or replaced with a better alternative. Such an improved
version needs to complete most of the discussed steps again before redeployment. This
workflow combines steps from business, management, data/ml/software engineering,
and operations. Usually, in larger organizations, each step is handled by a dedicated
team of experts who require working closely together. This exemplary workflow
demonstrates that ML code and trained model alone cannot provide value in production
environments. Enterprise ML requires various supporting disciplines and techniques to
be usable, including versioning and infrastructure management. Due to these different
iterative steps and stages, ML is a prime target for DevOps techniques.

26

2. Background

MLOps is currently heavily underutilized, which slows down progress in ML enter-
prises. Many trained ML models are not deployed on production systems to provide
real value. In 2020, only 14% of trained enterprise ML models were deployed to produc-
tion in less than a week [2]. Getting an ML model to run on production environments
requires entirely different skill sets, which many pure ML professionals, researchers,
and hobbyists lack. Many individuals who perform ML lack training and industry
experience as software engineers or developers. They might be unaware of DevOps
practices or that ML can greatly benefit from them. To bring more awareness to MLOps,
Kreuzberger et al. wrote a foundational paper [66] that provides an overview of MLOps
and the current state of enterprise ML. They propose the first attempts at definitions and
best practices for MLOps, including recommended architectures, tools, and workflows.
They conclude that the field of ML is too fixated on academia and developing better
ML models instead of optimizing tangible ML in production. Their verdict mirrors and
reinforces the findings from section 2.1.4 regarding similar gaps in FL research.

2.2.3. MLflow

MLflow [83] is a one-in-all open-source MLOps platform that enriches and unifies
common ML tasks and provides automatic solutions for ML challenges. Its first public
version (0.2.0) was released in 2018. Version 1.0.0 came out in 2019. As of this writing,
its latest version (2.15.1) was released in August 2024. MLflow’s repository [82] accumu-
lated 18.2k stars, 4.1k forks, and 756 contributors. Significant organizations, including
Microsoft and Meta, use MLflow. MLflow supports various popular ML tools and
frameworks, such as Keras, Pytorch, HuggingFace, and more. Furthermore, it is flexible
for custom user extensions to support specialized functionality and tooling. MLflow
has a rich and active community and ecosystem. This ecosystem includes detailed
documentation [79], code examples [81], and places for discussion and receiving direct
support (Slack). A great resource besides the official ones to learn more about MLflow
is this online course [53]. MLflow helps users manage their ML workflow loops from
conception to re-deployment.

MLflow divides its core features into multiple different interconnected components.
These components are rather conceptual groupings of functionalities than concrete
isolated interfaces. The following represents a major selection of critical components.

Tracking
MLflow can track and log ML experiments to help users record and compare their
ML results. An experiment in MLflow is a set of runs. Each run represents a specific
execution of a piece of code. A run can record various aspects of that execution, such
as code version, metrics, or custom tags. Users can customize what should be tracked

27

2. Background

and how often. MLflow also offers automatic logging capabilities. Popular targets for
tracking include parameters ranging from hyperparameters to custom metaparameters.
The utilized code or training data can also be tracked, as well as metrics, such as
accuracy and loss. MLflow offers its tracking via various APIs, including Python, Java,
and REST. The tracking artifacts get recorded in a centralized place. By default, these
artifacts are recorded in a local directory. These tracked records can also be stored
and managed by a dedicated local or remote scalable tracking server. That way, users
can easily share the results they have tracked with others. An MLflow tracking server
comes with its own sophisticated and feature-rich web-based GUI. This GUI allows
users to inspect, compare, and manage their recorded findings easily. MLflow tracking
handles lightweight parameters, except for input data. It does not track or record
trained models (weights and biases).

Models
MLflow can record and store ML models in uniform and popular formats. Popular
formats are called "flavors" in MLflow and include pickle formats, python functions,
and ML framework-specific solutions. Models can be stored together with exemplary
input data, ML code, metadata, and a list of necessary dependencies for replication.
MLflow differentiates between storing lightweight parameters, meta-information, and
models. Model signatures can also be specified. These signatures are similar to function
signatures in programming. They include the expected input and output types. Other
tools can utilize such signatures to automatically create the correct Python functions
or REST APIs for a model. Due to this standardized representation, many other tools
can work with these models. This uniformity also makes deploying these models more
efficient. MLflow allows users to deploy models to different environments via various
ways, such as local inference servers (REST API), docker containers, and Kubernetes.

Registry
MLflow’s model registry is comparable to an interface or API that works with a
subset of logged models. It is not a dedicated standalone registry, unlike container
image registries. It does not host complete models. This registry enables labeling and
versioning for logged models. Labeling includes specific information that tells users
if the model is currently in development, review, or production-ready. Not all logged
models are part of the model registry. Users can manually or automatically decide
if and what models they want to add to the model registry. This process is called
registering a model. Every registered model is also a logged model. The benefit of this
separation is that models in the registry are carefully selected and managed.

Projects

28

2. Background

Projects allow replicating the exact ML environment for development. Unlike the
tracked pieces of code from the tracking or model components, MLflow projects contain
the entire codebase that was used to train a specific model. Projects aim to uniformly
package ML code for reproducibility and distribution. The heart of an MLflow project
is its MLproject file. It contains all the necessary information regarding dependencies
and environments to guarantee identical conditions. This file can have multiple entry
points, similar to a Docker file. These entry points can be used for different use cases,
including training or evaluation. Other users can quickly start using such projects due
to MLflow’s project CLI commands. A project’s entry point can be called by the project
CLI. MLflow can also invoke a project as part of a dynamically built docker container.
The image gets built automatically via Docker after running the CLI command. The
CLI allows running projects that are local, remote, or stored in a git repository. MLflow
projects have a lot of potential, but they are not yet capable of fully handling robust
automatic containerization and dependency management. They work fine if run directly
on a host machine that supports Docker. Most orchestrators expect images and deploy
containers. It is not yet possible to orchestrate and deploy MLflow projects directly
instead of using manually configured images. Issues arise when wrapping an MLflow
project into a generic image and then internally calling its CLI to build and run the
corresponding image. MLflow uses Docker directly, which is, in most cases, not possible
inside a containerized environment. This limitation is represented in the official MLflow
examples [78]. In this example, all necessary dependencies are explicitly mentioned
and installed in a custom Dockerfile that needs to be built manually to run the ML
experiments. This emphasizes that MLflow projects cannot be automatically turned
into standalone container images yet.

MLflow stores its artifacts in two different data stores. The default does not use any
dedicated local or remote storage components. Instead, everything gets stored locally.
All lightweight metadata, including metrics, tags, and results, are stored in the backend
store. A backend store can be a database, a file server, or a cloud service. Heavy
artifacts like trained models are kept in the artifact store. Registered models utilize
both stores. Their metadata, such as versions and hyperparameters, are kept in the
backend store. Their corresponding trained model is located in the artifact store.

MLflow supports many optional components that can be arranged in various architec-
tures. In the simplest case, everything is stored and located on the local machine, with
no need for a dedicated tracking server or data stores. More sophisticated structures
support shared and distributed workflows and workloads. The mentioned components
can be gradually added or removed. Therefore, MLflow allows flexible and custom
solutions. For example, the artifact store, backend store, and tracking server can all be
deployed on different machines and environments. This separation of concerns enables

29

2. Background

improved scalability and reduces singular points of failure. The tracking server can
function as a proxy and bridge between machines that perform the ML experiments
and the data stores. This approach enables centralized security and access control,
which simplifies client interactions.

MLflow lacks native support for FL. It does not explicitly mention or support FL.
However, FL can profit from MLflow due to its modular design, that can be customized
and applied to FL specific components and environments. For that reason, FLOps is
using MLflow.

2.3. Orchestration

Modern orchestration and containerization techniques have been rapidly evolving for
the last decade. To avoid issues due to different environments and dependencies,
containers arose as a lightweight alternative to heavier virtual machines. The most
popular containerization software, Docker, was released in 2013. Multiple individual
containers quickly got grouped together to separate concerns and allow decoupled
workloads. These container groups became especially useful and popular with the
rise of micro-service architectures. Handling various containers at the same time is
challenging. Techniques such as Docker Compose made this easier. However, dynami-
cally scaling and handling failing containers was still difficult. These dynamic swarms
of containers needed additional management tooling for orchestration. Kubernetes,
the most prominent orchestrator to date, was released in 2014. Since then many new
endevours formed to unify and streamline future developents in the field. Examples
include the Open Container Initiative [91] or the Moby Project [85]. Many different
alternatives and competitors to Docker and Kubernetes have developed over the years.

2.3.1. ML Containerization & Orchestration

Performing ML in containers is an effective approach. FLOps aims to automate and
orchestrate FL workloads on distributed heterogeneous machines. It is crucial to
confirm that doing FL/ML via orchestrated containers is viable. In addition, FL
processes should not suffer from bottlenecks and problems due to running inside
containers. In 2017, Xu et al. [118] evaluated deep learning (DL) tool performance in
docker containers. They analyzed CPU, GPU, and I/O utilizations. They found that
DL works equally well in containers as running it directly on the host machines.

Containerized ML is widely used today. In 2022, Openja et al. [93] analyzed more
than 400 different open-source ML-based projects that use docker containers. These
projects used containers for various tasks. A popular application of containerization

30

2. Background

technologies in ML is to streamline and improve deployment efforts. This work
demonstrates that containers are used in all ML-related tasks nowadays.

Orchestration efforts are optional for classic ML but essential for FL. As discussed in
2.1, classic centralized ML can be trained on a single powerful machine. FL, especially
Cross-Device edge FL, can involve massive dynamic numbers of devices. Managing all
these components is challenging. Training an ML model requires more than just the ML
code and model. The device performing the training needs to support the necessary
environment and dependency requirements. The setup and configuration of devices is
a limiting and error-prone task. To avoid potential issues and to allow as many devices
to participate as possible, FL should use containers.

2.3.2. Oakestra

FLOps primarily focuses on enabling practical FL on real machines. The main target
group for cross-device FL is heterogeneous edge devices. Kubernetes is not designed
for the edge but for homogeneous, resource-rich cloud environments, whereas Oakestra
is designed for the edge and outperforms Kubernetes there [10].

Oakestra is a hierarchical, open-source orchestrator for edge computing. It has a
lightweight and flexible code base. It features many novel techniques, such as semantic
overlay networking for efficient service communication.

Figure 2.10 shows a simplified architecture of Oakestra. This unique federated three-
tiered structure allows for scalable delegate task scheduling and execution. Instead
of a single control plane, as in Kubernetes, Oakestra distributes its control among the
root and cluster orchestrators. Oakestra specializes in handling resource-constrained,
heterogeneous devices that are spread across various geographical areas. Different
infrastructure providers can have their own isolated cluster and cluster orchestrator.
Cluster orchestrators can only access detailed information about workers from their own
cluster. The metrics they share with the root are distilled and no longer contain sensitive
individual metadata. This is an ideal environment for FL because this layout supports
privacy on a structural level. FLOps uses Oakestra to orchestrate its components.

31

2. Background

Figure 2.10.: Simplified Oakestra Architecture

2.4. Related Work

Only two previous works [18, 106] mentioned in subsection 2.1.4 resemble FLOps.
Both also noticed the lack of research regarding dynamically deploying ML and
FL capabilities via containers. They use different technologies and offer different
functionality compared to FLOps. They focus on other aspects and do not incorporate
MLOps tools, automatic image builds, or automatic deployment of trained model
inference servers.

In 2023, Chahoud et al. [18] proposed a three-layered FL architecture running on
Kubernetes. The first layer is the server or service provider that handles managerial
responsibilities. It serves container images to voluntary devices and maintains secure
connections to other layers. The server aggregates the global model using a threshold
to handle stragglers and missing or failed updates. Together with the mini-servers, it
determines which nodes should form a cluster. It handles service deployments and
client selection after receiving requests from mini-servers. Various components are
part of the server. An oracle engine determines the required ML type and builds the
client base model. A Kubeadm environment initializer turns devices into mini-servers
based on availability. An orchestrator manager dynamically administers the second
layer mini-servers which handle clusters and surveil devices. They deploy containers

32

2. Background

and add workers to clusters. Mini-servers distribute management tasks and workloads
among themselves and away from the server while gathering metrics and informing the
server via aggregated updates. Mini-servers and the "root" server resemble Oakestra’s
root and cluster orchestrators.

In 2022, Safri et al. [106] developed a prototype to improve FL on IoT devices.
This work focuses on enterprise IoT and enables distributed ML model deployment,
federated task orchestration, and system state and model performance monitoring.
This three-layered architecture resembles the one from [18] and Oakestra. Their root
server/orchestrator acts as an FL aggregator and dynamically configures and deploys
local orchestrators via an API. Their local orchestrator is different from cluster orches-
trators or mini-servers. IoT devices are usually incapable of handling common ML
training due to their limited resources. Their work acknowledges this and uses the
IoT devices only as data providers but not as learners. Therefore, their work performs
classic FL instead of HFL. Local orchestrators are learners in their architecture. They
need to be in proximity to IoT devices to receive their data. Additionally, they provide
customizable data preprocessing and evaluation code to be injected via the API. Their
work offers additional tooling, such as a custom compressor, which reduces the size
of large files and monitoring. Monitoring agents are deployed on the local and global
orchestrators that measure resources and CO2. A custom GUI presents these metrics.

Open challenges and future work include more efficient and secure selection algo-
rithms. To optimize FL results via data heterogeneity, more sophisticated (metrics-based)
logic is required to select learners for training. Chahoud et al. wanted to investigate
the mini-server selection to minimize potential security hazards.

There are apparent similarities between their works and FLOps/Oakestra. All three
focus on making FL easy to use and do not focus on optimizing models or algorithms.
Containerization technologies enable on-the-fly dynamic deployment and setup of FL
components on unprepared devices. All provide prepared container images via public
registries. Safri et al. also want to provide a one-in-all solution to perform FL on tangible
devices. They want to automate setup, dependency management, configuration, and
metric gathering. Additionally, they want to improve comprehension and observability
by providing a GUI.

Their works differ from FLOps in multiple ways besides FLOps’ more extensive set
of features. They use different orchestrators, FL frameworks (augmented FedML), and
image registries. Oakestra is a dedicated orchestrator, while their work’s components
are auxiliaries with fewer features and less mature architectures. FLOps supports classic
and hierarchical FL. [18] only support HFL, and [106] only support classic FL. They
used a single hardcoded dataset and ML model for evaluation. Their works do not
offer different scenarios or utilize dedicated MLOps features and techniques. FLOps
allows users to build and train various custom ML code. Chahoud et al. focus on 6G

33

2. Background

and the actual real-world movement of people, whereas FLOps is more general and
feature-rich. Safri et al.’s paper is very short and thus lacks details and readability. It
has no open-sourced code to inspect and replicate its implementation. FLOps has this
thesis documenting it in great detail and is fully open source. Their works implement
most components by themselves from the ground up, such as orchestration and FL.
FLOps utilizes and combines existing sophisticated solutions to offer higher-quality
features and performance. For example, [106]’s GUI is a simple Grafana dashboard
with fewer features and is read-only. FLOps utilizes MLflow to provide a sophisticated
graphical suite of MLOps tools and functionalities.

34

3. Requirements Engineering & System
Design

3.1. Requirements Elicitation & Specification

Requirements engineering combines requirements elicitation and analysis. Require-
ments elicitation is an activity used to specify requirements. The problem statement
(1.1), objectives (1.3), and weaknesses found in the FL field (2.1.4) are inputs to elicit
requirements. These requirements are specified, analyzed, and concretized. Require-
ments elicitation and analysis are cyclically connected. After requirements are specified,
they get analyzed, which can start another elicitation process. With each cycle, the
understanding and specification of the requirements improve. This section derives func-
tional and nonfunctional requirements based on the Requirements Analysis Document
Template by Brügge et al. [14].

3.1.1. Functional Requirements

Functional Requirements (FR) describe mandatory functional relationships between
the proposed system and its surroundings. These requirements only focus on concrete
functionalities, user interactions, and environmental conditions. They ignore implemen-
tation details and nonfunctional conditions, such as performance. FRs capture what a
proposed system must achieve instead of how it achieves it. [14]

FR-1 Federated Learning

FR-1.1 Enable individuals to use, develop, and evaluate practical FL: FLOps allows
users with different level of expertise to utilize FL. Target groups include
inexperienced and expert users, developers, and researchers.

FR-1.2 Automate FL management & processes: FLOps automatically handles all
necessary duties to perform FL for the user. These duties include providing,
creating, (un)deploying, and removing FL components, such as learners and
aggregator(s). FLOps starts and stops the training and evaluation processes.

FR-1.3 Support various flexible FL scenarios: Besides classic FL, FLOps supports
(clustered) HFL. FLOps is ML library/framework agnostic, allowing different

35

3. Requirements Engineering & System Design

ML techniques, such as DNNs and classic ML.

FR-2 Provide flexible configuration: FLOps supports different FL project configura-
tions. For example, users can specify and request different resource requirements,
such as the number of training rounds, FL algorithms, and the minimum number
of learners.

FR-3 Handle FL augmentation and containerization: FLOps automatically converts
user ML code into FL-capable container images that include all necessary de-
pendencies to do FL. It stores these images internally and deploys them for
training.

FR-4 Provide a GUI for monitoring, evaluation, and result management: FLOps
provides a sophisticated GUI for monitoring, comparing, storing, exporting,
sharing, and organizing training runs, metrics, and trained models. Users can
access this GUI at any time. They can follow live training progress or inspect
their previous results.

FR-5 Provide trained model access to users: FLOps enables users to access their
trained models. FLOps can build container images that serve the trained models.
Users can pull these images to use their trained models as they wish. Users can
see and access their models via the GUI.

FR-6 Enable inference serving: FLOps can automatically build and deploy inference
servers based on trained models. Users can send inference requests to their
trained models directly after training on the same platform.

3.1.2. Nonfunctional Requirements

Nonfunctional Requirements (NFR) define how the proposed system should work.
NFRs include constraints that the system must fulfill. The following NFRs are based
on the established FURPS+ categories, as seen in [14]. These NFRs mainly represent
groups of requirements instead of intricate individual requirements to reduce bloat.

NFR-1 Usability: FLOps should automate and streamline FL, MLOps, and orchestration
processes. Thus, it should allow users without specific experience in these
domains to perform FL and benefit from these technologies. FLOps should
accelerate FL development and evaluation. Therefore, it should save time for FL
experts by automating away redundant manual tasks.

NFR-1.1 Effortless FL Participation: Users should be able to participate and initiate
FL projects by simply providing a link to their (non-FL) ML code.

36

3. Requirements Engineering & System Design

NFR-1.2 Prepared Reusable Components: FLOps should provide ready-made, ex-
tendable, multi-platform components to automate development and evalua-
tion workflows.

NFR-1.3 GUI: FLOps’ GUI should follow established conventions for usability. Up-
holding these conventions is essential to ensure intuitive information visual-
ization and easy navigation.

NFR-1.4 CLI: Its CLI should provide a clear and complete set of commands to interact
with the system. Each key user functionality should have a corresponding
command, such as creation, inspection, and termination. The CLI’s monitor-
ing capabilities should be comprehensive and close to real-time (less than
5 seconds delay) to provide users with timely information (Performance
Requirement). The CLI should provide users with thorough, supportive
instructions and help messages to improve onboarding and general use. It
should be possible to start and stop FLOps FL projects with a single request
each.

NFR-2 Supportability:

NFR-2.1 Maintainability: FLOps should make extending and modifying it straight-
forward and comfortable to ensure long-time developers and occasional
contributors can work on it efficiently. The target group should include FL
researchers who might have little experience in writing high-quality code.

NFR-2.1.1 Codebase: Its codebase should follow industry best practices for read-
ability and maintainability. Its system design should be modular and
extensible, allowing for easy updates and additions of new features
or integrations with other technologies. Therefore, FLOps should up-
hold high-quality code standards and use state-of-the-art libraries and
frameworks.

NFR-2.1.2 Quality Enforcement: FLOps should enforce formatters, linters, and
automatic CI pipelines to verify high code quality.

NFR-2.2 Portability:

NFR-2.2.1 ARM & AMD Support: FLOps should support AMD devices, which are
primarily used for development, and ARM devices, which are mainly
used in edge devices.

NFR-2.2.2 Generic Interfaces: To reduce vendor-lock-in and hardcode, FLOps
should prioritize generic interfaces. Therefore, It should be able to
integrate with existing or future tools and frameworks.

37

3. Requirements Engineering & System Design

NFR-3 Performance:

NFR-3.1 Scalability: FLOps should handle dynamic workload increases without
significant degradation in performance. It should be able to scale across
different hardware and network conditions. FLOps should be able to support
a large number of client devices and training rounds. It should be able to
manage and orchestrate multiple FL tasks simultaneously.

NFR-3.2 Availability: FLOps should provide reliable FL training by implementing
robust error handling and recovery mechanisms, ensuring that the system
can recover gracefully from failures during training or deployment. FLOps
should ensure high availability and fault tolerance during FL training and
orchestration.

NFR-3.2.1 Error Handling: FLOps should handle errors gracefully and provide
meaningful error messages. Gracefully means that errors are caught and
resolved if possible. Fatal error should allow the rest of the system to
continue working. Exceptions and error messages should be concise.
They should inform users about the concrete error and its context in a
couple of sentences instead of a wall of text or call stacks.

NFR-3.3 Optimized Image Building: The system should create containerized images
quickly and efficiently. These image-building processes should not burden
the control plane or user resources to avoid bottlenecks. They should adhere
to best practices for speed and lightness. These images should not contain
unnecessary content, such as dependencies, code, or layers, which would
bloat their size.

NFR-4 Security: The system should ensure secure communication between client devices
and the central server. It should protect sensitive data during FL training and
deployment. Otherwise, the entire premise of FL gets broken, and legal issues
arise.

NFR-5 Constraints:

NFR-5.1 Packaging: FLOps’ components should be able to run on different environ-
ments. The automatically built container images should be compatible with
dominant technologies like Docker or containerd to maximize coverage and
compliance. The built container images should support multiple platforms,
at least AMD and ARM.

NFR-5.2 Implementation: FLOps should not implement all its features and compo-
nents from the ground up. This is necessary to avoid the risk of subpar
quality and optimize development and maintenance time and resources. It

38

3. Requirements Engineering & System Design

should use and benefit from existing state-of-the-art solutions and technolo-
gies.

3.2. System Models

After eliciting and specifying requirements, this section presents abstractions such
as analysis models representing how the system satisfies these requirements. The
models do not depict the exact implementation. Instead, they show a simplified
conceptual representation of FLOps’ architecture and workflows. This includes involved
components and their relationships. The goal is to improve comprehension of the
system instead of showing overwhelmingly verbose intricate details that might change
in future updates.

System models aim to build what is called an analysis model. The analysis model
has three distinct parts. Scenarios and use cases form the functional model. Class and
object models make the analysis object model. State machines and sequence diagrams
create the dynamic model of the system. [14]

3.2.1. Use Case Model

Figure 3.1 shows the Use Case diagram for FLOps. The white use cases represent
the functionalities the external users can directly trigger. The grey use cases are
internal system actions that are directly visible to users or lead to visible results. They
get triggered as a result of user actions. For example, the user knows that FLOps is
performing FL training by inspecting different provided outlets, such as the GUI. FLOps
tracks the training progress and results. These logged artifacts become incrementally
visible to the user who inspects the GUI. Thus, the user knows that FLOps is currently
performing FL training and logging. Use cases inside the GUI boundary are directly
accessible via the GUI. The same applies to the API boundary. Other tasks are executed
and accessible via FLOps combined with its orchestrator. Use cases that involve
developing or modifying FLOps itself are not explicitly portrayed. The depicted User
actor represents end users of varying FL expertise (FR-1.1). This actor includes FL
developers and researchers. The core use case is starting an FL project which also
includes configuring that project (FR-2). This activity starts a chain of events, such as
building an FL-enabled container image (FR-3), creating and deploying the learners and
aggregator(s), and performing the FL training (FR-1). During training, FLOps tracks
the model and system metrics, which the user can monitor and evaluate in the GUI
(FR-4). After training, the model can be containerized and deployed as an inference
server (FR-5, FR-6). The user can access this trained model (FR-5) and request services
from its inference server (FR-6).

39

3. Requirements Engineering & System Design

Figure 3.1.: FLOps UML Use Case Diagram

40

3. Requirements Engineering & System Design

3.2.2. FLOps Overview

Figure 3.2.: FLOps Structural Overview

Figure 3.2 provides a simplified overview of FLOps’ structure. Note that the manage-
ment components and deployed services on orchestrated workers are interconnected.
These connections are not explicitly visualized to avoid clutter. The services shown in
the rounded rectangle depict an arbitrary number of worker nodes. Multiple services
can run on the same worker, or every worker might only have a single service deployed.
The FLOps system works via the interactions and relationships between the FLOps
management, the orchestrator, and the worker nodes. The FLOps management is a
composition of components (containers). Its goals and responsibilities are to manage
FLOps processes and store FLOps artifacts. The management components coordinate
automatic processes and events. They store container images and training results
such as metrics and trained models. These managerial components do not perform
the FL training. They delegate and distribute computation to orchestrated worker
nodes. The FLOps manager uses the orchestrator to create, (un)deploy, and remove
different components. The manager spreads computationally heavy image builds and

41

3. Requirements Engineering & System Design

FL training across the worker nodes. The GUI and inference servers also run on worker
nodes.

Figure 3.3 shows a simplified overview of FLOps’ image builder processes. The con-
tainer images get built on worker nodes. Worker B stands for an arbitrary worker node
capable of building images, i.e., the worker has enough resources and privileges. The
build process occurs inside a container that requires special considerations. Remember
that the user only provides ML code, not FL code. FLOps’ image builder clones the user
ML code, augments it to support FL, handles specific dependency issues, and builds
multi-platform container images. This builder can build FL actors, i.e., the aggregator
and learner images, as well as an inference server for the trained model. These images
get pushed to the FLOps image registry. When the learners, aggregators, or inference
servers are needed, their corresponding images are pulled from that registry onto an
orchestrated worker node and executed. Image builder services only exist when they
are needed. The FLOps manager removes them after building images for a concrete
FLOps project.

Figure 3.3.: Simplified FLOps Image Builder Processes

42

3. Requirements Engineering & System Design

Figure 3.4.: Simplified FLOps Local Data Management

Figure 3.4 shows a simplified overview of how FLOps manages local training data.
FLOps targets practical, real FL applications. Thus, it does not expect users to provide
data as part of their ML repositories. Instead, users need to coordinate with real data
providers on the orchestrated worker nodes. The figure shows a deployed learner
container on a worker node. The learner container itself has no data. FLOps cooperates
with the orchestrator and deploys an ML data server before training on user-specified
worker nodes. This data server is reachable by nearby devices via an API. Devices can
send their data to this data server. The data server will store this data on the local
machine. During FL training, the augmented learner container will fetch the local data
via the data server. The augmented learner FL code forwards this local data to the user
ML code for preprocessing and training. FLOps aims to support resource-restricted
edge and IoT devices. They are usually not capable of handling demanding ML training.
Letting them send their data to nearby edge/fog gateway devices capable of such tasks
is possible. This idea is similar to the approach in [106].

3.2.3. Analysis Object Models

This subsection depicts FLOps’ main components and their relationships in more detail.
The following models are derived from and created to resolve the elicited requirements.
They focus on the user perspective. It is common to use generalized and abstract UML
class diagrams to depict the system’s main components, properties, and functions [14].

Figure 3.5 shows the core FLOps UML analysis object model. The main workflow is
represented and grouped via a FLOps project. Such a project links all necessary FL and
ML/DevOps components to power one FL user request. A project contains information
about the user who requested it, the target platforms that should be supported (e.g.,
ARM/AMD), and what steps FLOps should perform after training. If no steps are

43

3. Requirements Engineering & System Design

Figure 3.5.: FLOps Core UML Analysis Object Model

specified, the FLOps project counts as completed after training. Available post-training
steps include building a containerized image for the trained model and deploying an
inference server to serve the trained model. The ML model flavor indicator tells FLOps
what ML framework to expect and work with. Examples include Keras, Sklearn, or
Pytorch. Each project is associated with exactly one ML code repository. This repository
can be owned by the user or be a public one. Thus, multiple users can reuse the same
repository, and each user can create multiple FLOps projects per repository. These
properties are based on the SLA from the user request.

FLOps uses the concepts of applications and services to manage dependent compo-
nents and concepts. Each app can have multiple services. Services are bound to parent
apps and cannot exist on their own. The orchestrator creates and realizes apps and
services as usable components. Applications themselves are collectors of information
and metadata. They do not run or contain any executable code, images, or similar.
Services are the computational components that can be deployed and un-deployed.
This split is based on Oakestra’s applications and services. The two main FLOps app

44

3. Requirements Engineering & System Design

Figure 3.6.: FLOps ML Code Repository UML Analysis Object Model

types are project-based apps and customer-facing ones.
The observatory app is a customer-facing app. There is exactly one observatory

app for each user, whereas users can have multiple projects. The observatory hosts
the tracking server and project observer services. The tracking server service tracks
the projects and individual FL experiments. It hosts the GUI. (It utilizes the MLFlow
tracking server mentioned in 2.2.3.) When users request/start a new project, the
observatory is created with all its components if it does not already exist. Users can
request access to the GUI/tracking server independently from a project. A project
observer service gathers and displays information or updates regarding the project
status for the user. The project observer informs the user of any issues during the
project’s live time, such as dependency issues during the containerized image builds.
There is one project observer per project to improve readability and comprehension.

Figure 3.6 shows additional details of the ML code repositories from the core model.
Users can provide a link to ML code repositories for FLOps to augment and train. The
repository must fulfill the following structural requirements for this to be possible
and straightforward. The repository needs a dedicated file that lists all necessary
dependencies to train its model. Theoretically, it should be possible to extract these
requirements dynamically by inspecting the code. However, this is a complex and
error-prone endeavor. To avoid these issues, users should provide the dependencies
they used for training.

Recommendation: We recommend running the training locally on some exemplary or
mock data and recording the dependencies via MLflow’s auto-logging functionality.
This is an easy and viable approach to getting a suitable dependency file. Note that

45

3. Requirements Engineering & System Design

Figure 3.7.: FLOps Project UML Analysis Object Model

this does not guarantee compatibility because MLflow’s dependency logging can be
erroneous. Before providing the dependency file to FLOps, we recommend ensuring
the dependencies are sufficient and compatible.

For FLOps to augment and utilize the ML code properly, FLOps requires the repository
to implement a model manager and data manager. The model manager is the interface
that accesses the model and its data and parameters. It further trains and evaluates the
model. It calls its linked data manager to prepare the data and retrieve it once it is ready.
The data itself should not be part of the repository. The prepare data method will call
a FLOps method that will be added during FL augmentation. The user has to define
in prepareData how to pre-process the retrieved data for individual training. Both
managers have an abstract parent class that users can import during implementation
for guidelines. These templates are available as part of the FLOps Utils pip package
[37].

Figure 3.7 shows further details about the contents of an FLOps project. Users can
customize their projects via the SLA (4.1.2) that is part of their API requests (4.1.1). One
possible customization is to specify resource constraints such as memory or storage.
Users can customize the FL training by changing the project’s training configuration.
The same ML repository can be trained differently depending on these configurations.
This configuration includes a mode that tells FLOps to perform different types of
FL if applicable. Currently, FLOps supports classic and (clustered) HFL. The project
will only use training data that matches the provided data tags. The training rounds
configure the number of training and evaluation rounds that each learner performs.
Only HFL uses training cycles. The training rounds mean the number of training
rounds performed on each learner per cycle. A training cycle is the number of training
rounds between the root and cluster aggregators, which resemble aggregators and
learners in classic FL. For example, if the user requests three cycles and five rounds,
the learners will train five rounds per cycle for three cycles. Each learner will train for
15 rounds during the entire project runtime. The depicted attributes are only a subset

46

3. Requirements Engineering & System Design

Figure 3.8.: FLOps Project Services UML Analysis Object Model

of currently available and possible configurations.
The core figure 3.5 only alluded that a project consists of several services and depicted

only the project observer. Figure 3.8 expands upon this and shows important project
services and their relationships. There are three main project services. The FL image
builder is a service that builds containerized images. It can build the FL augmented
images for the learner, aggregator, and inference server of the trained model. Different
build plans enable this distinction. The builder clones the ML repository, handles and
checks the provided dependencies, builds the images, and pushes them to an image
registry. During and after the builder operation, the service notifies other components,
including the project observer, about its progress, current state, and potential errors.

The FL aggregator manages the FL training loop and holds the global model and
strategy for training. It starts its internal FL server so learners can register for training.

47

3. Requirements Engineering & System Design

Figure 3.9.: FLOps Aggregator Types UML Analysis Object Model

The aggregator starts and terminates learning rounds and cycles. It logs results like
metrics or the final trained model via the tracking server. Similarly to the builder, it
notifies other components during runtime about its progress and errors. The aggregator
and learners utilize the code provided in the user’s ML code repositories. They have
direct access to the model and data managers. The image builder injects both of them.

The FL learners are project services that perform the FL training on local data. They
fetch locally stored data, connect to the aggregator, and perform FL activities such as
training. The learner uses the code found in the model and data managers and wraps
itself around their implemented interface methods. As a result, users do not need to
implement the FL (boilerplate) code themselves. Therefore, a learner’s getParameters
method uses the getParameters method described in the user’s ML repository with
additional logic around it. Learners also notify other components about their progress
or failures.

Figure 3.9 shows the simplified relation between different FLOps aggregator types.
Because FLOps supports classic and hierarchical FL, it must support different aggregator
types. For conventional FL, FLOps uses the classic aggregators. For HFL, FLOps creates
a single root aggregator and one cluster aggregator per cluster, which are available in
the orchestrator. The root orchestrator sees cluster orchestrators as plain learners. A
cluster aggregator is a hybrid between an aggregator and a learner.

3.2.4. Dynamic Models

Dynamic models illustrate the dynamic behavior of the system and the interactions
between its components. Different dynamic model types include UML activity, state
chart, communication, and sequence diagrams. Because of the large number of com-
ponents in FLOps, this section focuses on sequence diagrams to cover a large set of
significant interactions.

This subsection depicts the necessary interactions for a typical FLOps project. We
use many abstractions and depict the absolute base case for an FLOps project to

48

3. Requirements Engineering & System Design

Figure 3.10.: FLOps Preparation - UML Sequence Diagram

reduce complexities and improve readability. The base case aims to showcase a project
workflow from the ground up. That means that no code, data, or images are present
yet. This base case terminates after successful training. It has no post-training steps,
such as building and deploying an inference server. FLOps management consists of
multiple components. For simplicity’s sake, these components are grouped into one.
The same applies to multiple worker nodes and edge devices. To improve readability
and comprehension we split up the project into stages.

0. Preparation

Figure 3.10 is a UML sequence diagram depicting the initial steps before a FLOps
project can start. Two different sets of sequences can occur independently or in parallel
with each other. Before FLOps can run properly, FL worker nodes need to register with
the orchestrator and stay available. Only a subset of worker nodes are intended to be
capable of performing ML training. Worker nodes that should participate as learners
must inform the orchestrator accordingly and start the provided ML data server locally.
This server accumulates training data locally for later training. This process has to
occur before training begins. Otherwise, not enough or no data will be available for
training. Edge devices or other nearby data sources should send their data to these
designated learner nodes. The infrastructure provider has to ensure that these worker

49

3. Requirements Engineering & System Design

nodes are appropriately protected and trustworthy. Once these steps are completed,
FLOps should have access to available data-rich orchestrated worker nodes.

The second set of tasks that should occur before using FLOps is for users to prepare
their ML code. They should implement their ML code and structure it as required for
FLOps. This code must be available via an accessible git-based repository. If the user
is satisfied with his codebase, he can prepare his SLA. (We discuss the SLA in detail
in the implementation chapter.) After both sequences have been completed, the user
can send his SLA to the FLOps management API and request the start of a new FLOps
project.

1. Project Start

Figure 3.11 shows the main sequence of steps from starting a new FLOps project to
deploying an image builder service. The light blue activity bars mean that FLOps creates
a new object inside the manager context, independent of the orchestrator and deployed
components. Management objects hold stateful information and are not run or used for
computational workloads. This split is necessary for the FLOps management to keep
track of ongoing processes, retain memory, and handle unique custom requirements
independent of and unavailable in the orchestrator. Each colored or white rectangle on a
lifeline inside the central UML sequence diagram corresponds to a specific functionality.
When this functionality terminates, the bar stops as well. Usually, sequence diagrams
show concrete instances of classes as actors. We use abstract actors to optimize the
page space and allow further abstractions and simplifications. For example, the lifeline
of an observatory app inside the orchestrator could be a separate actor. However, this
would lead to redundancy and verbosity between the orchestrator and observatory
actors. Instead, these modified graphs show the lifeline of FLOps components on the
right side. The color and dotted lines help to link those concepts together. Light rose
orchestrator actions symbolize a service being appended to an existing application.

The FLOps Management registered the new project request and extracted the SLA.
Firstly, the FLOps management creates a new observatory for the user inside the
FLOps management context. The management requests to create a corresponding
app inside the orchestrator. The same applies to the actual FLOps project. When
these two parent applications exist, the management will create the first service. The
management requests the creation of the project observer as a service inside the
observatory application. The management then requests to deploy an instance of this
service on a worker node to the orchestrator. Now, the user can access this project
observer service at any time to observe the progress of his project.

The FLOps management checks if its image registry already contains images that
match the requested ML repository. For this, the management contacts the ML repos-

50

3. Requirements Engineering & System Design

Figure 3.11.: FLOps Project Start - UML Sequence Diagram

itory to check its latest state. In this example, the registry is empty. Therefore, new
images are required.

2. FL-Actors Image-Builder Deployment

The management creates a new image builder service and deploys it similarly to the
project observer.

3. FL-Actors Image Build

Figure 3.12 shows the interactions necessary to augment user ML code into FL-enabled
containerized images. Once the builder service is deployed, it executes the build plan

51

3. Requirements Engineering & System Design

Figure 3.12.: FLOps Image Builder Processes - UML Sequence Diagram

for actor images. FL actors are the aggregator(s) and learners. The builder service
notifies the management about a successful start of this process. It proceeds by cloning
the ML repository and checks if it complies with FLOps requirements. The builder
also checks if the dependencies are sound. When these build prerequisites are met, the
builder continues to build the aggregator and learner images. (Concrete details about
this build process are available in the implementation chapter.)

Afterward, the builder notifies the project observer to inform the user about the
successful build. Note that the sequence model action lengths do not correspond to
their actual duration. Short rectangles visualize the build and push actions in the
diagram, even though these two actions are by far the most time-consuming.

As the last build process step, the builder pushes these built images to the image
registry hosted by the FLOps management. After the successful push, the builder

52

3. Requirements Engineering & System Design

notifies the project observer and FLOps management of its successful completion. The
FLOps management catches this message and removes the builder from its own context
and undeploys it from the orchestrator and worker. Now that the FL actor images are
ready, the training can begin.

Figure 3.13 shows the necessary interactions that realize FL training under FLOps.
Note that the right side omits the previously depicted detailed FLOps component
lifelines. We collapse these details for this diagram because the depicted components
and their lifetimes show similar behavior as the previous diagrams. Arrows that point
to the right mean that specific FLOps components are targeted. They are not explicitly
depicted to optimize readability and reduce verbosity.

4. FL-Actors Deployment (Aggregator Deployment Stage)

After building the required images, the FLOps management will start handling the
FL training processes. Firstly, it notifies the project observer that FL training will start
shortly. Secondly, it creates and deploys the tracking server that provides the GUI.
Users can access this GUI by following the link shown in the project observer or directly
accessing the deployed tracking service, similarly to the project observer. Note that
there are several differences between the project observer and the GUI. The project
observer is a minimalistic way to inform the user about the current state and potential
errors during the lifetime of an FLOps project. The GUI is a standalone application that
focuses on tracking the training results.

The FLOps management now creates and deploys the FL aggregator and learners.
It uses the previously built images for this. Once the aggregator image is pulled and
executed, it starts the FL server processes and notifies its watchers about its success. The
aggregator waits for learners to connect before starting the training. In the meantime,
the FL learner images were pulled and started. Each learner starts its FL client activities,
such as registering with its specified aggregator.

5. FL Training

Now that all FL actors are ready, the aggregator starts the first training round and
triggers the learners. The learners train their models with the local data from their
worker node. When completed, the learners will push their model parameters to the
aggregator. The aggregator fuses them into a new global model and returns the new
global parameters to the learners. The learners apply those to their local model to be
ready to begin the next FL training round. After each FL training round, the aggregator
logs metrics, such as accuracy and loss, via the tracking server service. The FLOps
management stores the logged results.

53

3. Requirements Engineering & System Design

Figure 3.13.: FLOps FL Training Processes - UML Sequence Diagram

54

3. Requirements Engineering & System Design

After the last FL training round, the aggregator notifies its observers and logs the
final trained model via the tracking service. The aggregator only tracks the model a
single time to avoid wasting bandwidth or storage. Afterward, the aggregator and
learner activities terminate. Similarly to the builder’s un-deployment process, the
FLOps management registers the successful message and removes the FL actors. With
this, the core FLOps project is concluded.

Further Stages

Similarly, FLOps realizes more complex configurations, modes, or post-training steps.
For the post-training steps, the builder gets deployed again. This time, it runs the
trained model build plan and pulls the model from the FLOps management. It pushes
the built image back to the management image registry. The inference service gets
deployed similarly to the FL actors using the built trained model image.

3.2.5. Subsystem Decomposition

This subsection is a concretion of the system overview seen in Figure 3.2. Decomposing
an extensive system into its sub-components provides new insights and improves
comprehension of the system. The general approach for this endeavor is to use a UML
component diagram. It analyses if the system follows the open-closed principle of good
software design. This principle states that a system should "stay open for extension, but
closed for modification" [14]. To achieve this the system should strive for minimizing
coupling and maximizing cohesion. Cohesion expresses how tightly components of the
same subsystem work together. Coupling describes how components from different
subsystems directly depend on each other without utilizing unifying interfaces, access
points, or facades.

Figure 3.14 shows a UML component diagram of the major FLOps components and
subsystems. The largest subsystems are the orchestrated layer and the FLOps manage-
ment. The FLOps management consists of six components. The backend and artifact
stores keep training metrics and models, respectively. They are MLflow components.
The FLOps database stores all persistent information about FLOps’ projects, compo-
nents, apps, and services. Note that this database is cleared when the management
suite is restarted unlike the MLOps storages that are persistent across management
restarts. This simplifies state management and can be modified in the future. The
FLOps manager coordinates all FLOps processes. These processes include serving
a RESTful API for user requests, coordinating deployments with the orchestrator,
checking requirements via its image registry, and accessing the user’s repository. The
manager is the most important and largest part of the FLOps management suite. The

55

3. Requirements Engineering & System Design

Figure 3.14.: FLOps Subsystem Decomposition

56

3. Requirements Engineering & System Design

MQTT broker enables lightweight communication between the manager and deployed
FLOps services. The FLOps image registry provides complete control and direct access
to images built by the image builder services.

The orchestrated layer contains the control plane and the worker nodes. The control
plane is independent of FLOps. Only the FLOps manager interacts with it via its
REST API. The control plane resolves the FLOps management requests and creates,
(un)deploys, or deletes components necessary for FLOps to run. The relevant apps
and services for FLOps are deployed on single or multiple worker nodes. The two
key FLOps apps are the project and observatory. All project services can share their
status with the manager or project observer over MQTT or socket messages. The three
services are dependent on the FLOps image registry. The image builder needs to push
images to it, whereas the FL actors are pulled from it. By default, the learners and
aggregator(s) communicate via gRPC (Flower). The observatory services are the project
observer(s) and tracking server. The tracking server hosts the HTTP-based GUI and is
accessible through a REST API. The aggregator sends its logged metrics and model over
the tracking server to the management stores. The user can interact with the system
via the GUI or by accessing the project observer’s event (logs) over the control plane
API or FLOps CLI.

The management image registry, project image builder, and observatory services are
pulled from FLOps’ public git image registry [36].

57

4. Implementation Details

After discussing requirements and simplified system models, this chapter discloses
significant details of the implementation that powers FLOps. We implemented FLOps
mainly in Python. Our goal is to use state-of-the-art tools for FLOps. We analyzed and
compared different open-source libraries and tools.

Table 4.1 shows a heavily abbreviated subset of our internal comparison. We refrain
from exploring and discussing our findings to avoid bloating the thesis. Especially
because this landscape is constantly changing, and better options might exist since
our analysis. We carefully considered every dependency that FLOps relies upon. The
dependency listings are available in the codebase [36].

Repository Usage - Focus Version Issues Stars Subjective Verdict
bprinty/

Flask-Authorize
Authorization & Access 0.2.7 9 64

Too Small - “not ma-
ture”

python-restx/
flask-restx

API Development 1.3.0 252 2k Too many Open Issues

Flask-
Middleware/

flask-security/
Security for Flask Apps 5.3.3 18 594 SOTA for Security

vimalloc/ flask-
jwt-extended

JWT Support & JSON Web To-
kens

4.6.0 9 1.5k When JWT is required

flask-restful/
flask-restful

REST APIs 0.2.12 98 6.7k Outdated - Do not use

miguelgrinberg/
Flask-HTTPAuth

Digest & Token HTTP Au-
thentication for Flask Routes

4.8.0 9 1.2k Seems good

dusktreader/
flask-praetorian

Security for Flask APIs (using
JWT)

1.5.0 4 339
Small - Better Alterna-
tives exist

lingthio/
Flask-User

Customizable User Autho-
rization & User Management

1.0.2.2 99 1k
Outdated - No longer
supported

pydantic/
pydantic

Data Validation via Python
Type Hints

2.6.1 326 17.6k
SOTA for Validation &
Serialization

Table 4.1.: Subset of Internal Python Projects/Libraries Analysis (17.02.2024)

58

4. Implementation Details

4.1. User Interactions with the FLOps Manager

This section details how users can interact with the FLOps manager. It shows the
currently available API endpoints and the SLA structure.

4.1.1. API

We implemented the FLOps manager API via the Flask-OpenAPI3 framework [35].
It is a relatively young and small framework that aligns Flask with OpenAPI3. It
uses Pydantic to verify data and automatically generate REST API and OpenAPI
documentation that is compatible with popular frameworks such as Swagger. We use
Waitress [115], a production-quality WSGI server, to host the manager’s API.

Currently Available Endpoints

/api/flops/projects
This POST endpoint triggers a new FLOps project. It expects users to provide a JSON
SLA with the required project configurations and a bearer token authorizing the user on
the orchestrator. If no matching images exist, an image builder is created and deployed.
If an adequate image already exists, the request concludes straight away. The user
receives a confirmation that the new project has successfully started.

/api/flops/tracking
The tracking endpoint allows users to spawn their personal tracking servers at will
independently from an active project. Usually, a tracking server is created during FL
training. This GET endpoint returns the tracking server / GUI URL.

/api/flops/database
This DELETE endpoint only allows admins to reset the FLOps database. Otherwise, the
entire FLOps management suite needs a restart. It returns a confirmation for the user.

/api/flops/mocks
This POST endpoint creates mock data providers and deploys them on fitting learner
machines. We discuss these data providers later on in this thesis. Similar to the project,
this endpoint returns a confirmation to the user.

59

4. Implementation Details

4.1.2. SLAs

The FLOps manager can only instantiate a new project via an SLA. This service layer
agreement currently has the following structure.

1 {
2 % This key enables more verbose logging in the manager and project

observer.
3 "verbose": true, % default=false, optional
4 % This ID should be the same as for the orchestrator.
5 "customerID": "Admin",
6 % FLOps has only been tested for GitHub so far.
7 "ml_repo_url": "https://github.com/Malyuk-A/

flops_ml_repo_mnist_sklearn",
8 % Supported flavors include: sklearn, pytorch, tensorflow, keras.
9 "ml_model_flavor": "sklearn",

10 % This key only works for special repositories intended for
development.

11 % It tells the builder to use prebuilt base images to significantly
speed up image builds and development.

12 "use_devel_base_images": false, % default=false, optional
13 % This key expects a list of target platforms on which the built

images should run.
14 % It supports linux/amd64 and linux/arm64.
15 "supported_platforms": ["linux/amd64"], % default=["linux/amd64"],

optional
16 "training_configuration": {
17 % This key specifies the FL type.
18 % FLOps supports classic and hierarchical modes.
19 "mode": "classic", % default="classic", optional
20 % Requested data tags should match available data on learner nodes.

21 % Multiple different tags can be requested.
22 % The ML data server will use local data fragments that match any

of the provided tags.
23 % If no data tags are provided the learner will notify watchers

that it cannot find any data.
24 "data_tags": ["mnist"],
25 % Training cycles only apply to the hierarchical mode.
26 "training_cycles: 1,% default=1, optional

60

4. Implementation Details

27 % This key tells learners the number of training and evaluation
rounds to perform.

28 "training_rounds": 3,% default=3, optional
29 % Clients mean learners in this context.
30 "min_available_clients": 2,% default=1, optional
31 "min_fit_clients": 2,% default=1, optional
32 "min_evaluate_clients": 2% default=1, optional
33 },
34 % FLOps supports these two post-training steps.
35 "post_training_steps": ["build_image_for_trained_model", "

deploy_trained_model_image"], % default=[], optional
36 % These are optional values that require fine-tuning.
37 % Note that these values are not recommendations but placeholder

values.
38 "resource_constraints": {
39 "memory": 250,% in MB
40 "vcpus": 1,
41 "storage": 25% in MB
42 }
43 }

The following SLA shows a simple classic FL project configuration with both post-
training steps enabled. It requires two learners for training.

1 {
2 "verbose": true,
3 "customerID": "Admin",
4 "ml_repo_url": "https://github.com/Malyuk-A/

flops_ml_repo_mnist_sklearn",
5 "ml_model_flavor": "sklearn",
6 "training_configuration": {
7 "data_tags": ["mnist"],
8 "min_available_clients": 2,
9 "min_fit_clients": 2,

10 "min_evaluate_clients": 2
11 },
12 "post_training_steps": ["build_image_for_trained_model", "

deploy_trained_model_image"],
13 }

61

4. Implementation Details

The next SLA displays a more advanced configuration with HFL, multi-platform
support, and more FL actors.

1 {
2 "customerID": "Admin",
3 "ml_repo_url": "https://github.com/Malyuk-A/flops_ml_repo_cifar10

_pytorch",
4 "ml_model_flavor": "pytorch",
5 "supported_platforms": ["linux/amd64", "linux/arm64"],
6 "training_configuration": {
7 "mode": "hierarchical",
8 "data_tags": ["cifar10"],
9 "training_cycles": 10,

10 "training_rounds": 5,
11 "min_available_clients":3,
12 "min_fit_clients": 3,
13 "min_evaluate_clients": 3
14 },
15 "post_training_steps": ["build_image_for_trained_model", "

deploy_trained_model_image"],
16 }

4.2. Image Building

From our understanding the automatic image build process that turns user ML code into
FL-capable containerized multi-platform images is one of the major novel contributions
of this work. This process is a non-trivial endeavor requiring advanced understanding
and application of various domains. This chapter is dedicated to analyzing these
required synergies. Firstly, it elaborates on the need to build these images and explains
related challenges. Secondly, it discusses different approaches and their limitations
in building images in the given environment. Thirdly, this chapter showcases details
about internal FLOps image builder processes. The last subsection explains how FLOps
handles multi-platform image builds.

4.2.1. Dependency Management

The goal of using containerized images is to avoid the need and struggle to set up and
configure machines individually. This setup and configuration part is especially crucial
for ML workloads. Many different ML frameworks and libraries exist and need to

62

4. Implementation Details

cooperate with other software tools. These tools cover various aspects of ML, ranging
from unsupervised to supervised learning. Subfields include clustering, reducing
feature spaces, classification, regression, and neural networks. Just neural networks as
a field represent a multifaceted domain that requires different tools. Neural networks
span from simple nets with a single hidden layer to deep neural networks, convolutional
networks, transformers, and many more. Besides targeting different ML disciplines,
they can be fine-tuned for specific environments, such as massive supercomputers,
end-user work machines, or IoT and edge devices. Popular tools include TensorFlow,
Keras, PyTorch, and Scikit-learn, which all have different extensions and forked projects.
Even small basic ML projects can already contain several hundred dependencies. All
of these tools have different versions and require careful consideration and version
management to avoid unexpected side effects and errors.

We elaborated in section 2.1.4 that the relevant literature rarely touches upon the
initial device configuration and setup. Most authors assume that these dependencies
are already properly installed and configured on the devices. Many works in FL
discuss and propose better ways of selecting and distributing training loads and
model parameters (2.1.4). They also omit the aspects of dependencies. Before it is
possible to train a model via FL or ML, the device needs to have all the necessary
capabilities correctly configured. Containers resolve most of these issues, especially for
heterogeneous devices and environments. These reasons motivated us to develop and
include automatic image-build processes.

Conventionally, ML workflows are implemented in Python. Therefore, the mentioned
dependencies are handled via Python’s own package repository, PyPI (Python Package
Index). These packages are usually installed and managed via Python’s package
installer pip. These standard tools display weaknesses when resolving dependencies
in extensive projects. It can happen that pip fails to resolve and properly install the
dependencies in a compatible way. Additionally, because pip is implemented in Python,
which is not the fastest programming language, this dependency resolution can take a
long time. Other tools try to resolve these weak points.

A popular alternative to pip is the Conda suite. Conda [23] is an open-source package
and environment manager that is popular with ML and Data engineers. It focuses on
Python but supports other languages as well. Conda provides and enables convenient
virtual Python environments and resolves dependencies more successfully and quickly
than pip. Anaconda [4] is Conda’s Python distribution that includes Conda and comes
with more than 100 commonly used packages. This distribution is heavy-weight and
unfit for lightweight, containerized, or CI workflows. Miniconda [77] is a minimal
Anaconda version that only includes Conda and a small mandatory set of dependencies.
It is ideal for lightweight environments that should only include necessary (custom)
dependencies. Conda is also implemented in Python. Thus, the dependency resolution

63

4. Implementation Details

Image python:3.12.4 python:3.12.4-slim anaconda3:latest miniconda3:latest
Size 1.02 GB 133 MB 4.5 GB 611 MB

Table 4.2.: Conda Python Image Size Comparison (29.08.2024)

process speed remains a bottleneck. Mamba [74] is a reimplementation of Conda in
C++. This allows Mamba to resolve dependencies a significantly faster than Conda.
Similarly to Miniconda, Micromamba [76] is a minimal distribution of Mamba.

Additionally, there is no single unified source for packages or standard for building
such packages. Various package servers, mirrors, channels, and package builders exist.
One example is Conda-Forge. Furthermore, the structure, build, and publish processes
for Python packages have changed vastly over the years. Native Python only recently
switched to a more homogeneous approach via pyproject.toml files [110]. Previously
setup.py and setup.cfg files were used for these purposes. In addition, there are other
tools like Poetry [96] or the very new and lightning-fast uv [114] manager that is
implemented in Rust. In conclusion, Python’s dependency management ecosystem
is vast and complex. The newer a tool, the quicker it tends to be, but it also lacks
sophisticated maintenance and might not support all necessary packages or versions.

FLOps should support as many projects and dependencies as possible. For this
reason, FLOps uses miniconda. It supports different Python versions, easily resolves
and handles dependencies, and is a lightweight solution. Conda now also supports
multiple different dependency resolvers. Since the end of 2023, Conda has been using
the libmamba resolver by default, which uses Mamba [24]. Therefore, FLOps uses a
fast and reliable dependency resolver.

Besides the complexity of Python’s dependency landscape, ML dependencies can
be huge. Table 4.2 shows four pulled images and their sizes. All images use Python
version 3.12.4. The default Python image is one GB in size. Its official slim alternative is
almost ten times smaller. The full anaconda image has 4.5 GB. The miniconda image is
more than seven times smaller than the full anaconda version but more than five times
larger than the slim Python image. Note that these are the pulled docker image sizes,
not the compressed registry ones. (The Conda images are from the official continuumio
project.)

Table 4.3 shows a selection of pulled images of popular ML tools. All images are
the latest official images by the ML tool providers, except scikit-learn. These images
can vary enormously in size. Some of them require several GBs of disk space and
bandwidth to pull. Any FLOps image built on top of these dependencies will be even
larger due to the additional FL and MLOps dependencies.

64

4. Implementation Details

Image smizy/scikit-learn-docker tensorflow/tensorflow pytorch/pytorch
Size 515 MB 1.86 GB 7.6 GB

Table 4.3.: A selection of popular ML library images and their sizes (29.08.2024)

4.2.2. Image Builders

The most popular and widespread containerization tool is Docker. It is also preferred
when building images. Usually, building images via Docker is straightforward. One
creates a Dockerfile and runs Docker commands to build a new image on a host
machine based on this file.

FLOps requires a more complex approach to build images. Its image builder is
a service running on a worker node that Oakestra orchestrates. This service is a
containerd container. It is not possible to simply run docker in such an environment to
build images. The critical issue here is that docker cannot be run trivially in another
container due to restricted privileges and access to host system capabilities [33]. A
popular workaround, especially for CI/CD workloads, is called Docker in Docker
(DinD) [33]. Many CI/CD tools support DinD natively. One example includes GitLab’s
CI/CD. Setting up and using DinD manually on a host machine is non-trivial and
error-prone. Getting docker to work inside managed Oakestra containers is even more
challenging. One significant reason for these issues is that docker requires its daemon
to run for building images. Nested Docker daemons are a complicated matter [33] that
can require significant adjustments to how the orchestrator coordinates containerization
on worker nodes. For example, the orchestrator could require worker nodes to mount
their docker sockets to the container, which would lead to further security risks.

The only functionality that FLOps requires here is building images inside containers,
not executing them from within. There exist various alternatives to Docker that
specialize in building containerized images. Thanks to the coordinated efforts of the
OCI [91] and others, these tools all build compatible images. Alternative tools include
kaniko, Podman [95], and Buildah [16]. FLOps uses Buildah.

Buildah is an open-source daemon-free tool that specializes in building OCI-compliant
images. It can run on host machines or inside containers. It features many equivalent
Docker commands and supports building images step-wise, programmatically, or via
Dockerfiles. Red Hat released Buildah initially in 2017, and its first major version was
released in 2018. Podman and Buildah are complementary tools that have some shared
documentation and aspects. Great resources to find out more about Podman, Buildah,
and their relationship are available here [103, 102, 15].

It was challenging to make container-internal image-building work for FLOps via

65

4. Implementation Details

Oakestra. This image build process is especially complicated because it performs
heavy dependency resolutions and installations. We needed to add a new optional
flag to Oakestra deployments that enabled to mount /dev/fuse. The FUSE userspace
filesystem framework enables non-privileged and secure mounts [71]. In addition,
Buildah has to build its images with the chroot isolation flag enabled. As a result,
FLOps uses a highly fine-tuned and optimized builder environment that enables it to
build images inside containers of orchestrated worker nodes.

Furthermore, we put a lot of thought and time into refining and polishing FLOps’
docker files. They build the foundation for all FLOps components, from project services
and management components to auxiliary containers.

4.2.3. FLOps Image Builder Details

This subsection showcases how the FLOps image builder service concretely builds its
different images. The following expands upon Figure 3.3 from 3.2.2.

Figure 4.1 depicts the details how FLOps Image Builder works. The grey Ms represent
the untrained model (structure). Purple Ms stand for the trained model. Hexagons
symbolize container images. The service tracks the time different steps take and returns
to the FLOps manager a summary of its total runtime and the runtime of individual
steps. The image builder supports two different build plans.

The first step in the FL Actors build plan is to fetch the user’s ML code from
his specified repository. Secondly, the service builds a base image that contains all
dependencies common to the learner and aggregator. Due to the current multi-platform
solution, the service pushes the base image to the image registry hosted in FLOps
management. Building and pushing the base image take up most of the service’s total
runtime. The service continues to build the FL actor images one after another, pushing
them in the end. Thanks to the base image, these steps are relatively quick. Pushing
the base image does not generate meaningful overhead because of image layer caching.
The FL actor images reuse all the base image layers. Thus, pushing them is accelerated,
and the image registry recognizes and reuses its base image copy’s layers.

Flower’s design does not require the aggregator to possess any information about the
model, including its structure or dependencies. The aggregator’s job is to average the
received model parameters. This process is based on simple mathematics and requires
no other model-specific information or dependencies. Therefore, the aggregator image
and node can be relatively lightweight compared to the learners. However, logging the
trained model via MLflow requires access to the complete trained model, especially its
structure. The corresponding dependencies are necessary because a model structure is
defined in a concrete ML framework. Therefore, FLOps explicitly also includes these
dependencies and the model structure in the aggregator. During FL training only the

66

4. Implementation Details

Figure 4.1.: Detailed FLOps Image Builder Processes

67

4. Implementation Details

model parameters are transmitted. The aggregator’s model copy is only needed at
the very end of training. The aggregator populates its untrained model copy via its
final global model parameters. This populated model gets logged. Note that the model
structure is initially defined in the user’s ML repository and can be easily cloned and
injected into images via the builder service.

The trained model build plan can only be run after the FL training is completed
and the trained model is saved in the artifact store, which is hosted in the FLOps
management. MLflow provides commands to turn stored models into containers [80].
The issue with this approach is that MLflow only provides this capability via Docker
for all these commands, including building. This approach works well directly on host
machines but not inside containers (4.2.2). As a workaround, FLOps uses MLflow to
pull the stored trained model into the builder container. Then, the service uses MLflow
again to create a dockerfile based on this model. FLOps’ builder service augments
this dockerfile to support multiple platforms and builds the trained model image via
Buildah. This built image wraps the trained model via an inference server. One optional
FLOps post-training step deploys this inference server directly after the builder service
terminates.

Table 4.4 shows the sizes of different relevant images to provide more context for the
final results and build processes. The Image Builder image is the FLOps builder service.
It is noteworthy that FLOps’ builder service without the MLflow (2.12.1) dependency is
900 MB and the official MLflow image is 819 MB. The increase of more than 2.4 GB only
due to this dependency is worth investigating. The remaining images from the table are
all from Flower [40]. Flower recently introduced a significant change (Flower Next API
[49]) in how they use FL clients and servers. They plan to deprecate the old approach
that FLOps is using. We tried migrating to the new Flower paradigm but encountered
several issues with our current implementation. Explaining Flower Next and FLOps’
challenges with it would bloat this thesis. This aspect is a great topic for future FLOps
improvements. The client and server images from the table are deprecated. Their new
replacements are the SuperNode and SuperLink, which are significantly smaller. We
mention these images to compare them with FLOps’ FL actor images.

Table 4.5 shows a singular example of running a FLOps project using Scikit-learn
and the MNIST dataset. The Standalone refers to the standalone Scikit-learn image

Image Image Builder MLflow Client Server SuperNode SuperLink
Size 3.0 GB 819 MB 1.16 GB 1.13 GB 232 MB 232 MB

Table 4.4.: Important FLOps Image Sizes (30.08.2024)

68

4. Implementation Details

Standalone Base Learner Aggregator Total Process Base Image Build
515 MB 2.79 GB 2.79 GB 3.55 GB 6min 20s 3min 53s

Table 4.5.: Simple Scikit-learn MNIST Build Example

from Table 4.3. The base and learner images are equally large because the learner
image only changes the files it works with but reuses all dependencies from the base
image. Therefore, the aggregator has a superset of the learner dependencies. The total
execution time for the builder service took 6 minutes and 20 seconds. The base image
build alone took almost four minutes.

FLOps Management uses and hosts an instance of the open-source CNCF (Cloud
Native Computing Foundation) Distribution Registry [22]. This registry allows FLOps
to be independent of any other registry provider. FLOps has complete control and
immediate access to this registry.

4.2.4. Multi-Platform

This subsection explains how FLOps builds multi-platform images. Usually, end users
build images only for a single platform. Their builder knows their host’s architecture
and uses it as a target platform. When inspecting popular public images, they support
multiple target platforms. Each image tag can have multiple digests, each represent-
ing a different platform. For example, the latest Alpine image [3] supports at least
linux/amd64 and linux/arm/v6. By default, it is impossible to run images that are
intended for different architectures on machines with incompatible host architectures.
Specific workarounds via emulation exist.

The key of building and referencing images that support multiple platforms are
manifests. A plain manifest file contains information about a unique image digest. This
information includes its media type, size, layers, and architecture. When an image
supports multiple platforms, it has multiple digests, thus one manifest per digest.
Image indexes were invented to group these different manifests. Note that image
indexes refer to the OCI standard term [90]. In Docker, they are called fat manifests or
manifest lists [28]. As a result, different host architectures can use the same image tag
and pull their matching digest image. This happens because the local builder reads the
image index and picks a suitable manifest. Examples for manifests are available here
[28].

Multi-platform images are a deep topic. Because of its rapid development, many
different media types, versions, and schemas for manifests exist. Build machines need
to use the same conventions as their image registries. Discussing these details here

69

4. Implementation Details

would lead to bloat. Excellent information about this topic is available here [60].
Previously, one had to manually build one image per target architecture on a machine

of that architecture, provide the image tag with an architecture suffix, and push it.
Once all these different images were pushed, an image index had to be created and
pushed. Nowadays, a convenient solution for building multi-platform images is using
docker’s buildx builder [27]. It can build and push multi-platform images concurrently
with a single command.

The FLOps image builder does not use docker to build its images (4.2.2). Buildah
also supports building multi-platform images but lacks the convenient new features of
docker’s buildx. From our experience, Buildah lacks sufficient documentation regarding
building and pushing multi-platform images. We needed to look into its source code,
read other sources, and experiment extensively until we made this work.

Another significant requirement for building multi-platform images on a single
machine is emulating other architectures. Otherwise, only images for the host’s
architecture can be built. It is also possible to cross-compile or use multiple dedicated
builder nodes with proper architectures [29]. Conventionally, QEMU [100] is used
to emulate such tasks. Docker Desktop includes QEMU for Mac and Windows by
default [29]. QEMU translates the requested target architecture instructions into ones
the host machine can understand. Due to FLOps’ special circumstances, which involve
building complex images in orchestrated, containerd containers on heterogeneous
devices, various approaches seem to be available to realize emulation. Ideally, the
emulator would be part of the builder image, thus avoiding the need to modify or
require anything from the worker nodes. After many unsuccessful attempts, we decided
to require worker nodes that should build multi-platform images to pre-install QEMU.
For Linux machines, this can be done by installing an open-source package called
qemu-user-static.

In conclusion, using this approach, the FLOps builder service can build multi-
platform images. All other FLOps (static) images, including the builder service or
project observer, are also available for linux/amd64 and linux/arm64. For example, all
these images can be started on a Raspberry Pi 4, but these devices seem to lack sufficient
resources to handle the FL training. An additional downside of multi-platform image
builds comes with the slowness of emulation.

Table 4.6 shows a simple example of FLOps’ builder service’s build times for different
platforms. The build machine natively supports linux/amd64. Therefore, this build is
much faster than the emulated arm one. Both rows show the build times when only
a single platform is requested. The build times would be combined to support both
platforms simultaneously.

70

4. Implementation Details

Builder Architecture Target Platform Full Build Base Image Actor Images
linux/amd64 linux/amd64 4min 2min 30s 1min 30s
linux/amd64 linux/arm64 18min 12min 6min

Table 4.6.: Simple Scikit-learn Multi-Platform Build Times Example

4.3. Local Data Management

This section explains how FLOps handles local data on learner nodes. Firstly, it covers
what kind of data and datasets suit FL and why. Secondly, it discusses how state-of-
the-art projects in the industry handle enormous amounts of data for ML and Big Data
applications. Thirdly, it explores how exactly FLOps manages the local data and what
architecture it uses for this task. The last subsection showcases FLOps’ mock data
provider service, which makes development and testing more convenient.

4.3.1. Appropriate Data for FL

FL, especially cross-device FL, specializes in massive numbers of heterogeneous devices
with diverse non-IID data. For FL, one can use conventional datasets, such as MNIST
or CIFAR10. However, such homogeneous and IID data is not representative of data
found on real devices. Many works in the field of FL specialize and compare how well
they perform on non-IID data (2.1.4). For this reason, various datasets and benchmarks
have been created explicitly for FL. One recurring prominent FL benchmarking tool is
LEAF [17]. It does not solely specialize in FL but in more general federated settings.
It includes several implementations and datasets. As mentioned in Table A.1, we had
little success working with this benchmark. This finding is noteworthy because LEAF
seems to be the primary and sole source for the FEMNIST dataset, which many FL
papers mention and use for evaluation.

FEMNIST seems to be one of the most popular dedicated FL benchmarking datasets.
It is a federated version of the Extended MNIST (EMNIST [32]) dataset. FEMNIST
splits the EMNIST dataset into multiple classes or data partitions based on individual
(digit/symbol) writers. Extended projects exist that wrap the access to FEMNIST via
the high-speed HDF5 binary data format [56]. The FEMNIST dataset is a prominent
example of many dedicated FL datasets and benchmarks. A detailed listing and
comparison of other similar resources is available in [107].

FLOps requires a convenient way of accessing suitable data for development and
testing purposes. Our experience trying out LEAF taught us that using these dedicated
datasets can be challenging and error-prone. Instead of figuring out how to unify these

71

4. Implementation Details

different dedicated FL datasets and benchmarks, we use Flower Datasets [41]. We
already discussed Flower Datasets briefly in 2.1.6. The vital thing to know about this
young project is that it uses and splits up Hugging Face datasets into non-IID data
fragments. It enables users to turn conventional ML datasets into FL-optimized ones.
Users can configure this approach freely.

4.3.2. ML & Big Data Formats

The field of Big Data and ML formats is vast and complex. It provides many insights
into different optimization approaches. Great resources to find out more are available
here [67, 69, 26, 6]. The following are significant takeaways after investigating this
domain.

Managing Big Data is a booming Field
Storing and handling Big Data is a massively popular, expensive, and profitable busi-
ness that regularly attracts hundred-million-dollar investments. This environment leads
to healthy competition, solid standards, and bold advancements in the field.

Reuse
Data management and optimizations are universally needed. These areas have several
decades of solid research to back up best practices and avoid known pitfalls. Similarly
to security, one should avoid reinventing and reimplementing foundational features
from the ground up. Instead, it is recommended that existing open-source industry-
favored solutions be reused.

(De)Serialization is a critical Bottleneck
When each subsystem has its own internal memory format, significant amounts of CPU
work get wasted on (de)serialization. The recommended way to avoid this is to stick to
a uniform format. The more tools support such a uniform format, the easier and faster
cooperation, communication, and transmission can be.

Big Data and ML Data should use Columnar Formats
Usually, dataset features are split up into different columns. These features can be
diverse and require different data types for storage. When storing and handling con-
ventionally stored row-wise data, all these different data types and features complicate
and slow down processing. Instead, if the data is stored and handled column-wise,
advanced optimizations, and compressions can handle homogeneous features and their
data type. As a result, the same data can be processed more compactly and faster.

72

4. Implementation Details

The sources above recommend the following open source state-of-the-art formats and
technologies. All of them are from Apache.

Arrow
Arrow is a language-agnostic columnar memory format. It is optimized for modern
CPUs and GPUs. It supports zero-copy reads, which avoid serialization and accelerate
data access. Arrow is especially popular for interoperability. This format should be
used for data in memory. [7]

Parquet
Parquet is also a columnar file format. Its focus is on efficient data storage and retrieval.
Its benefit over Arrow is that it needs less space due to its special compression and
encoding. This format should be used to store data on disks. [8]

Arrow Flight
Arrow Flight is a gRPC-based framework. It supports parallel data streams. When used
with compatible data, it overcomes (de)serialization overheads and speeds up data
transfer. Flight should be used to transport Apache formatted data over the network.
[5]

The last subsection mentioned that FLOps uses Flower Datasets, which uses Hugging
Face Datasets underneath. Hugging Face Datasets use Arrow [58]. Therefore, the
findings in this subsection are directly applicable and relevant to FLOps.

4.3.3. FLOps’ Local Data Management Architecture

Figure 4.2 depicts the architecture of FLOps’ local data management. The important
concretions compared to the simplified version in Figure 3.4 from 3.2.2 are as follows:
The learner container and the data-providing device must have an Arrow Flight client
installed and connected to the Arrow Flight server in the ML data server. The data
loading component in the learner uses the Flight client to retrieve the matching data.
It gets added by the builder service and is not part of the user’s ML code. The data
and model manager utilize this loaded data. Note that the figures in this subsection
depict a single data source device for optimizing page space. Arbitrary many devices
are supported by this setup.

Figure 4.3 depicts FLOps’ local data management processes in more detail. Firstly,
the unique data resides on device A. The device can store its data in an arbitrary
format. The device trusts the learner node in its proximity and transfers its data A
to its ML data server via Flight. For this, it needs to convert its data into Parquet

73

4. Implementation Details

Figure 4.2.: FLOps Local Data Management Structure

format. Secondly, the ML data server receives this streamed data and stores it locally
on the learner node in a dedicated ML data volume. This volume now contains several
different Parquet files from different sources. It uses Parquet files based on the last
subsection’s recommendations.

The next sequence of steps starts from the user’s data manager. During its initial-
ization (A1), when the learner service is run, it triggers its prepareData function (A2).
This method calls the wrapper/adapter function loadDataset (A3). The loadDataset
function calls the loadDataFromMLDataServer function (A4). This function is not avail-
able for users during development. It is instead injected by the builder service, so it is
exclusively available in the learner image’s augmented FL code.

The Data Loading’s loadDataFromMLDataServer function contacts its Flight client to
request all matching files from the local ML data server (A5). The match is performed
based on the user’s project SLA. This SLA includes a dataTags key that is a list of string
tags. When devices send over their files, they must provide a data tag. The ML data
server will store these data files in the format seen in the Figure’s legend. The name
starts with a singular data tag and ends with a unique hash based on the file’s content.
Users and data providers need to cooperate to ensure that these data tags match. The
ML data server takes all files which name’s prefix matches the user requested SLA data
tags and streams them over into the learner container (A6). In the example shown, only

74

4. Implementation Details

Figure 4.3.: Detailed FLOps Local Data Management Structure

75

4. Implementation Details

data files A and B have matching data tags. The Flight server streams both over to the
data-loading component.

Now that the matching data files are available inside the learner container, they
must be transformed to fit the user’s needs. The data loading component converts its
received Parquet files into Arrow format (A7) for better in-memory data management.
Usually, ML code expects and works with whole datasets instead of multiple split
ones. For this reason, the data loading component also merges its received files into a
single dataset (A7). The data loading component then sends this dataset to the user’s
data manager (A8). The data manager now has access to the necessary dataset and
can perform custom preprocessing and transformation steps (A9). Users can freely
configure and implement this preprocessing to ensure the retrieved data is usable for
their ML model.

When FL training starts, the user’s model manager will initially set the model data
(B1). Its getData method (B2) contacts the data manager and returns its prepared
compatible dataset (B3). In conclusion, these steps enable FLOps to manage and
provide real local FL data to diverse user ML code for training and evaluation.

4.3.4. Mock Data Providers

Coordinating and managing real data providers while developing or testing can be
challenging. FLOps offers its own mock data providers to make these processes
more convenient. These optional services can be deployed on learner nodes via the
orchestrator. They split datasets into partitions and send them to the ML data server
exactly as real devices. It is enough to run them once to populate the local learner
nodes with data. These mock data providers also act as implementation examples for
real devices when converting data, setting up a Flight client, and communicating with
an ML data server. The code is available here [36]. Subsection 4.1.1 shows the API
endpoint for creating such mock data providers. The FLOps Helper SLA for mock data
providers looks as follows:

1 {% The ID has to match the user’s orchestrator ID.
2 "customerID": "Admin",
3 "mock_data_configuration": {
4 % This value can be any dataset name available in Hugging Face.
5 "dataset_name": "cifar10",
6 "number_of_partitions": 1,
7 "data_tag": "cifar10"
8 }
9 }

76

4. Implementation Details

Figure 4.4.: FLOps’ Mock Data Provider

Figure 4.4 depicts FLOp’s mock data provider. The mock data provider runs as an
orchestrated service in the container execution environment, similar to the learner
service. It uses the requested Hugging Face dataset name to download the dataset via
Flower Datasets. The data provider uses Flower Datasets to split this monolith dataset
into multiple partitions. The user defines the number of partitions. Each partition is
individually sent to the ML data server as if real edge devices were contacting the
server. The ML data server stores each partition separately in the ML data volume.
Ultimately, these partitions will be merged and preprocessed to be fit for training.

4.4. MLOps via MLflow

This section showcases how FLOps enables MLOps. The first subsection discusses its
MLOps components and how they work together. The second subsection shows briefly
how the GUI looks and works. Many details were already mentioned in previous parts
of this work. Thus, this subsection will not repeat them but provide new insights or
concretions.

77

4. Implementation Details

4.4.1. MLOps Components & Architecture

Figure 4.5.: FLOps’ MLOps Architecture

This subsection builds on top of the discussed MLflow background (2.2.3) and
subsystem decomposition (3.2.5).

Figure 4.5 shows FLOps’ MLOps architecture. MLflow powers many FLOps’ MLOps
capabilities. After every training round, the aggregator logs lightweight artifacts like
metrics, parameters, tags, or runs. In addition, the aggregator stores exactly one global
model copy locally. After every round, the aggregator checks if the new model’s
performance is better or worse. The aggregator will update its local model if the new
model is better. At the end of the last training round, the aggregator sends the best
trained global model to the artifact store.

An MLflow run represents an individual execution of (usually ML) code. Each run
can collect various pieces of information, such as metrics, hyperparameters, or custom
tags. These lightweight elements are represented as A in the Figure. An MLflow
experiment gathers multiple runs. FLOps maps these MLflow terms directly to FL. An
experiment becomes an FLOps project and runs are FL training rounds.

The aggregator logs everything besides local elements over the tracking server. The
tracking server works as a proxy for artifacts. Thus, any access to any logged objects
goes through the tracking server. The tracking server itself does not have any state. Its

78

4. Implementation Details

GUI showcases the stored elements in the backend and artifact stores hosted via the
FLOps management. Note that these stores can be deployed and scaled individually
onto different machines. There are various ways of setting up and provisioning MLflow
components. For example, the backend store can be a local directory, a remote database,
a cloud file server, or blob storage. The backend store hosts lightweight elements,
and the artifact store hosts heavy-weight elements such as models or images. FLOps
currently uses a MySQL database for the backend store and a vsftpd (very secure FTP
daemon) server for the artifact store.

It is noteworthy that no MLOps logging takes place on the learners. Only the
aggregator uses these techniques. This approach works as expected regarding concrete
FL metrics and models. MLflow also provides a way to track system metrics, which
FLOps uses. These metrics only capture information about the aggregator, not the
connected learners. No information belonging to individual learners gets logged.
Furthermore, FLOps ensures that users can only access their own recorded artifacts.
FLOps explicitly upholds these separations to minimize possible privacy hazards and
attack vectors.

4.4.2. GUI

FLOps uses MLFlow’s GUI and does not modify it. Therefore, this chapter only
provides a brief selection of impressions of the GUI. Excellent further details are
available directly at MLflow [83].

The first screenshot 4.6 shows MLflow’s experiments overview page. The left column
lists all recorded experiments/projects. Only a single one is currently selected. Details
about it are displayed to the right. Multiple experiments can be selected simultaneously
to view their combined contents. The centerpiece offers a table view of the different FL
rounds. Users can customize and sort this table to their liking. Each table row depicts a
single FL round, when it was recorded, and its duration. Only the best round contains
a logged model. In this example, the best round was the last (10th) round.

Figure 4.7 shows the detailed view of a single recorded experiment/project. Currently,
FLOps focuses on the model’s accuracy and loss. The centerpiece of the screenshot
shows the evolution of both across different FL rounds. It shows that the model’s
accuracy improved, and its loss decreased over time. FLOps users can access this GUI
during FL training and observe how this FL-rounds table grows in real-time.

The third screenshot 4.8 depicts concrete FL round details. These details include
general information such as if and what model was recorded, the run/round ID, or
when the run was created. In addition, it displays custom parameters that FLOps
injected, including the user-provided number of clients/learners via the SLA. This page
also displays other metrics, such as accuracy or system metrics.

79

4. Implementation Details

Figure 4.6.: MLflow’s GUI Screenshot - Experiments Overview

80

4. Implementation Details

Figure 4.7.: MLflow’s GUI Screenshot - Experiment Details

81

4. Implementation Details

Figure 4.8.: MLflow’s GUI Screenshot - FL Round Details

82

4. Implementation Details

Figure 4.9.: MLflow’s GUI Screenshot - Logged Model Details

83

4. Implementation Details

The last screenshot 4.9 shows the logged model details page. The left folder shows
the different aspects that were recorded. The model requirements, conda environment,
and model (pkl) file are all present. This concrete example showcases a registered
model (2.2.3).

MLflow is a feature-rich and well-documented MLOps tool. Its GUI directly supports
in-build techniques to compare, analyze, and visualize these logged results. All of these
recorded properties can be exported and shared with other people. This thesis does
not cover or use all MLflow’s (GUI’s) features. Further information is available here
[83, 79].

4.5. Clustered HFL

Besides classic FL, FLOps supports (clustered) HFL. Oakestra’s three-tiered layout
supports geographically dispersed clusters. Each cluster has its own cluster orchestrator
and set of worker nodes. This structure naturally alludes to the use of clustered and
hierarchical FL. Remembering Figure 3.9, FLOps uses two different types of aggregators
for HFL. The root and cluster aggregators are deployed as services on worker nodes to
distribute computational load. Only a single root aggregator exists. It can reside in any
cluster. Each orchestrated cluster hosts a single cluster aggregator. A cluster aggregator
only works with learners inside the same cluster. This type of geographic clustering is
why FLOps’ HFL is a clustered approach. Root aggregators treat cluster aggregators as
plain learners, precisely as in classic FL. Cluster aggregators are a combination between
learner and aggregator. Note that Flower does not natively support HFL. Therefore,
this approach of realizing HFL via Flower is a custom novel solution.

Figure 4.10 shows the detailed architecture of how FLOps realizes clustered HFL.
This figure reuses and expands upon the stylistic conventions seen throughout this
thesis, starting from Figure 2.2. Every visible element beside the root aggregator is part
of a single cluster. This setup supports multiple clusters. Because the root aggregator
interacts with the cluster aggregators as if they were plain learners, cluster aggregators
need to offer the same learner interface. The cluster aggregator implements the same
learner interface and model manager as user ML code repositories. This approach
requires implementing this interface properly and maintaining the state during multiple
training cycles. Therefore, the cluster aggregator needs to be able to modify and access
the underlying user ML model. This model is the main reference point for model
parameters in a cluster aggregator.

At the start of a new training cycle the root aggregator calls the cluster aggregator’s
fitModel method. It triggers the cluster aggregator’s handleAggregator method, which
all aggregator types in FLOps have. The cluster aggregator performs conventional FL

84

4. Implementation Details

Figure 4.10.: FLOps clustered HFL Architecture

85

4. Implementation Details

training with its learners and fuses new intermediate global parameters (pink P). Then,
it updates its model copy stored in the user’s model manager. By default, Flower also
evaluates the model during training. The custom FLOps aggregator strategy can store
and accumulate evaluation results. When the root aggregator requests to evaluate the
cluster aggregator, it retrieves the stored values from the strategy and context objects.
When the root aggregator calls the cluster aggregator’s getParameters method, the
cluster aggregator calls its user’s model manager getParameters method. The same
applies to setting parameters.

In other words, the cluster aggregator mimics a learner by using the same interface,
which works on the same user-provided ML model. The main differences between a
learner and the cluster aggregator are that the fit model method performs classic FL
training rounds, the evaluate function retrieves recorded results from the aggregator
objects, and that the aggregator has no access to data. This way, FLOps can perform
clustered hierarchical FL. Note that the underlying code is shared among all aggregator
types, thus avoiding several similar implementations. I.e., the same aggregator image
gets deployed with different parameters that decide the aggregator’s behavior.

4.6. CLI

While developing FLOps, we implemented several different pieces of code to automate
tedious, repetitive manual tasks. We decided to share and offer these custom auxiliary
scripts by combining them into a single CLI tool called OAK CLI [88]. We have
steadily improved it over this work, which resulted in various features. Because of
the envisioned rapid changes in the future, we will not discuss concrete technical
details but provide a broad overview of its capabilities. We decided to discuss this CLI
as part of this work because FLOps can be considered DevOps for FL, and DevOps
also includes techniques to improve development workflows. One way to support
users and developers is to help them use the target application more conveniently, for
example, via a CLI tool. Notably, Oakestra has a custom early-stage work-in-progress
GUI/Frontend dashboard application [89] and a minimal CLI tool. The OAK CLI is
independent of both these components and replaced the legacy Oakestra CLI tool.

We were motivated to create this CLI to alleviate the following challenges. FLOps
does not offer a tool besides the OAK CLI to interact conveniently with its API. External
tools like Postman are necessary to do so. Oakestra components need to be prepared
and launched manually. Interacting with its API is possible via external tools or its
early-stage dashboard. We needed to work on several devices while developing FLOps,
especially its HFL features. Each machine must be appropriately configured and set
up to enable Oakestra workloads. This setup included installing dependencies such

86

4. Implementation Details

as Docker, Golang, and other custom aliases and scripts to launch, clear, and restart
Oakestra components. In addition, developing and observing FLOps was heavily bound
to the observatory features provided by Oakestra’s dashboard application. Accessing
and working with this dashboard was cumbersome even during local development
on a single machine because of repetitive click-based tasks such as mandatory logins.
We automated this by creating auto-clicker scripts via Selenium. Accessing this flaky
dashboard on remote devices behind firewalls required even more manual steps, such
as code modifications and multiple SSH tunnels. We only required the dashboard to get
an overview of the deployed application and services and their statuses and logs. The
OAK CLI satisfies these needs independently, bypassing our need for the dashboard
while automating manual steps. As a result, this CLI significantly accelerates the
development and usage of FLOps and Oakestra.

4.6.1. CLI Requirements Discussion

The OAK CLI needs to satisfy the following requirements:

Interface for APIs
The CLI should interact with the APIs of FLOps and Oakestra to alleviate the need
for users to use external tools, know all API endpoints, and know how to interact
with them appropriately. The key activities the CLI should support are managing
applications and services in Oakestra and starting projects in FLOps. For example, if
the user wants to create a new application in Oakestra he first needs to login. For the
login, the user needs to know the login URI, create a fitting request, send it, and extract
the received bearer token for authentication and authorization. Only afterward can
users prepare their application SLA, add their token, and send it to the application
POST endpoint. Instead, the CLI should offer a single command so that users only
need to provide their application SLA. The CLI will perform the login and handle the
API interactions.

Observability
FLOps handles many different applications and services concurrently. Especially dur-
ing development, it is crucial to observe whether components behave as expected
and identify unexpected errors or behavior as quickly as possible. For this, the CLI
needs to provide its users with an overview of the current state of applications and
deployed services. This overview should include comprehensive information about
these components, such as their current status, critical properties, and details. It is
crucial to provide timely information to the user. The CLI should support a way to
observe the current situation close to real-time.

87

4. Implementation Details

Accelerated Workflows via Automation
The more manual, tedious, repetitive tasks can be accelerated via automation, the more
high-quality work can be done and less frustration generated. The tool should provide
ways of installing dependencies to make Oakestra’s and FLOps’ setup quicker and
easier on new machines. The CLI should handle starting, stopping, restarting, and
rebuilding Oakestra and FLOps components to speed up and simplify development
cycles. In addition, it should be a common place to host valuable additions from
different individuals, including aliases or scripts. The CLI should be easily modified
and extended to accompany future user demands.

Based on these requirements, it is easy to see that this singular tool has many re-
sponsibilities to uphold and features to offer. These features are of no equal interest
to all its possible users. Casual end-users require and demand other features than
administrators or developers. The usable feature set is also heavily dependent on the
machine on which the CLI runs. A machine can be a standalone control plane that
only includes the root or cluster orchestrators. It can be a standalone worker node
or a hybrid of several scenarios. A machine can also simultaneously include all these
mentioned components and be a monolith system. All these options require different
needs and, conversely, do not require all features or are not capable of or intended to
provide all features. For example, a worker node should be unable to restart the root
orchestrator, whereas the root orchestrator should not be able to tinker with sensitive
worker node configurations.

A tool that fulfills all mentioned requirements can be divided into several, one for
each use case or provided by a dynamic large single tool. Multiple tools have the
benefit of being less overwhelming, leading to smaller and tidier repositories, and
users do not need to understand the big picture. The downside of multiple tools is
the risk of entangled and divergent dependencies that need to be managed. Such
tools will still show interdependencies and coupling, leading to split comprehension.
Users, especially developers, would need to know exactly what tool is responsible
for what and how they are interconnected, potentially making things more complex.
With split tools, there is the risk of increased code duplication over time, especially
if different people develop different parts without understanding related tools. The
benefit of a single tool is that everything is in one place and forms a single source of
truth. Developers can efficiently work with a single well-structured repository. Users
only need to install and update a single tool instead of several. Code and logic can
be more easily reused between the same code base. The downsides of a single tool
are the risk of high coupling and increased complexities as the project grows. OAK
CLI is a single tool because we explicitly structured it to support low coupling and
high cohesion. Its flexible design enables easy separation and extension. Thus, all

88

4. Implementation Details

FLOps-specific functionalities can be easily isolated and converted into a separate CLI
tool. We aim towards a modular monolith design that suits a smaller team like ours.

4.6.2. High Level CLI Details

The CLI can create, delete, and (un)deploy applications and services. It can present
current information about available apps and services in different verbosity levels. In
addition, it allows to inspect latest service logs. Users can use the CLI to manage FLOps
components, including its manager, database, projects, and tracking server. The CLI
automates tedious manual tasks such as clearing local images or rebuilding orchestrator
components. It can install fundamental dependencies such as Docker and Golang. The
CLI has a customizable config file that allows users to specify their intended use case
and filter out unwanted commands. It also features experimental commands to run
automatic evaluations. Detailed descriptions of the CLI commands and options with
screenshots are available in the appendix B.

89

5. Evaluation

This chapter starts by explaining the selected evaluation experiments and the motivation
and goals behind them. An overview of the different setups for evaluation and the
general procedure follows this. Lastly, we split up the results into different subcategories
and analyze them.

5.1. Rationale

FLOps is a new system connecting various custom and pre-made components that
power a large set of features and functionalities. This plethora of interconnected parts
enables a large number of possible combinations that each could be evaluated. We look
at the SLA examples from 4.1.2 and formalize configuration parameters as variables.

Variables defining a FLOps Project

R : The ML Repository. Includes arbitrary complex and different ML code.

F : The ML Model Flavor / Framework.

D : The dataset that is used for training and evaluation.

B : A boolean value indicating if base images should be used to speed up builds
during development.

P : The number of supported platforms. Currently FLOps supports two different
platforms, which can be used together or in isolation. Thus, P offers three different
options.

H : The boolean flag indicating if FLOps should use classic or hierarchical FL.

T : The number of training rounds or cycles.

L : The number of required learners.

S : The underlying setup of devices. We worked with a monolith and multi-cluster
setup.

90

5. Evaluation

Even if we greatly simplify and assume that all these variables have only two possible
assignments, we get an overwhelming number of combinations. Each of these variables
are independent of each other. Therefore, each simplified boolean variable combined
results in 29 = 512 unique experiments. We even omit several additional possible
variables, such as running these tests on ARM or AMD devices, including Raspberry
PIs, or using GPU workloads. We aim for representative results, so every experiment is
repeated ten times. We call such repeated experiments evaluation cycles. Such cycles
take half an hour to several hours to complete. This long runtime, combined with
the total number of possible permutations, makes it infeasible to test every single
combination. This is a classic case of the curse of dimensionality, where increasing
numbers of features result in an exponential increase of their feature space.

We focus on a manageable subset of different experiments that represent compre-
hensive combinations of these variables to cover a wide range of possible scenarios. In
addition, FLOps is a foundational new system. Thus, we aim to verify and evaluate
whether it works rather than how competitive it is against modern benchmarks and
state-of-the-art training results. We focus on the general workflow and the necessary
steps to power such processes instead of optimizing FL training results. Tables 5.1 and
5.2 depict our selected experiments and our reasons for choosing them. The tinted
cells highlight the critical changes between experiments. Small classic FL experiments
use two learners for three training rounds, and large classic FL experiments use four
learners with ten learning rounds. Small HFL experiments use two learners per cluster
for three training rounds and two training cycles. In total each learner trains for six
rounds. We explicitly try to change only singular variables to facilitate comparisons
and understand how individual variables impact the whole workflow.

91

5. Evaluation

ID Experiment Rationale Setup Data ML T+L HFL B P

1
Base Case -

Simplest

Represents the base case for
comparisons and references. If
it does not work nothing else
should. Should be as simple and
lightweight as possible.

Monolith MNIST Sklearn Small No No AMD

2
Simple
Large

Same as (1) but with more train-
ing rounds and learners. Checks
if different, larger project sizes
work. Focuses on the impact of
project sizes.

Monolith MNIST Sklearn Large No No AMD

3
Simple
Base-

Images

Same as (1) but uses develop-
ment BaseImages to speed up
builds. Verifies that using base
images leads to the same end
results, thus they are viable op-
tion for development. Checks
the build acceleration due to Ba-
seImages.

Monolith MNIST Sklearn Small No Yes AMD

4
Simple
Multi-

Platform

Same as (1) but supports multi-
ple target platforms. Verifies that
FLOps supports multi-platform
images. Checks the impact on
build times.

Monolith MNIST Sklearn Small No No
AMD

+
ARM

5
Simple
Pytorch

Similar to (1) but uses a differ-
ent ML repository, framework,
and dataset. Verifies that FLOps
supports various ML reposito-
ries, frameworks, and datasets.

Monolith CIFAR10 Pytorch Small No No AMD

Table 5.1.: FLOps Evaluation Experiments I

92

5. Evaluation

ID Experiment Rationale Setup Data ML T+L HFL B P

6
Simple

HFL

Same as (1) but uses HFL. Ver-
ifies that HFL works in a con-
trolled environment on a single
machine with a single cluster.
The base case for HFL. If this
case does not work no other HFL
should work.

Monolith MNIST Sklearn Small Yes No AMD

7
Simple
Multi-

Cluster

Same as (1) but on the the multi-
cluster setup. Verifies that the
base case works on the other
setup. If it should not work no
other experiments make sense
on that setup.

Multi-Cluster MNIST Sklearn Small No No AMD

8
HFL on
Multi-

Cluster

Same as (7) but using HFL. Ver-
ifies that real clustered HFL
works as intended on multiple
clusters.

Multi-Cluster MNIST Sklearn Small Yes No AMD

Table 5.2.: FLOps Evaluation Experiments II

5.2. Experimental Setup

We evaluated FLOps on two different setups. The first setup is a monolithic develop-
ment machine that hosts all Oakestra and FLOps components.

Monolithic Setup

OS : Debian 12 (bookworm) linux/amd64 (bare metal)

CPU : Intel i7-6700K - 8 cores - 4.2 GHz

Memory : 16 GB

Storage : 470 GB

The second setup is a multi-cluster with three identical virtual machines that are part
of our chair’s infrastructure. We used one machine as a pure control plane that only
managed Oakestra’s root orchestrator and FLOps management components. The other

93

5. Evaluation

two machines represent separate clusters, each with its own cluster orchestrator and
worker node.

Multi-cluster Setup

OS : Ubuntu 20.04.6 LTS linux/amd64

CPU : Intel Xeon E5-2697A v4 - 4 cores - 2.6 GHz

Memory : 8 GB

Storage : 80 GB

5.2.1. Evaluation Procedure

We extended the OAK CLI to evaluate FLOps automatically. We have added several
sophisticated Ansible playbooks and roles that the CLI triggers to run workloads on
the monolith or multi-cluster setup via SSH. These Ansible components heavily utilize
other OAK CLI commands to clean up experiments and launch new projects. As a
side-effect, this automation simulates how real users might interact with the system.
Before each experiment run, the playbook ensures a clean experiment environment.
This step includes flushing any legacy experiment CSV files, removing all orchestrated
applications and services, clearing containerd image caches, restarting the FLOps
management components, and flushing its image registry. The playbook starts a new
evaluation round once the environment is clean for a new experiment/project. At each
round, multiple CSV files are generated. In addition, it starts custom Python daemon
scripts on every device that will scrape system metrics and append them to a CSV file
every five seconds. Afterward, the playbook requests a specific project configuration
that matches one of the selected experiments.

While the project is running, the playbook actively listens for event messages in the
FLOps manager logs. Any FLOps project’s lifetime can be split into stages such as
FL-Actors-Image-Build or FL-Training. A follow-up stage can only occur if the previous
one was successful. Once the playbook spots a message indicating a transition to the
next stage, it will write this change to a file. The Python daemons actively scan this file
and include its stage content in the CSV files. Consequently, the CSV files that include
the system metrics also include the respective project stage and timestamp. At the end
of each project, the playbook repeats its cleanup steps and starts the next evaluation
round. Once all evaluation rounds are finished, the playbook terminates and prints out
the sums of individual step runtimes.

One CSV file per evaluation run gets stored and numbered on the local device. In
the multi-cluster case, the playbook copies all CSV files from all devices onto the caller

94

5. Evaluation

device. At the end of each experiment cycle, a folder of CSV files representing the
recorded results is available. To visualize these results, we created several Python
scripts to parse, combine, pre-process, and visualize the information stored in the CSV
files. We use Seaborn and Matplotlib for this endeavor. As a result, we have uniform,
minimalistic Jupyter notebooks that represent and plot the recorded information. All
the code is available here [88]. Note that we hardcoded several aspects of this code to
our concrete use case. Expanding and making this evaluation code more reusable is a
prime candidate for future work.

5.3. Results

We split our findings into the following subsections. The basics (5.3.1) explain and
showcase the simplest base-case and what graphs we use to visualize our findings
for all experiments. Afterward (5.3.2), we analyze how different variables change the
image build processes. Penultimately (5.3.3), we discuss how different ML repositories,
frameworks and datasets perform in FLOps. Lastly (5.3.4), we focus on HFL and verify
that our custom novel solution is sound.

5.3.1. Basics

This subsection introduces the different plots we use to visualize all our results. This
part focuses on experiment (1). All mentioned graphs are also available for all other
experiments. Showcasing all of them would heavily bloat this work. Thus, we omit
them. Several additional plots are available in the appendix C. All graphs and their
underlying CSV files are available in the extended OAK CLI code’s evaluation folder
[88].

CPU & Memory

Graph 5.1 shows the recorded CPU and memory utilization across a project’s lifetime
with stage information. This information shows the mean of all ten evaluation runs
with a 95% confidence interval. The colored areas represent specific project stages. The
graph unveils that the memory utilization stays relatively stable throughout a project
and only slightly increases during FL training and the non-base image FL actor builds.
Note that the FL-Actors Image Build stage represents the entire image build and push
process, which includes the base image and the actor images. Deployment stages
represent time frames in which components and services for the next stage are created
and deployed via the FLOps manager and orchestrator, but these services/images do
not yet start their workloads. Most stages do not utilize much of the available CPU

95

5. Evaluation

except during the FL actor deployment stage and FL training, which makes sense
because this experiment uses the CPU for training. On average, this simple base case
takes 12 minutes to complete on the monolith system.

Figure 5.2 shows a box-violin plot of the CPU utilization for different experiment
stages. The largest median CPU utilization occurs in the FL training stage. What is
remarkable is that the deployment stage for the FL actors (Aggregator Deployment in
the plot) also has high CPU utilization. Multiple services’ rapid creation, deployment,
and orchestration can explain this. Both image build stages have many outliers,
indicating that the build process is highly heterogeneous.

Figure 5.3 is similar to the previous plot but depicts the memory utilization per
stage. The FL training stage is the most consuming one. All other stages are below 60%
memory utilization except for the FL actors builder and its deployment stages, which
have multiple outliers that reach the high 70s. Unlike CPU outliers, which only lead to
throttling, memory outliers can lead to out-of-memory exceptions and failures. Thus, it
is vital to be aware of such behavior.

0 2 4 6 8 10 12
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 (%

)

Evaluation Runs Average
CPU Usage
Memory Usage
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Start Post-Training Steps
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.1.: Experiment 1: CPU & Memory Utilization

96

5. Evaluation

0 20 40 60 80 100
CPU Usage (%)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Start Post-Training Steps

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

Figure 5.2.: Experiment 1: CPU Utilization by Stage

40 50 60 70 80
Memory Usage (%)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Start Post-Training Steps

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

Figure 5.3.: Experiment 1: Memory Utilization by Stage

97

5. Evaluation

Normalization

0 2 4 6 8 10 12 14
Evaluation-Run Duration (minutes)

40

45

50

55

60

65

70

75

80

M
em

or
y

Us
ag

e
(%

)

All Evaluation Runs - Duration Diversity
Evaluation Run

1
3
4
6
7
9
10

Figure 5.4.: Individual Experiment Memory Usage

Individual evaluations range in duration. The reasons for this can be manifold,
such as different current image pull speeds due to local network conditions or remote
registry loads.

Figure 5.4 shows the memory usage of individual evaluation rounds over time. It is
clear to see that the usage pattern is the same but shifted over time. We normalized
the average of these rounds to compare and visualize them properly. Otherwise, stage
borders become duplicated and overlapped, means and confidence intervals do not
lead to meaningful outcomes, and the graphs are more confusing than helpful.

Disk Space

Graph 5.5 shows how the disk space changes over the project’s lifetime. There was
a total average increase of 14 GB. It starts with the Image-Builder-Deployment stage,
where the Image-Builder image is pulled. Many components and dependencies are
downloaded and pushed to the registry on the same monolithic device during the FL
actors’ build process. The jump in disk space in the aggregator (FL actors) deployment
stage is because containerd needs to pull these build images. Thus, the monolith will
have the same image in the image registry and its local containerd image context.

98

5. Evaluation

0 2 4 6 8 10 12
Evaluation-Run Duration (minutes)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

Di
sk

 S
pa

ce
 C

ha
ng

e
(G

B)

Evaluation Runs Average
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Start Post-Training Steps
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.5.: Experiment 1: Disk Space Changes over Time

During FL training, the disk space remains the same, which verifies that even when
using FLOps with demanding lengthy training configurations and models, no disk
space issues will arise due to its training process. Disk space occasionally goes down
due to the system’s garbage collection, which is independent of FLOps or Oakestra.
The aggregator (FL-actors) deployment stage takes up the most space. The trained-
model image deployment stage is minimal compared to the first builder deployment
because of the local containerd image storage. Containerd pulls the builder image
once and reuses it afterward. This means that dedicated worker nodes that handle
several project builds can pull these reoccurring images once and reuse them for all
projects. Especially during image-building processes, much space is freed up again due
to garbage collection.

Network IO

Figure 5.6 shows the network loads received and sent over a project runtime. The
most significant increases are during built image pushes. They occur around minute
five when the base image is pushed, at the end of the FL-Actors Image Build stage
phase, and when the trained-model image build stage bleeds into its deployment stage.
We omit to present further (violin-box) plots detailing net-IO because this additional
information does not lead to any significant insights.

These values should be strictly increasing due to the accumulative nature of network
IO counters. This plot shows dips. The reason for this is connected to removed contain-
ers. The displayed lines are the sums of all received and sent traffic detectible on all

99

5. Evaluation

0 2 4 6 8 10 12
Evaluation-Run Duration (minutes)

0

2

4

6

8

Ne
tw

or
k

Ch
an

ge
 (I

/O
) (

GB
)

Evaluation Runs Average
Network Received Since Start
Network Sent Since Start
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Start Post-Training Steps
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.6.: Experiment 1: Net-IO over Time

network interfaces. This includes virtual network interfaces of containers. For exam-
ple, there is a noticeable decrease between the FL-Actors image build and aggregator
deployment stages. I.e., between the moment the builder service finishes pushing its
images and terminates and before these build services get deployed. The image builder
container had its own virtual network interface, which was included in the total sum
and represented as a plotted line. Once the container is removed, its virtual network
interface is also deleted, and its accumulated net IO will be removed from the sum of
the following system metrics scrapes.

Stage Runtimes & Training Results

Figure 5.7 shows each stage’s average duration. The FL training stage is relatively short
because the training configuration is minimal. The image build stages both take up the
vast majority of time. The FL-actors image build process involves more images with
complex dependency resolutions. Thus, this build stage takes over twice as long as
the trained-model image build. Figures 5.8 and 5.9 show the accuracies and losses of
the trained models after each evaluation round. They prove that FLOps can train ML
models in a stable way.

100

5. Evaluation

0 1 2 3 4 5 6 7
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

FLOps Project Stage Durations

Figure 5.7.: Experiment 1: Stage Durations

1 2 3 4 5 6 7 8 9 10
Evaluation Run

0

20

40

60

80

Tr
ai

ne
d

M
od

el
 A

cc
ur

ac
ie

s (
%

)

Figure 5.8.: Experiment 1: Trained Model Accuracies

101

5. Evaluation

1 2 3 4 5 6 7 8 9 10
Evaluation Run

0.0

0.2

0.4

0.6

Tr
ai

ne
d

M
od

el
 L

os
s

Figure 5.9.: Experiment 1: Trained Model Loss

5.3.2. Image Builder

This subsection highlights how different variable configurations impact the total project,
especially its image build times, which make up a significant part of it.

Figure 5.10 depicts the CPU and memory utilization of experiment (3). Compared
to (1), a project now only takes approximately eight minutes, and the FL-actors’ build
times shrunk from six to two and a half minutes. The use of development base images
leads to even greater acceleration when the underlying dependency structure of the
ML repository is larger. The base images do not apply to the trained model build
because each trained model is unique. The stage durations graph 5.11 of experiment
(3) highlights this acceleration. All other metrics, such as net-IO, disk space, memory,
or results, stay the same as in (1) because the only change is the reuse of base images.
Therefore, when people develop FLOps further, they should utilize this base-image
functionality to speed up their progress.

Figure 5.12 shows the CPU and memory utilization of experiment (4). It is imme-
diately clear how much emulation slows down multi-platform projects compared to
the base case. A simple multi-platform project takes around 45 minutes. The FL-actor
image build stage takes 27 minutes, which is a 4.5-fold increase, and the multi-platform
trained-model image build takes 13 minutes, which is a fivefold increase. This stark
difference is especially visible in Figure 5.13, which shows the stage durations of exper-
iment (4). Other metrics are also lightly affected by this change. More disk space is
needed. Experiment (4) uses up 17.5 GB instead of 14 GB due to the extra image layers.
This increase also influences the net-IO where (4) requires sending out 12 GB and

102

5. Evaluation

receives 10 GB instead of (1)’s 9 GB and 5.5 GB. In addition, the net-IO accumulated
more traffic over the longer project run-time. In conclusion, these findings prove that
FLOps supports working multi-platform images. However, this approach significantly
increases build times when run on single machines instead of dedicated build machines
with matching native architectures.

0 2 4 6 8
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 (%

)

Evaluation Runs Average
CPU Usage
Memory Usage
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Start Post-Training Steps
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.10.: Experiment 3: CPU & Memory Utilization

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

FLOps Project Stage Durations

Figure 5.11.: Experiment 3: Stage Durations

103

5. Evaluation

0 10 20 30 40
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 (%

)

Evaluation Runs Average
CPU Usage
Memory Usage
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.12.: Experiment 4: CPU & Memory Utilization

0 5 10 15 20 25 30
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

FLOps Project Stage Durations

Figure 5.13.: Experiment 4: Stage Durations

5.3.3. Fundamentally Different Projects

Longer Training Rounds with more Learners

Figure 5.14 shows the CPU and memory utilization of experiment (2). Because this
project configuration uses more learners and training rounds, it is logical that the FL
training stage will last longer. Note that this larger example is still relatively small

104

5. Evaluation

0 2 4 6 8 10 12
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 (%

)

Evaluation Runs Average
CPU Usage
Memory Usage
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Start Post-Training Steps
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.14.: Experiment 2: CPU & Memory

compared to ML/FL training periods that take multiple hours or days to complete. The
CPU utilization during training is less spread than for (1) and concentrates in the high
90-100% range. Memory shows a similar shift from the low 60s to the low 70s. The disk
space and net-IO stay similar to (1). The resulting accuracies are now all in the mid-80s
instead of below 80%. Extended training periods lead to better results in this case.

Different ML Repository, Framework, and Dataset

Figure 5.15 shows the CPU and memory utilization of experiment (5). The first
noticeable difference to (1) is the almost threefold project duration, mainly due to build
times. Pytorch is a more heavy-weight ML library than Scikit-learn. Thus, configuring
its larger dependencies takes longer. (5)’s CPU behavior is similar to (1). The FL
training in (5) requires less memory (mid 50s) than in (1) (low 60s).

Figure 5.16 shows the remarkable influence of the chosen ML framework and its
dependencies for FLOps. Compared to the relatively lightweight Sklearn base-case
example with a total used disk space increase of 14 GB, this simple Pytorch example
takes up approximately 35 GB in the end. During build times when dependencies are
pulled, the peak extra disk space utilization reaches 60 GB. These heavy dependencies
are also visible in the network IO in Figure 5.17. The garbage collection is strongly
present and visible in this case. The tiny number of learners and training rounds lead
to a small accuracy of 40% of the final models.

These experiments prove that FLOps can handle different FL training configurations
using various ML frameworks, repositories, and datasets. They also unveil that using
popular classic ML libraries might be unrealistic for resource-constrained edge devices.

105

5. Evaluation

0 5 10 15 20 25 30
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 (%

)

Evaluation Runs Average
CPU Usage
Memory Usage
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build

Figure 5.15.: Experiment 5: CPU & Memory

0 5 10 15 20 25 30
Evaluation-Run Duration (minutes)

0

10

20

30

40

50

60

Di
sk

 S
pa

ce
 C

ha
ng

e
(G

B)

Evaluation Runs Average
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build

Figure 5.16.: Experiment 5: Disk Space

0 5 10 15 20 25 30
Evaluation-Run Duration (minutes)

0

10

20

30

40

Ne
tw

or
k

Ch
an

ge
 (I

/O
) (

GB
)

Evaluation Runs Average
Network Received Since Start
Network Sent Since Start
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build

Figure 5.17.: Experiment 5: Network IO

106

5. Evaluation

Thus, libraries that are dedicated to restricted devices should be analyzed and tried out
as future work.

5.3.4. Multi-cluster & HFL

Classic FL on the Multi-Cluster Setup

Before analyzing how real HFL performs on multiple clusters, we need to verify that the
second setup is capable of classic FL and compare it to the monolith setup. Observing
the aggregated sum of metrics from all three devices leads to flat and less insightful
plots. For this reason, the following graphs will depict the metrics by device. Figure
5.18 shows the CPU utilization of the cluster setup during experiment (7). It depicts
how the control plane root device only manages components but does not perform any
heavy operations as intended. Its CPU utilization is constantly at a very low level. The
orchestrator selected and deployed the image builder service on cluster B. That is why
it is the only busy device during the initial image build phase. Notably, this scheduling
decision seems to be deterministic. The orchestrator independently selected Cluster B
for every single run. Once FL actor deployment and training start, CPU utilization gets
distributed among both cluster nodes. Figure 5.19 shows the memory utilization of
the devices. The memory stays stable when no workloads are performed on a device,
which is the case for the root at all times and for cluster-A while cluster-B is building
the images. The reason why the root device has a higher memory usage then the
two clusters is because the root hosts the control plane. This includes Oakestra’s root
orchestrator and all FLOps management components.

Figure 5.20 shows the increase in disk space for the devices. It shows how cluster-B’s
disk space is increasing during the build process due to the dependencies and layers
that are pulled and build. There is a drop after the build process finishes, and the
builder service is undeployed. In the middle of the build process, cluster B pushes
the built base image to the root that hosts the image registry. Cluster-B pushes the
FL-actor images without a significant increase because the common base layers are
reused. The disk space of cluster-A only starts increasing when the FL actors are
deployed on it. Figures 5.21 and 5.22 show the received and sent network changes on
the devices, matching the disk space changes. The FLOps stages seen in Figure 5.23 of
experiment (7) do not show any remarkable outliers and resemble the base case. The
only difference is that the project and its stages take longer due to the weaker hardware.
Project stages on our multi-cluster setup take approximately 0.67 to 7.5 (average 2.88)
times longer than on the monolith setup. Because stages have different durations and
weights the overall runtime of a project only increased by approximately 1.67 times.
The final training results are equivalent to (1).

107

5. Evaluation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

CP
U

Us
ag

e
(%

)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.18.: Experiment 7: CPU Utilization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

M
em

or
y

Us
ag

e
(%

)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.19.: Experiment 7: Memory Utilization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Evaluation-Run Duration (minutes)

0

2

4

6

8

10

Di
sk

 S
pa

ce
 C

ha
ng

e
(G

B)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.20.: Experiment 7: Disk Space

108

5. Evaluation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Evaluation-Run Duration (minutes)

0

1

2

3

4

5

6

Ne
tw

or
k

Re
ce

iv
ed

 (G
B)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.21.: Experiment 7: Received Network

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Evaluation-Run Duration (minutes)

0

2

4

6

Ne
tw

or
k

Se
nt

 (G
B)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.22.: Experiment 7: Send Network

0 2 4 6 8 10 12
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

FLOps Project Stage Durations

Figure 5.23.: Experiment 7: Stage Durations

109

5. Evaluation

Minimal HFL base-case on a monolith Cluster

0 2 4 6 8 10 12
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

Re
so

ur
ce

 U
sa

ge
 (%

)

Evaluation Runs Average
CPU Usage
Memory Usage
Evaluation-Run Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.24.: Experiment 6: Monolith HFL CPU & Memory

Figure 5.24 shows the CPU and memory utilization of experiment (6). Its purpose is to
be a minimal HFL base-case that only uses a single cluster. In additon, this experiment
proofs that FLOps’ custom clustered HFL solution works. Compared to (1) the project
duration is a bit longer due to the longer training stage. Every other metric stays similar
to (1). This includes the stage durations, disk space, net IO, and training results. CPU
and memory utilization are slightly increased in the deployment and training stages
because of more FL actors.

HFL on the Multi-Clustered Setup

Figure 5.25 shows the CPU utilization of the multi-cluster setup devices during HFL.
The image build seems to be no longer handled by a single cluster but is more dis-
tributed among both. In (7), learners were randomly deployed on clustered. In (8),
the figure clearly shows that the CPU is utilized more and distributed more equally
among the clusters. This is the case because each cluster gets its own cluster aggregator
and set of learners. This more homogeneous utilization also applies to memory, as
Figure 5.26 shows. All other metrics show a similar change from (7) to (8) as from
(1) to (6). This includes disk space, net IO, stage durations (Figure 5.27), and training
results. These findings prove that FLOps can perform clustered HFL on distributed
multi-cluster devices.

110

5. Evaluation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

CP
U

Us
ag

e
(%

)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.25.: Experiment 8: Multi-Cluster HFL CPU Utilization

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Evaluation-Run Duration (minutes)

0

20

40

60

80

100

M
em

or
y

Us
ag

e
(%

)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure 5.26.: Experiment 8: Multi-Cluster HFL Memory Utilization

0 2 4 6 8 10 12
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

FLOps Project Stage Durations

Figure 5.27.: Experiment 8: Stage Durations

111

6. Conclusion

We created FLOps to fill the gaps in automation, orchestration, and usability in the
field of FL. It successfully achieved its objectives. It makes FL more accessible to users
regardless of their level of expertise and helps them benefit from the automation found
in MLOps and orchestration. It embraces flexibility by allowing various frameworks,
datasets, and ML repositories to be used for training via configurable projects. Due to
this simplicity, easy user access, and multi-platform containerization, FLOps prioritizes
tangible FL applications. We hope this work motivates other FL practitioners to realize
the benefits of using tools and techniques that power FLOps and use them individually
or FLOps directly for their own FL projects.

6.1. Current Status, Limitations & Future Work

Table 6.1 depicts how well the current FLOps implementation fulfills its functional
requirements. We count FR-1.3 and FR-2 as MVP implemented because FLOps supports
different FL scenarios, such as classic and clustered HFL, as well as various project
configurations. Additional FL strategies, algorithms, and configurations exist that
should be analyzed and added to future FLOps versions to allow a broader range
of FL capabilities. FLOps currently supports Scikit-learn, PyTorch, and TensorFlow.
Other ML flavors can be added by extending the underlying minimal enum structure.
We regard FR-6 as MVP implemented because enabling inference serving was not a
primary focus point of FLOps. Inference serving is FLOps’s last post-training step.
Thus, we did not invest a lot of time into this feature. It should be thoroughly tested
and investigated to be seen as fully realized. MLflow offers different ways of turning
trained models into inference servers [84]. Comparing these variations and letting users
decide how to create inference servers is a valid choice for future work.

○␣ Not Implemented: FLOps does not meet the requirement in its current form.

○ Partially Implemented: FLOps only partially meets the requirement.

○ Implemented MVP: FLOps fulfills the requirement in a minimal viable way.

○ Fully Implemented: FLOps fully realizes the requirement.

112

6. Conclusion

Functional Requirement Current Status

FR-1.1 Enable individuals to use, develop, and evaluate practical FL ○

FR-1.2 Automate FL management & processes ○

FR-1.3 Support various flexible FL scenarios ○

FR-2 Provide flexible configuration ○

FR-3 Handle FL augmentation and containerization ○

FR-4 Provide a GUI for monitoring, evaluation, and result management ○

FR-5 Provide trained model access to users ○

FR-6 Enable inference serving ○

Table 6.1.: Status of Functional Requirement Fulfillment

Nonfunctional Requirement Current Status

Usability
NFR-1.1 Effortless FL Participation ○

NFR-1.2 Prepared Reusable Component ○

NFR-1.3 GUI ○

NFR-1.4 CLI ○

Maintainability
NFR-2.1.1 Codebase ○

NFR-2.1.2 Quality Enforcement ○

Portability
NFR-2.2.1 ARM & AMD Support ○

NFR-2.2.2 Generic Interfaces ○

Performance
NFR-3.1 Scalability ○

NFR-3.2 Availability ○

NFR-3.2.1 Error Handling ○

NFR-3.3 Optimized Image Building ○

Security
NFR-4 Security ○␣

Constraints
NFR-5.1 Packaging ○

NFR-5.2 Implementation ○

Table 6.2.: Status of Nonfunctional Requirement Fulfillment

113

6. Conclusion

Table 6.2 shows the grade of fulfillment of nonfunctional requirements in the current
FLOps version. FLOps only partially realizes NFR-2.2.2. During the development of
FLOps, we had to introduce several minor changes and additions to Oakestra so that
it could handle FLOps workflows. The FLOps project structure follows Oakestra’s
application and service structure, which differs from that of other orchestrators like
Kubernetes. Due to the restricted time, we did not try to run FLOps via another
orchestrator. Therefore, we need to find out how straightforward using FLOps with
other orchestrators is. Nonetheless, FLOps communicates with Oakestra via decoupled
APIs and SLAs. Replacing or extending these interaction points to other orchestrators
should be straightforward. In addition, Jabok Kempter’s work combining Oakestra and
Kubernetes [64] alludes that FLOps can run on Kubernetes as an Oakestra addon.

We marked NFR-3.1 as MVP implemented and NFR-3.2 as partially implemented
because FLOps can run on monolithic and small multi-cluster setups with varying FL
actors. We have yet to try to run FLOps on a truly large scale, such as several hundred
or thousand devices. Therefore, we cannot indefinitely confirm that It can handle
large-scale deployments. Regarding availability, FLOps includes several mechanisms of
communication, error and event handling. However, if FLOps services or applications
are modified or deleted by an external non-FLOps source, current FLOps is incapable
of reacting accordingly. We hope to change this once FLOps is connected to the new
Oakestra event hooks [31] so it can respond to and receive these vital events and react
accordingly.

Implementation

In addition to using existing libraries and frameworks, FLOps includes many custom
components we implemented using various state-of-the-art tools and techniques from
the ground up. During this work, we used many of these tools for the first time, with
no prior experience or training in them. Thus, some aspects of the implementation
might utilize these tools subparly. FLOps’ codebase is a one-man project that lacks
code reviews from others, especially domain/tool experts. To improve robustness and
code quality, individuals with expertise in these domains should review the code and
elevate it to follow the gold standards of these tools.

Image Building

FLOps uses a sophisticated image-building architecture and processes, yet evaluations
show that this aspect takes up a significant portion of project run times and lead to
large images. New experimental solutions should be explored to improve the build
times further and shrink the final images. One way would be to replace the current

114

6. Conclusion

Conda-Mamba solution with uv [114]. Other tools worth exploring to slim down
images include [111, 30, 87].

Security & Privacy

Security and privacy are FL’s foundational concerns. Our priority with FLOps was to
create and verify its rudimentary architecture, components, and workflows. We did not
focus on privacy and security concerns due to the lack of access to proper certificates
and to accelerate FLOps’ development. This includes using HTTP instead of HTTPS
or not supporting FL security features such as secure aggregation. This aspect is one
of the most important for future work. Notably, Flower [51], the image registry [22],
and the local data management’s Arrow Flight [5] all have security features. FLOps can
utilize these features by enabling and appropriately configuring them.

Federated Learning via FLOps

FLOps already enables classic and clustered HFL. Many other possible improvements
should be considered for future work. Possible directions include exploring and
adding FL native security and privacy mechanisms or extending the already available
functionalities by adding more parameters and different algorithms. So far, FLOps
has not focused on GPU workloads, which are supported by Flower and should thus
already be able to run via FLOps. FLOps should be tried out with ML frameworks
specifically targeted for resource-restricted edge and IoT devices. These experiments
should be evaluated on edge devices such as Raspberry Pis and hybrid setups.

One significant aspect that should be investigated is personalized FL. For classic
PFL, the trained global model would be deployed on every learner, trained further for
local use, and then used for inference serving on the learner nodes. The sidecar or
multi-model PFL solution could look like this. The global model would be trained as is,
but a personal model would also be trained concurrently and not shared or updated
with other learners. Once the training is done, the local model can be turned into an
inference server. Hybrids between both are also possible. One way to realize these in
FLOps is to augment or extend the learner services so that they hold a local model,
persist after training, and transform into inference servers, or that the FLOps manager
replaces them via inference servers instead. Our reading contained multiple interesting
PFL papers (2.1.4), so we think this direction is very promising and worth working on.

Complementary Components & Integrations

To work with FLOps, users must clone its repository, do slight configurations, and
launch its components. Its CLI could be further improved to automate even more

115

6. Conclusion

aspects of FLOps and its orchestrator. Ideally, the CLI could install all the needed
dependencies, repositories, and components of FLOps with a single command. This
includes installing its orchestrator and launching its components to make working with
these tools as easy and quick as possible. Realizing this goal is straightforward because
the CLI already has many necessary functionalities that can be expanded and combined.
FLOps should be appropriately integrated into Oakestra’s new addon marketplace
created by Mahmoud Elkodary [31]. In addition FLOps should use the new Oakestra
hooks to react to events. Once this is realized, FLOps will be even more responsive and
accessible for users.

116

List of Figures

2.1. Centralized ML Model Training . 9
2.2. Basic Federated Learning . 10
2.3. Clustered FL Architecture . 14
2.4. Hierarchical FL Architecture . 15
2.5. Evolution of FL Publications . 16
2.6. FL Paper Categories . 19
2.7. Achieved Results of FL Papers . 19
2.8. Evolution of FL Publications based on Keywords 21
2.9. Distribution of mentioned ML and FL Frameworks in FL Papers 21
2.10. Simplified Oakestra Architecture . 32

3.1. FLOps UML Use Case Diagram . 40
3.2. FLOps Structural Overview . 41
3.3. Simplified FLOps Image Builder Processes 42
3.4. Simplified FLOps Local Data Management 43
3.5. FLOps Core UML Analysis Object Model 44
3.6. FLOps ML Code Repository UML Analysis Object Model 45
3.7. FLOps Project UML Analysis Object Model 46
3.8. FLOps Project Services UML Analysis Object Model 47
3.9. FLOps Aggregator Types UML Analysis Object Model 48
3.10. FLOps Preparation - UML Sequence Diagram 49
3.11. FLOps Project Start - UML Sequence Diagram 51
3.12. FLOps Image Builder Processes - UML Sequence Diagram 52
3.13. FLOps FL Training Processes - UML Sequence Diagram 54
3.14. FLOps Subsystem Decomposition . 56

4.1. Detailed FLOps Image Builder Processes 67
4.2. FLOps Local Data Management Structure 74
4.3. Detailed FLOps Local Data Management Structure 75
4.4. FLOps’ Mock Data Provider . 77
4.5. FLOps’ MLOps Architecture . 78
4.6. MLflow’s GUI Screenshot - Experiments Overview 80
4.7. MLflow’s GUI Screenshot - Experiment Details 81

117

List of Figures

4.8. MLflow’s GUI Screenshot - FL Round Details 82
4.9. MLflow’s GUI Screenshot - Logged Model Details 83
4.10. FLOps clustered HFL Architecture . 85

5.1. Experiment 1: CPU & Memory Utilization 96
5.2. Experiment 1: CPU Utilization by Stage 97
5.3. Experiment 1: Memory Utilization by Stage 97
5.4. Individual Experiment Memory Usage 98
5.5. Experiment 1: Disk Space Changes over Time 99
5.6. Experiment 1: Net-IO over Time . 100
5.7. Experiment 1: Stage Durations . 101
5.8. Experiment 1: Trained Model Accuracies 101
5.9. Experiment 1: Trained Model Loss . 102
5.10. Experiment 3: CPU & Memory Utilization 103
5.11. Experiment 3: Stage Durations . 103
5.12. Experiment 4: CPU & Memory Utilization 104
5.13. Experiment 4: Stage Durations . 104
5.14. Experiment 2: CPU & Memory . 105
5.15. Experiment 5: CPU & Memory . 106
5.16. Experiment 5: Disk Space . 106
5.17. Experiment 5: Network IO . 106
5.18. Experiment 7: CPU Utilization . 108
5.19. Experiment 7: Memory Utilization . 108
5.20. Experiment 7: Disk Space . 108
5.21. Experiment 7: Received Network . 109
5.22. Experiment 7: Send Network . 109
5.23. Experiment 7: Stage Durations . 109
5.24. Experiment 6: Monolith HFL CPU & Memory 110
5.25. Experiment 8: Multi-Cluster HFL CPU Utilization 111
5.26. Experiment 8: Multi-Cluster HFL Memory Utilization 111
5.27. Experiment 8: Stage Durations . 111

A.1. Targeted Problems & Challenges of FL Papers 134
A.2. FL Paper Contributions . 134
A.3. Limitations & Future Work of FL Papers 135

B.1. OAK CLI main help text: oak -h . 140
B.2. OAK CLI Application Views . 140
B.3. OAK CLI Service Views . 141

118

List of Figures

B.4. OAK CLI Service Inspection . 142

C.1. Experiment 1: Disk Space Change per Stage 143
C.2. Experiment 1: Network Received per Stage 144
C.3. Experiment 2: Stage Durations . 144
C.4. Experiment 2: CPU Utilization per Stage 145
C.5. Experiment 2: Memory Utilization per Stage 145
C.6. Experiment 5: CPU Utilization per Stage 146
C.7. Experiment 5: Memory Utilization per Stage 146
C.8. Experiment 5: Stage Durations . 147
C.9. Experiment 6: Stage Durations . 147
C.10.Experiment 7: CPU Utilization per Stage 148
C.11.Experiment 7: Memory Utilization per Stage 149
C.12.Experiment 8: CPU Utilization per Stage 150
C.13.Experiment 8: Memory Utilization per Stage 151
C.14.Experiment 8: Network Received per Stage 152

119

List of Tables

2.1. FL Papers considered for FLOps - Part I 18
2.2. Updated FL Framework Comparison . 22

4.1. Subset of Internal Python Projects/Libraries Analysis (17.02.2024) . . . 58
4.2. Conda Python Image Size Comparison (29.08.2024) 64
4.3. A selection of popular ML library images and their sizes (29.08.2024) . 65
4.4. Important FLOps Image Sizes (30.08.2024) 68
4.5. Simple Scikit-learn MNIST Build Example 69
4.6. Simple Scikit-learn Multi-Platform Build Times Example 71

5.1. FLOps Evaluation Experiments I . 92
5.2. FLOps Evaluation Experiments II . 93

6.1. Status of Functional Requirement Fulfillment 113
6.2. Status of Nonfunctional Requirement Fulfillment 113

A.1. FL Papers considered for FLOps - Part II 132
A.2. FL Papers considered for FLOps - Part III 133

120

Bibliography

[1] A. M. Abdelmoniem, A. N. Sahu, M. Canini, and S. A. Fahmy. “REFL: Resource-
Efficient Federated Learning.” In: Proceedings of the Eighteenth European Conference
on Computer Systems. EuroSys ’23. Rome, Italy: Association for Computing
Machinery, 2023, pp. 215–232. isbn: 9781450394871. doi: 10.1145/3552326.
3567485.

[2] Algorithmia 2020 State of Enterprise Machine Learning. Tech. rep. Accessed: 2024-
08-17. 2020.

[3] Alpine Multi-Platform Image. Accessed: 2024-08-31. url: https://hub.docker.
com/_/alpine/tags.

[4] Anaconda Documentation. Accessed: 2024-08-29. url: https://docs.anaconda.
com/.

[5] Apache Arrow Flight Documentation. Accessed: 2024-08-29. url: https://arrow.
apache.org/docs/format/Flight.html.

[6] Apache Arrow Flight Introduction. Accessed: 2024-08-29. url: https : / / www .
dremio.com/blog/an-introduction-to-apache-arrow-flight-sql/.

[7] Apache Arrow Repository. Accessed: 2024-08-29. url: https://github.com/
apache/arrow.

[8] Apache Parquet Documentation. Accessed: 2024-08-29. url: https://parquet.
apache.org/docs/overview/.

[9] Available Flower Strategies. Accessed: 2024-08-16. url: https://github.com/
adap/flower/tree/main/src/py/flwr/server/strategy.

[10] G. Bartolomeo, M. Yosofie, S. Bäurle, O. Haluszczynski, N. Mohan, and J. Ott.
“Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Com-
puting.” In: 2023 USENIX Annual Technical Conference (USENIX ATC 23). Boston,
MA: USENIX Association, July 2023, pp. 215–231. isbn: 978-1-939133-35-9.

[11] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, J. Fernandez-Marques, Y. Gao, L. Sani,
K. H. Li, T. Parcollet, P. P. B. de Gusmão, and N. D. Lane. Flower: A Friendly
Federated Learning Research Framework. 2022. arXiv: 2007.14390 [cs.LG].

121

https://doi.org/10.1145/3552326.3567485
https://doi.org/10.1145/3552326.3567485
https://hub.docker.com/_/alpine/tags
https://hub.docker.com/_/alpine/tags
https://docs.anaconda.com/
https://docs.anaconda.com/
https://arrow.apache.org/docs/format/Flight.html
https://arrow.apache.org/docs/format/Flight.html
https://www.dremio.com/blog/an-introduction-to-apache-arrow-flight-sql/
https://www.dremio.com/blog/an-introduction-to-apache-arrow-flight-sql/
https://github.com/apache/arrow
https://github.com/apache/arrow
https://parquet.apache.org/docs/overview/
https://parquet.apache.org/docs/overview/
https://github.com/adap/flower/tree/main/src/py/flwr/server/strategy
https://github.com/adap/flower/tree/main/src/py/flwr/server/strategy
https://arxiv.org/abs/2007.14390

Bibliography

[12] N. S. Bisht and S. Duttagupta. “Deploying a Federated Learning Based AI
Solution in a Hierarchical Edge Architecture.” In: 2022 IEEE 10th Region 10
Humanitarian Technology Conference (R10-HTC). 2022, pp. 247–252. doi: 10.1109/
R10-HTC54060.2022.9929526.

[13] A. Bourechak, O. Zedadra, M. N. Kouahla, A. Guerrieri, H. Seridi, and G. Fortino.
“At the Confluence of Artificial Intelligence and Edge Computing in IoT-Based
Applications: A Review and New Perspectives.” In: Sensors 23.3 (2023). issn:
1424-8220. doi: 10.3390/s23031639.

[14] B. Bruegge and A. H. Dutoit. Object-Oriented Software Engineering Using UML,
Patterns, and Java. 3rd. USA: Prentice Hall Press, 2009. isbn: 0136061257.

[15] Buildah and Podman Relationship. Accessed: 2024-08-30. url: https://podman.io/
blogs/2018/10/31/podman-buildah-relationship.

[16] Buildah Homepage. Accessed: 2024-08-12. url: https://buildah.io/.

[17] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith,
and A. Talwalkar. “LEAF: A Benchmark for Federated Settings.” In: (2019).
arXiv: 1812.01097 [cs.LG].

[18] M. Chahoud, S. Otoum, and A. Mourad. “On the feasibility of Federated Learn-
ing towards on-demand client deployment at the edge.” In: Information Processing
& Management 60.1 (2023), p. 103150. issn: 0306-4573. doi: https://doi.org/10.
1016/j.ipm.2022.103150.

[19] Z. Chai, Y. Chen, A. Anwar, L. Zhao, Y. Cheng, and H. Rangwala. “FedAT:
a high-performance and communication-efficient federated learning system
with asynchronous tiers.” In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. SC ’21. St. Louis, Mis-
souri: Association for Computing Machinery, 2021. isbn: 9781450384421. doi:
10.1145/3458817.3476211.

[20] V. Chandrasekaran, S. Banerjee, D. Perino, and N. Kourtellis. “Hierarchical
Federated Learning with Privacy.” In: (2022). arXiv: 2206.05209 [cs.LG].

[21] Click Repository. Accessed: 2024-09-03. url: https://github.com/pallets/
click.

[22] CNCF Distribution Registry Documentation. Accessed: 2024-08-30. url: https:
//distribution.github.io/distribution/.

[23] Conda Documentation. Accessed: 2024-08-29. url: https://conda.io/projects/
conda/en/latest/index.html.

[24] Conda documentation about libmamba solver. Accessed: 2024-08-29. url: https:
//conda.github.io/conda-libmamba-solver/user-guide/.

122

https://doi.org/10.1109/R10-HTC54060.2022.9929526
https://doi.org/10.1109/R10-HTC54060.2022.9929526
https://doi.org/10.3390/s23031639
https://podman.io/blogs/2018/10/31/podman-buildah-relationship
https://podman.io/blogs/2018/10/31/podman-buildah-relationship
https://buildah.io/
https://arxiv.org/abs/1812.01097
https://doi.org/https://doi.org/10.1016/j.ipm.2022.103150
https://doi.org/https://doi.org/10.1016/j.ipm.2022.103150
https://doi.org/10.1145/3458817.3476211
https://arxiv.org/abs/2206.05209
https://github.com/pallets/click
https://github.com/pallets/click
https://distribution.github.io/distribution/
https://distribution.github.io/distribution/
https://conda.io/projects/conda/en/latest/index.html
https://conda.io/projects/conda/en/latest/index.html
https://conda.github.io/conda-libmamba-solver/user-guide/
https://conda.github.io/conda-libmamba-solver/user-guide/

Bibliography

[25] containerd Documentation. Accessed: 2024-08-12. url: https://containerd.io/
docs/.

[26] J. L. Dem. The columnar roadmap: Apache Parquet and Apache Arrow. Accessed:
2024-08-31. 2018. url: https://www.youtube.com/watch?v=dPb2ZXnt2_U.

[27] Docker Buildx Documentation. Accessed: 2024-08-31. url: https://docs.docker.
com/reference/cli/docker/buildx/build/.

[28] Docker Manifest Documentation. Accessed: 2024-08-31. url: https://docs.docker.
com/reference/cli/docker/manifest/.

[29] Docker Multi-Platfrom Image Builds Documentation. Accessed: 2024-08-31. url:
https://docs.docker.com/build/building/multi-platform/.

[30] Dragonfly - P2P file distribution and image acceleration system. Accessed: 2024-09-08.
url: https://github.com/dragonflyoss/Dragonfly2.

[31] M. Elkodary. “Enhancing Edge Orchestration Flexibility through Addons.” MA
thesis. 2024.

[32] EMNIST Dataset. Accessed: 2024-08-29. url: https://www.nist.gov/itl/
products-and-services/emnist-dataset.

[33] F. B. Fava, L. F. Laviola Leite, L. F. A. Da Silva, P. R. Da Silva Amalfi Costa, A. G.
Diniz Nogueira, A. F. Gobus Lopes, C. Schepke, D. L. Kreutz, and R. B. Mansilha.
“Assessing the Performance of Docker in Docker Containers for Microservice-
Based Architectures.” In: 2024 32nd Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP). 2024, pp. 137–142. doi: 10.1109/
PDP62718.2024.00026.

[34] FedML Github. Accessed: 2024-08-16. url: https://github.com/FedML-AI/
FedML.

[35] flask-openapi3 Framework. Accessed: 2024-08-29. url: https://github.com/
luolingchun/flask-openapi3.

[36] FLOps Code Repository. Accessed: 2024-08-12. url: https : / / github . com /
oakestra/addon-FLOps.

[37] FLOps Utils Pip Package. Accessed: 2024-08-26. url: https://pypi.org/project/
flops-utils/.

[38] Flower AI Summit. Accessed: 2024-09-09. url: https://flower.ai/events/
flower-ai-summit-2024/.

[39] Flower Blog. Accessed: 2024-09-09. url: https://flower.ai/blog/.

[40] Flower Container Images. Accessed: 2024-08-30. url: https://hub.docker.com/
u/flwr.

123

https://containerd.io/docs/
https://containerd.io/docs/
https://www.youtube.com/watch?v=dPb2ZXnt2_U
https://docs.docker.com/reference/cli/docker/buildx/build/
https://docs.docker.com/reference/cli/docker/buildx/build/
https://docs.docker.com/reference/cli/docker/manifest/
https://docs.docker.com/reference/cli/docker/manifest/
https://docs.docker.com/build/building/multi-platform/
https://github.com/dragonflyoss/Dragonfly2
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://doi.org/10.1109/PDP62718.2024.00026
https://doi.org/10.1109/PDP62718.2024.00026
https://github.com/FedML-AI/FedML
https://github.com/FedML-AI/FedML
https://github.com/luolingchun/flask-openapi3
https://github.com/luolingchun/flask-openapi3
https://github.com/oakestra/addon-FLOps
https://github.com/oakestra/addon-FLOps
https://pypi.org/project/flops-utils/
https://pypi.org/project/flops-utils/
https://flower.ai/events/flower-ai-summit-2024/
https://flower.ai/events/flower-ai-summit-2024/
https://flower.ai/blog/
https://hub.docker.com/u/flwr
https://hub.docker.com/u/flwr

Bibliography

[41] Flower Datasets. Accessed: 2024-08-16. url: https://flower.ai/docs/datasets/.

[42] Flower Discussion Forum. Accessed: 2024-09-09. url: https://discuss.flower.
ai/.

[43] Flower Documentation. Accessed: 2024-08-12. url: https://flower.ai/docs/.

[44] Flower Examples. Accessed: 2024-08-12. url: https://github.com/adap/flower/
tree/main/examples.

[45] Flower Github. Accessed: 2024-08-16. url: https://github.com/adap/flower.

[46] Flower Homepage. Accessed: 2024-08-16. url: https://flower.ai/.

[47] Flower Homepage Documentation. Accessed: 2024-08-12. url: https://flower.ai/
docs/.

[48] Flower Monthly. Accessed: 2024-09-09. url: https://flower.ai/events/flower-
monthly/.

[49] Flower Next API Announcement. Accessed: 2024-08-30. url: https://flower.ai/
blog/2024-04-03-announcing-flower-1.8-release.

[50] Flower Slack. Accessed: 2024-09-09. url: https://flower.ai/join-slack/.

[51] Flower TLS Documentation. Accessed: 2024-09-08. url: https://flower.ai/docs/
framework/docker/enable-tls.html.

[52] Flower Youtube Channel. Accessed: 2024-09-09. url: https://www.youtube.com/
@flowerlabs.

[53] J. Garg. MLflow in Action - Master the art of MLOps using MLflow tool. Accessed:
2024-08-18. url: https://www.udemy.com/course/mlflow-course/.

[54] G. Genovese, G. Singh, C. Campolo, and A. Molinaro. “Enabling Edge-based
Federated Learning through MQTT and OMA Lightweight-M2M.” In: 2022
IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). 2022, pp. 1–5. doi:
10.1109/VTC2022-Spring54318.2022.9860964.

[55] R. Hamsath Mohammed Khan. A Comprehensive study on Federated Learning
frameworks : Assessing Performance, Scalability, and Benchmarking with Deep Learning
Model. Accessed: 2024-08-16. 2023.

[56] HDF5-FEMNIST Project. Accessed: 2024-08-29. url: https://github.com/Xiao-
Chenguang/HDF5-FEMNIST.

[57] A. Hilmkil, S. Callh, M. Barbieri, L. R. Sütfeld, E. L. Zec, and O. Mogren. “Scaling
Federated Learning for Fine-Tuning of Large Language Models.” In: Natural
Language Processing and Information Systems. Ed. by E. Métais, F. Meziane, H.
Horacek, and E. Kapetanios. Cham: Springer International Publishing, 2021,
pp. 15–23. isbn: 978-3-030-80599-9.

124

https://flower.ai/docs/datasets/
https://discuss.flower.ai/
https://discuss.flower.ai/
https://flower.ai/docs/
https://github.com/adap/flower/tree/main/examples
https://github.com/adap/flower/tree/main/examples
https://github.com/adap/flower
https://flower.ai/
https://flower.ai/docs/
https://flower.ai/docs/
https://flower.ai/events/flower-monthly/
https://flower.ai/events/flower-monthly/
https://flower.ai/blog/2024-04-03-announcing-flower-1.8-release
https://flower.ai/blog/2024-04-03-announcing-flower-1.8-release
https://flower.ai/join-slack/
https://flower.ai/docs/framework/docker/enable-tls.html
https://flower.ai/docs/framework/docker/enable-tls.html
https://www.youtube.com/@flowerlabs
https://www.youtube.com/@flowerlabs
https://www.udemy.com/course/mlflow-course/
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860964
https://github.com/Xiao-Chenguang/HDF5-FEMNIST
https://github.com/Xiao-Chenguang/HDF5-FEMNIST

Bibliography

[58] Hugging Face Datasets and Arrow Documentation. Accessed: 2024-08-29. url: https:
//huggingface.co/docs/datasets/about_arrow.

[59] Hugging Face Homepage. Accessed: 2024-08-16. url: https://huggingface.co/.

[60] Image Manifest Versions and Schemas Documentation. Accessed: 2024-08-31. url:
https://distribution.github.io/distribution/spec/manifest-v2-2/.

[61] M. Isaksson, E. L. Zec, R. Cöster, D. Gillblad, and Š. Girdzijauskas. “Adaptive
Expert Models for Personalization in Federated Learning.” In: (2022). arXiv:
2206.07832 [cs.LG].

[62] Q. Jia, L. Guo, Y. Fang, and G. Wang. “Efficient Privacy-Preserving Machine
Learning in Hierarchical Distributed System.” In: IEEE Transactions on Net-
work Science and Engineering 6.4 (2019), pp. 599–612. doi: 10.1109/TNSE.2018.
2859420.

[63] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and L. Tassiulas.
“Model Pruning Enables Efficient Federated Learning on Edge Devices.” In:
IEEE Transactions on Neural Networks and Learning Systems 34.12 (2023), pp. 10374–
10386. doi: 10.1109/TNNLS.2022.3166101.

[64] J. Kempter. “Next-Generation Orchestration Frameworks for Multicluster Cloud-
Edge Integration.” MA thesis. 2024.

[65] J. Kim, G. Park, M. Kim, and S. Park. “Cluster-Based Secure Aggregation for
Federated Learning.” In: Electronics 12.4 (2023). issn: 2079-9292. doi: 10.3390/
electronics12040870.

[66] D. Kreuzberger, N. Kühl, and S. Hirschl. “Machine Learning Operations (MLOps):
Overview, Definition, and Architecture.” In: IEEE Access 11 (2023), pp. 31866–
31879. doi: 10.1109/ACCESS.2023.3262138.

[67] A. Lamb. Building InfluxDB 3.0 with Apache Arrow, DataFusion, Flight and Parquet.
Accessed: 2024-08-31. 2024. url: https://www.datacouncil.ai/talks24/
building - influxdb - 30 - with - apache - arrow - datafusion - flight - and -
parquet?hsLang=en.

[68] C. Legislature. California Consumer Privacy Act (CCPA). Online; accessed August
11, 2024. 2018.

[69] J. Lenoy. Apache Arrow Flight SQL: High Performance, Simplicity, and Interoperability
for Data Transfers. Accessed: 2024-08-31. 2022. url: https://www.youtube.com/
watch?v=OLsXlKb_XRQ.

125

https://huggingface.co/docs/datasets/about_arrow
https://huggingface.co/docs/datasets/about_arrow
https://huggingface.co/
https://distribution.github.io/distribution/spec/manifest-v2-2/
https://arxiv.org/abs/2206.07832
https://doi.org/10.1109/TNSE.2018.2859420
https://doi.org/10.1109/TNSE.2018.2859420
https://doi.org/10.1109/TNNLS.2022.3166101
https://doi.org/10.3390/electronics12040870
https://doi.org/10.3390/electronics12040870
https://doi.org/10.1109/ACCESS.2023.3262138
https://www.datacouncil.ai/talks24/building-influxdb-30-with-apache-arrow-datafusion-flight-and-parquet?hsLang=en
https://www.datacouncil.ai/talks24/building-influxdb-30-with-apache-arrow-datafusion-flight-and-parquet?hsLang=en
https://www.datacouncil.ai/talks24/building-influxdb-30-with-apache-arrow-datafusion-flight-and-parquet?hsLang=en
https://www.youtube.com/watch?v=OLsXlKb_XRQ
https://www.youtube.com/watch?v=OLsXlKb_XRQ

Bibliography

[70] W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung, and C. Miao.
“Decentralized Edge Intelligence: A Dynamic Resource Allocation Framework for
Hierarchical Federated Learning.” In: IEEE Transactions on Parallel and Distributed
Systems 33.3 (2022), pp. 536–550. doi: 10.1109/TPDS.2021.3096076.

[71] Linux Kernel FUSE Documentation. Accessed: 2024-08-30. url: https://www.
kernel.org/doc/html/latest/filesystems/fuse.html.

[72] Z. Liu, D. Li, J. Fernandez-Marques, S. Laskaridis, Y. Gao, Ł. Dudziak, S. Z. Li,
S. X. Hu, and T. Hospedales. “Federated Learning for Inference at Anytime and
Anywhere.” In: (2022). arXiv: 2212.04084 [cs.LG].

[73] H. Ludwig and N. Baracaldo, eds. Federated Learning - A Comprehensive Overview
of Methods and Applications. Springer, 2022. isbn: 978-3-030-96896-0. doi: 10.
1007/978-3-030-96896-0.

[74] Mamba Documentation. Accessed: 2024-08-29. url: https://mamba.readthedocs.
io/en/latest/.

[75] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas. “Communication-
Efficient Learning of Deep Networks from Decentralized Data.” In: Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics. Ed. by
A. Singh and J. Zhu. Vol. 54. Proceedings of Machine Learning Research. PMLR,
2017, pp. 1273–1282.

[76] Micromamba Documentation. Accessed: 2024-08-29. url: https://mamba.readthedocs.
io/en/latest/user_guide/micromamba.html.

[77] Miniconda Documentation. Accessed: 2024-08-29. url: https://docs.anaconda.
com/miniconda/.

[78] MLflow Docker Example. Accessed: 2024-08-18. url: https : / / github . com /
mlflow/mlflow/tree/master/examples/docker.

[79] MLflow Documentation. Accessed: 2024-08-18. url: https://mlflow.org/docs/
latest/index.html#.

[80] MLflow Documentation about Docker Build Commands. Accessed: 2024-08-30. url:
https://mlflow.org/docs/2.12.2/cli.html?highlight=docker%20image#
mlflow-models-build-docker.

[81] MLflow Examples. Accessed: 2024-08-18. url: https://github.com/mlflow/
mlflow/tree/master/examples.

[82] MLflow GitHub. Accessed: 2024-08-18. url: https://github.com/mlflow/
mlflow.

[83] MLflow Homepage. Accessed: 2024-08-18. url: https://mlflow.org/.

126

https://doi.org/10.1109/TPDS.2021.3096076
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://www.kernel.org/doc/html/latest/filesystems/fuse.html
https://arxiv.org/abs/2212.04084
https://doi.org/10.1007/978-3-030-96896-0
https://doi.org/10.1007/978-3-030-96896-0
https://mamba.readthedocs.io/en/latest/
https://mamba.readthedocs.io/en/latest/
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://mamba.readthedocs.io/en/latest/user_guide/micromamba.html
https://docs.anaconda.com/miniconda/
https://docs.anaconda.com/miniconda/
https://github.com/mlflow/mlflow/tree/master/examples/docker
https://github.com/mlflow/mlflow/tree/master/examples/docker
https://mlflow.org/docs/latest/index.html#
https://mlflow.org/docs/latest/index.html#
https://mlflow.org/docs/2.12.2/cli.html?highlight=docker%20image#mlflow-models-build-docker
https://mlflow.org/docs/2.12.2/cli.html?highlight=docker%20image#mlflow-models-build-docker
https://github.com/mlflow/mlflow/tree/master/examples
https://github.com/mlflow/mlflow/tree/master/examples
https://github.com/mlflow/mlflow
https://github.com/mlflow/mlflow
https://mlflow.org/

Bibliography

[84] MLflow Inference Serving Documentation. Accessed: 2024-09-08. url: https://
mlflow.org/docs/latest/deployment/deploy-model-locally.html.

[85] Moby Project Homepage. Accessed: 2024-08-20. url: https://mobyproject.org/.

[86] J. Nguyen, J. Wang, K. Malik, M. Sanjabi, and M. Rabbat. “Where to Begin? On
the Impact of Pre-Training and Initialization in Federated Learning.” In: (2023).
arXiv: 2206.15387 [cs.LG].

[87] Nydus - Dragonfly Image Service. Accessed: 2024-09-08. url: https://github.
com/dragonflyoss/nydus.

[88] Oakestra & FLOps CLI Code Repository. Accessed: 2024-08-12. url: https://
github.com/oakestra/oakestra-cli.

[89] Oakestra Dashboard. Accessed: 2024-09-03. url: https://github.com/oakestra/
dashboard.

[90] OCI Image Index Specification. Accessed: 2024-08-31. url: https://github.com/
opencontainers/image-spec/blob/main/image-index.md.

[91] Open Container Initiative Homepage. Accessed: 2024-08-20. url: https://opencontainers.
org/.

[92] OpenFL. Accessed: 2024-08-16. url: https://github.com/openfl/openfl.

[93] M. Openja, F. Majidi, F. Khomh, B. Chembakottu, and H. Li. “Studying the Prac-
tices of Deploying Machine Learning Projects on Docker.” In: Proceedings of the
26th International Conference on Evaluation and Assessment in Software Engineering.
EASE ’22. Gothenburg, Sweden: Association for Computing Machinery, 2022,
pp. 190–200. isbn: 9781450396134. doi: 10.1145/3530019.3530039.

[94] T. E. Parliament and Council. Regulation (EU) 2016/679 of the European Parliament
and of the Council of 27 April 2016 on the protection of natural persons with regard to
the processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation). Online; accessed August
11, 2024. 2016.

[95] Podman Documentation. Accessed: 2024-08-30. url: https://docs.podman.io/
en/latest/.

[96] Poetry Documentation. Accessed: 2024-08-29. url: https://python-poetry.org/
docs/.

[97] Pysyft Github. Accessed: 2024-08-16. url: https://github.com/OpenMined/
PySyft.

[98] Python argcomplete Documentation. Accessed: 2024-09-03. url: https://kislyuk.
github.io/argcomplete/.

127

https://mlflow.org/docs/latest/deployment/deploy-model-locally.html
https://mlflow.org/docs/latest/deployment/deploy-model-locally.html
https://mobyproject.org/
https://arxiv.org/abs/2206.15387
https://github.com/dragonflyoss/nydus
https://github.com/dragonflyoss/nydus
https://github.com/oakestra/oakestra-cli
https://github.com/oakestra/oakestra-cli
https://github.com/oakestra/dashboard
https://github.com/oakestra/dashboard
https://github.com/opencontainers/image-spec/blob/main/image-index.md
https://github.com/opencontainers/image-spec/blob/main/image-index.md
https://opencontainers.org/
https://opencontainers.org/
https://github.com/openfl/openfl
https://doi.org/10.1145/3530019.3530039
https://docs.podman.io/en/latest/
https://docs.podman.io/en/latest/
https://python-poetry.org/docs/
https://python-poetry.org/docs/
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://kislyuk.github.io/argcomplete/
https://kislyuk.github.io/argcomplete/

Bibliography

[99] Python argparse Documentation. Accessed: 2024-09-03. url: https://docs.python.
org/3/library/argparse.html.

[100] QEMU Documentation. Accessed: 2024-08-31. url: https://www.qemu.org/
documentation/.

[101] L. Qu, Y. Zhou, P. P. Liang, Y. Xia, F. Wang, E. Adeli, L. Fei-Fei, and D. Rubin.
“Rethinking Architecture Design for Tackling Data Heterogeneity in Federated
Learning.” In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 2022, pp. 10061–10071.

[102] Red Hat explains Buildah. Accessed: 2024-08-30. url: https://www.redhat.com/
en/topics/containers/what-is-buildah.

[103] Red Hat explains Podman. Accessed: 2024-08-30. url: https://www.redhat.com/
en/topics/containers/what-is-podman.

[104] Rich Repository. Accessed: 2024-09-03. url: https://github.com/Textualize/
rich.

[105] P. Riedel, L. Schick, R. von Schwerin, M. Reichert, D. Schaudt, and A. Hafner.
“Comparative analysis of open-source federated learning frameworks - a literature-
based survey and review.” In: International Journal of Machine Learning and Cyber-
netics (June 2024). doi: 10.1007/s13042-024-02234-z.

[106] H. Safri, M. M. Kandi, Y. Miloudi, C. Bortolaso, D. Trystram, and F. Desprez.
“Towards Developing a Global Federated Learning Platform for IoT.” In: 2022
IEEE 42nd International Conference on Distributed Computing Systems (ICDCS).
2022, pp. 1312–1315. doi: 10.1109/ICDCS54860.2022.00145.

[107] A. Saidani. “A Systematic Comparison of Federated Machine Learning Li-
braries.” MA thesis. 2023.

[108] A. Saidani. FMLB Github. Accessed: 2024-08-16. 2023. url: https://github.
com/sdn98/BFML/tree/master.

[109] Scopus Homepage. Accessed: 2024-08-14. url: https://www.scopus.com/.

[110] SetupTools User Guide. Accessed: 2024-08-29. url: https://setuptools.pypa.
io/en/latest/userguide/pyproject_config.html.

[111] Slim(toolkit). Accessed: 2024-09-08. url: https://github.com/slimtoolkit/
slim.

[112] Tensorflow-Federated Github. Accessed: 2024-08-16. url: https://github.com/
google-parfait/tensorflow-federated.

[113] Typer Repository. Accessed: 2024-09-03. url: https://github.com/fastapi/
typer.

128

https://docs.python.org/3/library/argparse.html
https://docs.python.org/3/library/argparse.html
https://www.qemu.org/documentation/
https://www.qemu.org/documentation/
https://www.redhat.com/en/topics/containers/what-is-buildah
https://www.redhat.com/en/topics/containers/what-is-buildah
https://www.redhat.com/en/topics/containers/what-is-podman
https://www.redhat.com/en/topics/containers/what-is-podman
https://github.com/Textualize/rich
https://github.com/Textualize/rich
https://doi.org/10.1007/s13042-024-02234-z
https://doi.org/10.1109/ICDCS54860.2022.00145
https://github.com/sdn98/BFML/tree/master
https://github.com/sdn98/BFML/tree/master
https://www.scopus.com/
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://setuptools.pypa.io/en/latest/userguide/pyproject_config.html
https://github.com/slimtoolkit/slim
https://github.com/slimtoolkit/slim
https://github.com/google-parfait/tensorflow-federated
https://github.com/google-parfait/tensorflow-federated
https://github.com/fastapi/typer
https://github.com/fastapi/typer

Bibliography

[114] uv Python package and project manager. Accessed: 2024-08-29. url: https://
github.com/astral-sh/uv.

[115] Waitress WSGI Server. Accessed: 2024-08-29. url: https://github.com/Pylons/
waitress.

[116] J. Wang, Q. Liu, H. Liang, G. Joshi, and H. V. Poor. “Tackling the Objective
Inconsistency Problem in Heterogeneous Federated Optimization.” In: Advances
in Neural Information Processing Systems. Ed. by H. Larochelle, M. Ranzato, R.
Hadsell, M. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc., 2020, pp. 7611–
7623.

[117] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan.
“Adaptive Federated Learning in Resource Constrained Edge Computing Sys-
tems.” In: IEEE Journal on Selected Areas in Communications 37.6 (2019), pp. 1205–
1221. doi: 10.1109/JSAC.2019.2904348.

[118] P. Xu, S. Shi, and X. Chu. “Performance Evaluation of Deep Learning Tools in
Docker Containers.” In: 2017 3rd International Conference on Big Data Computing
and Communications (BIGCOM). 2017, pp. 395–403. doi: 10.1109/BIGCOM.2017.
32.

[119] Z. Yang, S. Fu, W. Bao, D. Yuan, and A. Y. Zomaya. “Hierarchical Federated
Learning with Momentum Acceleration in Multi-Tier Networks.” In: (2022).
arXiv: 2210.14560 [cs.LG].

[120] C. You, K. Guo, H. H. Yang, and T. Q. S. Quek. “Hierarchical Personalized
Federated Learning Over Massive Mobile Edge Computing Networks.” In:
IEEE Transactions on Wireless Communications 22.11 (2023), pp. 8141–8157. doi:
10.1109/TWC.2023.3260141.

[121] Z. Yu, J. Hu, G. Min, Z. Wang, W. Miao, and S. Li. “Privacy-Preserving Federated
Deep Learning for Cooperative Hierarchical Caching in Fog Computing.” In:
IEEE Internet of Things Journal 9.22 (2022), pp. 22246–22255. doi: 10.1109/JIOT.
2021.3081480.

[122] H. Zhang, J. Bosch, and H. H. Olsson. “EdgeFL: A Lightweight Decentralized
Federated Learning Framework.” In: (2023). arXiv: 2309.02936 [cs.SE].

129

https://github.com/astral-sh/uv
https://github.com/astral-sh/uv
https://github.com/Pylons/waitress
https://github.com/Pylons/waitress
https://doi.org/10.1109/JSAC.2019.2904348
https://doi.org/10.1109/BIGCOM.2017.32
https://doi.org/10.1109/BIGCOM.2017.32
https://arxiv.org/abs/2210.14560
https://doi.org/10.1109/TWC.2023.3260141
https://doi.org/10.1109/JIOT.2021.3081480
https://doi.org/10.1109/JIOT.2021.3081480
https://arxiv.org/abs/2309.02936

Appendices

130

A. Additional FL Research Paper Analysis

Remaining FL Papers

The following two tables (A.1, A.2) refer to the omitted FL papers that we examined
for FLOps. The main part can be found here (2.1). Table A.1 shows the first half of the
remaining FL papers and table A.2 depicts the second half. When there is no content
(-) in the "Limitations & Future Work" column that means that the authors did not
mention any explicitly and that we did not notice anything specifically.

Futher FL Paper Patterns

Figure A.1 reveals a similar trend discussed in (2.1.4). The primary focus of the exam-
ined FL papers is on investigating new concepts or improving existing performance,
scalability, and complexity bottlenecks. Several papers have aimed to narrow the gap
between industry and research or make FL easier to use. This ease of use seems to focus
on improving already configured and working FL setups. The main contributions seen
in Figure A.2 strengthen these assumptions. Mathematical and conceptual proofs dom-
inate this chart. They prove that novel architectures and algorithms work as proposed.
Contributions do not seem to focus on improving the initial setup, deployment, and
configuration processes. Figure A.3 reflects this perception. If specified, the focal point
is on improving privacy and security, further performance optimizations, or adding
support for more ML use cases. Even the future focus is not on optimizing accessibility,
usability, or the mentioned initial vital steps.

131

A. Additional FL Research Paper Analysis

ID Contributions Limitations Future Work

[61]

Improved an existing PFL algorithm that used
clustered models (but discarded all but one in the
end). A novel idea to improve performance by
using these cluster models as experts in a MoE
(Mixture of Experts) setup.

-

[116]
Analysis of drift that occurs due to different
learner speeds. Novel ideas eliminating that drift.

This work does not consider hierarchical struc-
tures, clusters/tiers, or privacy/security.

[62]

Efficiency improvements for privacy-preserving
ML techniques for hierarchically distributed struc-
tures. Different data partitions and distributions,
such as vertical and non-IID, were considered.

Written in 2019. Many other newer papers have
investigated HFL security/privacy further.

[17]
A benchmark for federated settings, especially FL,
with implementations and datasets.

Outdated benchmark from 2019. When we tried
to use it, we encountered many errors and prob-
lems, such as broken dependencies, failing exam-
ple code, and more.

[12]
Proof-of-concept that demonstrates that FL can be
deployed and used in hierarchical architectures
that fulfill specific industry standards.

The findings and experiments are very basic. Fur-
ther topics such as diverse network conditions,
heterogeneous data, and resources should be in-
vestigated.

[119]
Accelerated and improved FL training and the
aggregation algorithm via a hierarchical structure
and ML momentum.

Security, privacy, and challenging network condi-
tions were not considered.

[57]
Analysis of LLM behavior in FL when using dif-
ferent numbers of learners.

Due to its proof-of-concept nature, this work only
features simple experiments that yield few new
insights.

[54]

A novel approach to finding and sharing infor-
mation between FL components and discovering
learners. This work uses MQTT with semantic
URIs representing the clients’ properties, includ-
ing their resources.

It is a very short paper. The experiments are only
simulated. This work’s approach was not exten-
sively compared to classic or novel techniques.

Table A.1.: FL Papers considered for FLOps - Part II

132

A. Additional FL Research Paper Analysis

ID Contributions Limitations Future Work

[20]
Analysis of HFL benefits for security. A novel
secure aggregation method and hierarchical DP
for HFL.

The number of (online) clients per zone has to be
small. Further privacy improvements should be
investigated.

[63]
Introduction of distributed adaptive FL model
pruning.

Privacy and security were not considered. Further
optimizations are possible, primarily focused on
GPUs.

[101]

Analysis of the use of transformers in FL com-
pared to other architectures. Findings show that
transformers are excellent and should be preferred
for FL.

Further investigations are required on how trans-
formers behave with other, latest FL algorithms
and privacy/security schemas.

[122]
A scalable edge-only (serverless) FL framework. It
utilizes synchronous training and promises rapid
integration, prototyping, and deployment.

Planned improvements for this framework include
resource optimizations like model compression
and quantization and adaptive aggregation strate-
gies based on network conditions, resources, and
data diversity. The framework assumes P2P with-
out addressing diverse network conditions. It
does not consider security or privacy. The evalua-
tion only checked image classification tasks.

[120]

This paper is likely the first to combine PFL with
HFL in a three-tiered structure. It proves mathe-
matically that its approach works and converges.
This work includes many interesting insights re-
garding HPFL.

-

[117]

Analysis of the effects of different global/local up-
date frequencies. A new algorithm to determine
global aggregation frequency instead of using the
common static one.

Diverse resource usage should be investigated.

[72]

A combination of FL with transfer-learning on
Transformers. A parameter efficient (PE) learning
method to adapt pre-trained Transformer Foun-
dation Models (FMs) in FL. A novel PE adapter
that modulates all pre-trained Transformers layers,
enabling flexible early predictions.

-

Table A.2.: FL Papers considered for FLOps - Part III

133

A. Additional FL Research Paper Analysis

Figure A.1.: Targeted Problems & Challenges of FL Papers

Figure A.2.: FL Paper Contributions

134

A. Additional FL Research Paper Analysis

Figure A.3.: Limitations & Future Work of FL Papers

135

B. CLI Technicalities

We carefully considered what libraries to use for this CLI to be flexible and easily
extendible. The OAK CLI initially used Python’s argparse [99] and argcomplete [98].
Argparse is an established feature-rich standard library. Its downside is that it requires
a lot of boilerplate code, especially when the argument structure is a complex nested
hierarchy. Argcomplete enables auto-/tab-completions of CLI commands. Enabling this
functionality in a pure Python tool can be tricky and require specific workarounds. OAK
CLI now uses Typer [113]. Typer requires minimal decorator augmentations to enable
CLI applications. This is possible because Typer smartly utilizes available Python-type
hints in function signatures. It automatically comes with auto/tab completion and
includes highly readable, pretty UI features powered by Rich [104]. Rich is a prominent
library for Python terminal formatting. Typer is built on top of Click [21], one of the
most popular Python CLI frameworks. The downside of Typer is that it is still in
relatively early development. It lacks a first major release version. It has some minor
cutbacks compared to argparse, but discussing those would bloat this work.

B.0.1. CLI Commands

The root command is oak. The following is a simplified overview that does not depict
or explain every available option and feature to avoid bloating this work because the
CLI underlies active change. Most of the subcommands below have shorter aliases to
help accelerate typing.

Auxiliary/Meta

help : Shows auxiliary information. This flag is available for every subcommand.

version : Shows the version of the currently installed OAK CLI.

api-docs : Shows a link to Oakestra’s Swagger API documentation page.

Applications

a : The pre-command to work with Oakestra applications.

136

B. CLI Technicalities

create : Creates one or multiple Oakestra applications based on the provided SLA.
The additional optional flag -d automatically deploys all services present in
the application SLA. The CLI comes with pre-build common app SLAs that
users can inspect and modify to their liking.

delete : Deletes one or all applications.

show : Displays an overview of the current applications. The overview comes in
three different variations. The simple view shows a table of all applications
with minimal additional information, such as their number of services and
ID. The detailed view shows a table with additional information columns.
The exhaustive view shows the verbatim underlying JSON object showing
all available details. The -v flag (verbosity) toggles between these versions.
This overview gets printed a single time. The -l flag (live-display) starts an
overview that refreshes itself every three seconds.

Services

s : The pre-command to work with Oakestra services. Remember that services are
part of applications. They cannot be created in isolation. Usually, one creates an
application and then deploys the services mentioned in its SLA.

deploy : Deploys a new service instance.

undeploy : Un-deploys a specific or all service instances of a single or every service.

show : The show subcommand for services works exactly as for applications,
including the verbosity and live-display flags. The difference between them
is the displayed information.

inspect : The inspect command shows detailed information of a single service
instead of all services. The main benefit of inspecting a service is to see its
latest logs. This command also offers the -l (live-display) flag, so users can
observe service instance logs close to real-time.

FLOps

addon flops : FLOps is one of Oakestra’s addons. The addon subcommand tells the CLI to
show addon-related commands. The flops subcommand shows the available
FLOps CLI commands.

project : Starts a new FLOps project. The CLI currently provides several pre-build
project SLAs. They use different ML frameworks such as Scikit-learn or

137

B. CLI Technicalities

Pytorch with different datasets such as MNIST or CIFAR-10. They use
varying training configurations, including various numbers of learners and
training rounds. SLAs are available for classic and HFL projects.

tracking : This command returns the URL to the user’s tracking server. If no tracking
server exists, it will create one.

mock-data : Launches a mock data provider based on the specified FLOps Helper SLA.

clear-registry : Clears the image registry hosted via the FLOps management.

reset-database : Resets the FLOps management database.

restart-management : Restarts all FLOps management components.

Oakestra Docker Containers

d : Oakestra’s control plane runs on two Docker compose files for the root and
cluster aggregators. When developing and modifying the code of one of these
components, many developers rebuilt and restarted the entire compose file or
even the entire cluster to see the changes take effect. This command allows one to
rebuild a single container of an Oakestra compose file directly, which leads to the
same result. Rebuilding a single container takes a fraction of the time required to
rebuild the entire compose file or cluster. Thus, this command enables accelerated
development/change cycles. Users can decide if they want to restart or rebuild
an Oakestra container. A –cache-less flag is available for the rebuild command
to ensure all changes are propagated.

Worker Node
The w pre-command includes commands that are specific for worker nodes.

ctr delete-images : This command is especially useful when developing images. For example, a
worker node must pull the FLOps image builder service image before running
its container. When developing this image and pushing it as the same (latest)
version, containerd sees that the tag is already present locally and does not pull
the updated version. After using this command, one can be sure that the next
image used will be the latest pushed one.

Installer
The installer pre-command hosts commands to install and set up necessary depen-
dencies on the host machine. The OAK-CLI uses Ansible to perform the installation.

138

B. CLI Technicalities

fundamentals : The fundamentals command will install core dependencies such as Git, Docker,
and Golang.

Configuration
The CLI is configurable to avoid overwhelming users with all these available features
and only shows applicable and useful commands for their concrete use case. It stores
these configurations persistently in a config file via Python’s configparser library. Users
should set their intended use case via the CLI to unlock the relevant commands. As a
result, the CLI can be a fine-tuned tool for different user groups and scenarios.

c : The pre-command to enter the CLI configuration commands.

show-config : Displays the current CLI configuration.

local-machine-purpose : This command allows users to pick their preferred CLI features.

key-vars : Various commands depend on properly configured CLI key variables. If
users try to run a command where a key variable is undefined, the CLI will
ask the user to define it first. One example of such a key variable is the path
to the cloned Oakestra or FLOps repository. These pointers let the CLI know
where Oakestra’s or FLOps’ compose files reside.

Evaluation
The evaluation commands are very experimental and might get removed from the CLI.
We used them to run the evaluations for FLOps.

evaluate : Shows a list of commands to control evaluations. This includes starting manual
or automatic evaluation cycles or displaying CSV files that get populated during
evaluation. Further details are available in the evaluation chapter.

B.0.2. CLI Showcase

This subsection presents several screenshots of the current OAK CLI. It only focuses
on visually interesting command outputs. The CLI is in active development and is
subject to change. The first screenshot B.1 shows the main help text of the OAK CLI.
Figure B.2 depicts an example of a single app displayed in different verbosity modes.
Figure B.3 shows the simple and detailed view of the services from the single app
from the previous figure. We ommit showing the exhaustive view because its JSON
representation is very verbose. Screenshot B.4 shows the detailed inspection view of a
concrete service with two instances. The grey text at the top shows service properties.
The light blue text underneath it presents service instance information. The green text
shows the latest logs of each deployed instance.

139

B. CLI Technicalities

Figure B.1.: OAK CLI main help text: oak -h

Figure B.2.: OAK CLI Application Views

140

B. CLI Technicalities

Figure B.3.: OAK CLI Service Views
141

B. CLI Technicalities

Figure B.4.: OAK CLI Service Inspection

142

C. Additional Evaluation Plots

This chapter presents further evaluation experiment plots. Showing and analyzing all
available plots would heavily bloat this work. This appendix only shows additional
plots for some experiments that correspond with the experiment-specific variable
assignment, which make them different from the base case. The complete set of data
and plots is available in [88].

Experiment 1

500 0 500
Disk Space Change (MB/s)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Start Post-Training Steps

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

Figure C.1.: Experiment 1: Disk Space Change per Stage

143

C. Additional Evaluation Plots

0 100
Network Received (MB/s)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Start Post-Training Steps

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

Figure C.2.: Experiment 1: Network Received per Stage

Experiment 2

0 1 2 3 4 5 6
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

FLOps Project Stage Durations

Figure C.3.: Experiment 2: Stage Durations

144

C. Additional Evaluation Plots

0 20 40 60 80 100
CPU Usage (%)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Start Post-Training Steps

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

Figure C.4.: Experiment 2: CPU Utilization per Stage

40 50 60 70 80
Memory Usage (%)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Start Post-Training Steps

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

Figure C.5.: Experiment 2: Memory Utilization per Stage

145

C. Additional Evaluation Plots

Experiment 5

0 20 40 60 80 100
CPU Usage (%)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Figure C.6.: Experiment 5: CPU Utilization per Stage

40 45 50 55 60 65 70
Memory Usage (%)

Evaluation-Run Start

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Figure C.7.: Experiment 5: Memory Utilization per Stage

146

C. Additional Evaluation Plots

0 2 4 6 8 10 12 14 16
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

FLOps Project Stage Durations

Figure C.8.: Experiment 5: Stage Durations

Experiment 6

0 1 2 3 4 5 6 7
Evaluation-Run Duration (minutes)

FL-Actors Image-Builder Deployment

FL-Actors Image Build

Aggregator Deployment

FL Training

Trained-Model Image-Builder Deployment

Trained-Model Image Build

Deploy Trained-Model

FLOps Project Stage Durations

Figure C.9.: Experiment 6: Stage Durations

147

C. Additional Evaluation Plots

Experiment 7

0 10 20 30 40 50
CPU Usage (%)

root

cluster_b

cluster_a

FLOps Project Stage
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure C.10.: Experiment 7: CPU Utilization per Stage

148

C. Additional Evaluation Plots

0 5 10 15 20 25 30 35 40
Memory Usage (%)

root

cluster_b

cluster_a

FLOps Project Stage
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure C.11.: Experiment 7: Memory Utilization per Stage

149

C. Additional Evaluation Plots

Experiment 8

0 10 20 30 40 50 60 70 80
CPU Usage (%)

root

cluster_b

cluster_a

FLOps Project Stage
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure C.12.: Experiment 8: CPU Utilization per Stage

150

C. Additional Evaluation Plots

0 5 10 15 20 25 30 35 40 45
Memory Usage (%)

root

cluster_b

cluster_a

FLOps Project Stage
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure C.13.: Experiment 8: Memory Utilization per Stage

151

C. Additional Evaluation Plots

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Evaluation-Run Duration (minutes)

0

2

4

6

8

Ne
tw

or
k

Re
ce

iv
ed

 (G
B)

Evaluation Runs Average
root
cluster_a
cluster_b
Evaluation-Run Start
Project Start
FL-Actors Image-Builder Deployment
FL-Actors Image Build
Aggregator Deployment
FL Training
Trained-Model Image-Builder Deployment
Trained-Model Image Build
Deploy Trained-Model

Figure C.14.: Experiment 8: Network Received per Stage

152

	Acknowledgments
	Abstract
	Kurzfassung
	Contents
	Abbreviations
	Introduction
	Problem Statement
	Motivation
	Objectives
	Contribution
	Thesis Structure

	Background
	Federated Learning
	FL Basics
	Supplementary FL Concepts
	FL Architectures
	FL Research
	FL Frameworks & Libraries
	Flower

	Machine Learning Operations
	DevOps
	MLOps
	MLflow

	Orchestration
	ML Containerization & Orchestration
	Oakestra

	Related Work

	Requirements Engineering & System Design
	Requirements Elicitation & Specification
	Functional Requirements
	Nonfunctional Requirements

	System Models
	Use Case Model
	FLOps Overview
	Analysis Object Models
	Dynamic Models
	Subsystem Decomposition

	Implementation Details
	User Interactions with the FLOps Manager
	API
	SLAs

	Image Building
	Dependency Management
	Image Builders
	FLOps Image Builder Details
	Multi-Platform

	Local Data Management
	Appropriate Data for FL
	ML & Big Data Formats
	FLOps' Local Data Management Architecture
	Mock Data Providers

	MLOps via MLflow
	MLOps Components & Architecture
	GUI

	Clustered HFL
	CLI
	CLI Requirements Discussion
	High Level CLI Details

	Evaluation
	Rationale
	Experimental Setup
	Evaluation Procedure

	Results
	Basics
	Image Builder
	Fundamentally Different Projects
	Multi-cluster & HFL

	Conclusion
	Current Status, Limitations & Future Work

	List of Figures
	List of Tables
	Bibliography
	Appendices
	Additional FL Research Paper Analysis
	CLI Technicalities
	CLI Commands
	CLI Showcase

	Additional Evaluation Plots

