
CCNCheck: Enabling Checkpointed Distributed
Applications in Content Centric Networks

Nitinder Mohan and Pushpendra Singh

Indraprastha Institute of Information Technology (IIIT), New Delhi, India

Abstract—We consider the problem of checkpointing
a distributed application efficiently in Content Centric
Networks so that it can withstand transient failures. We
present CCNCheck, a system which enables a sender
optimized way of checkpointing distributed applications
in CCN’s and provides an efficient mechanism for failure
recovery in such applications. CCNCheck’s checkpointing
mechanism is a fork of DMTCP repository CCNCheck is
capable of running any distributed application written in
C/C++ language.

MOTIVATION

As CCN offers receiver-driven mode of communi-
cation, the distributed applications running on it needs
to be modified from their usual sender-driven paradigm
[1]. Checkpointing and rollback-recovery are well known
techniques that allow processes to make progress in spite
of failures [2]. However, CCN is devoid of any such
mechanism of failure recovery. Keeping the above points
in mind, we bring CCNCheck which offers a sender-
optimized way of running distributed applications. CC-
NCheck also implements checkpointing for applications
running on CCN.

OUR CONTRIBUTION

A typical distributed application in CCN is assumed
to be running on multiple nodes and uses a common
channel to send/receive interests and data. We further
assume that:

1) Processes do not have any common clock/ memory.
2) Processes follow a fail-stop model of failing i.e.

processes can crash by stopping execution and
remain halted until restarted.

Checkpoint is saved local state of a process. Set of local
states and messages in common channel is global state of
a system. In checkpointing, every process takes a local
checkpoint to ensure a global consistent state which can
later be used to recover a system from failure [3].
Our work is centered around using interests as notifi-
cations/signals in CCN. Formally, a distributed system
running on CCNCheck works on following model:

1) Every node knows about other nodes running the
same distributed application.

Figure 1: CCNCheck Communication Handler

2) Every node is defined by a unique name which is
pre-appended by the application name the process
is running.

3) The interest packet is not stored in the router’s
cache. The router only forwards the interest using
its FIB entry.

A. Running Distributed Application

To run a sender-driven distributed application in CCN
we use an approach very similar to solving hidden
terminal problem in IEEE 802.11 networks. The sender
first issues a Request-to-Send (RTS) interest to the
desired destination process. This RTS packet acts as a
notification to destination about an incoming data. The
name of RTS contains the identifying name of its issuer
using which the destination process issues a Clear-to-
Send (CTS) interest back to the sender. CTS serves as
the necessary interest required to send the data in CCN.
Figure 1 depicts process A sending some data to process
B using CCNCheck.

B. Enabling Checkpoint

Distributed Multi-Threaded Checkpoint (DMTCP) is a
research-based, transparent, user-level checkpointing tool
for distributed applications. DMTCP follows a blocking
type algorithm of checkpointing to ensure a global
consistent state at each checkpoint. It employs a stateless
centralized coordinator to coordinate checkpoint requests
between nodes [4].
We have developed a plugin for DMTCP which enables

ar
X

iv
:1

50
6.

00
39

1v
1 

 [
cs

.D
C

] 
 1

 J
un

 2
01

5



it to work in CCN environment. Even though CCN is
deployed as an overlay on TCP/IP networks [5] for
which DMTCP works well, however, some more logical
changes are necessary to make DMTCP function in
CCN. We also formalize various inconsistent checkpoint
scenarios due to uncoordinated checkpointing in CCN
and devise a method to overcome such situations. Some
of the changes made are:

1) DMTCP uses flush token to clear out TCP sock-
ets during checkpoint process to ensure consistent
checkpoint. As CCN works atop of Interests and
Data packets, we have designed a "Flush Interest"
which ensures that checkpoint is consistent from
any orphan interests and data.

2) DMTCP coordinator is modified to detect a CCN
network and register itself with CCN Daemon on
invoking.

3) The Coordinator is run as a stateless process with
a name unique to the environment/organization. We
have designed interest packets which is used by co-
ordinator to checkpoint processes in the application.

4) The restart from checkpoint process is able to
resolve any non-responded interests due to lack of
Pending Interest Table (PIT) entries.

5) The discovery services in reconnect phase on restart
from a checkpoint works using CCN namespaces.

IMPLEMENTATION

I System Model
CCNCheck uses three layer abstraction model.

a) Communication Handler: It handles the Interest
and Data packets to be sent between communi-
cating nodes. It is built on CCNx v0.8.2.

b) Checkpoint Handler: It provides the checkpoint
mechanism in CCN and is based on DMTCP.

c) End-User Applications: These are applications
to be run in a distributed environment. It can be
in C/C++ language.

II Interest Naming Rules
The naming format for RTS and CTS packets in
CCNx are as follows:
ccnx://Application Name/Receiver Address/Type of

Interest/Sender Address
The Request-To-Send and Clear-To-Send interests
use signal name ’RTS’ and ’CTS’ respectively.
The checkpoint interest, however, is only one-way
notification (i.e. from coordinator to process).
Thus, interest name does not have the sender’s
name appended to it and it is denoted by signal
type ’check’. Similarly, Flush Interest has a signal

Figure 2: Naming Rules in CCNCheck

name ’flush’ but is appended with the last name of
last interest sent Figure 2 shows naming rules for
CCNCheck.

III Applications
CCNCheck was deployed on a test-bed of six
interconnected nodes in CCN network. We have
developed two sample distributed applications to
review our system. We have also used an existing
application to check the compatibility of our system.

a) A simple C application which keeps counting till
infinity is run locally on each node with different
start times and is killed later. The goal was to
check the consistency of checkpoint taken by
CCNCheck before failure.

b) A distributed C++ application in which the partic-
ipating nodes compute the consecutive numbers
of fibonacci sequence in an iterative manner. This
application utilizes the distributed capabilities of
CCNCheck to send the result to the next node
after each subsequent computation.

c) A CCN enabled VLC player which can stream
videos on a Content Centric Network.

We are able to checkpoint all the applications listed
above.

REFERENCES

[1] V. Jacobson, D. K. Smetters, N. H. Briggs, M. F. Plass, P. Stewart,
J. D. Thornton, and R. L. Braynard, “Voccn: voice-over content-
centric networks,” in Proceedings of the 2009 workshop on Re-
architecting the internet. ACM, 2009, pp. 1–6.

[2] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for
distributed systems,” Software Engineering, IEEE Transactions
on, no. 1, pp. 23–31, 1987.

[3] K. M. Chandy and L. Lamport, “Distributed snapshots: deter-
mining global states of distributed systems,” ACM Transactions
on Computer Systems (TOCS), vol. 3, no. 1, pp. 63–75, 1985.

[4] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: Transparent
checkpointing for cluster computations and the desktop,” in
23rd IEEE International Parallel and Distributed Processing
Symposium, Rome, Italy, May 2009.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in
Proceedings of the 5th international conference on Emerging
networking experiments and technologies. ACM, 2009, pp. 1–
12.


	-A Running Distributed Application
	-B Enabling Checkpoint
	References

