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ABSTRACT
Emerging Low Earth Orbit (LEO) satellite constellations have been
considered for uses beyond plain Internet access, including content
caching and edge computing. Assuming satellites are equipped with
inter-satellite links, we propose using these links and thus the space
in-between satellites, paired with a dedicated satellite queuing sys-
tem, to “store” data and provide access by keeping data in constant
flux around the globe. We describe the properties and explore the
capabilities of such a system and discuss some potential uses.
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1 INTRODUCTION
As Low-Earth Orbit (LEO) satellite megaconstellations extend the
reach of the Internet, speculations about further use beyond plain
Internet access arise. These include ideas about caching content in
space [7, 13], CDNs [4], computation in orbit [2, 11], edge comput-
ing in space [5, 8], and application-specific data aggregration, e.g.,
in the context of scientific data sensing from space [5]. Building
satellite-based content delivery systems would usually require some
control plane to locate content objects, route requests, perform load
balancing, etc. and possibly actively manage content caches [4].

In this paper, we take a different route: we continuously move
content objects, represented as a series of packets, around in the
orbital shell, i.e., across all satellites on all orbits at the same altitude
of a megaconstellation, one orbit at a time, so that satellites can
just wait for objects, eliminating the need for active discovery. We
leverage the large distances in space and the high data rate of inter-
satellite laser links, which together yield a substantial bandwidth-
delay-product, to “store” content as data in flight between satellites
in addition to providing extra storage on each satellite. In a sample
configuration (see fig. 3 and 4), a single content object would traverse

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
LEO-Net ’25, September 8–11, 2025, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2090-1/25/09
https://doi.org/10.1145/3748749.3749093

a
r = 6371km

d
dd

⍺

Satellite

ddp
ds

β

a) b)
d

r+ar+
a

Figure 1: a) Distance 𝑑 between two satellite in the same orbit
and b) 𝑑𝑠 between the two closest satellites in adjacent orbital
planes.

all 1,584 satellites (22 in each of 72 orbits) of the lowest Starlink
orbital shell at 550 km altitude approximately every 11 seconds,
covering a total distance of 3.27M kilometers.

We present our assumptions and system model in §2 along with
the resulting basic system properties, especially the tradeoffs be-
tween storage capacity, content replication, and access latency. We
discuss mechanisms for adding, replicating, deleting, and routing
content objects in §3 and show via simulations how far simple local
algorithms with limited state and a lightweight protocol can carry in
§4. We conclude with a sample usages and a discussion of possible
directions in §5.

2 DESIGN
We assume a LEO satellite constellation in a single orbital shell that
covers the inhabited Earth surface with sufficient satellite density that
each point on the ground within the coverage area is served by at least
one satellite at any given instant. Each LEO satellite is equipped with
four lasers to establish ISLs at data rates of 𝑅𝐼𝑆𝐿 = 100Gbps. Two
of the ISLs connect each satellite to its preceding and succeeding
neighbors in the same orbital plane, the remaining two connect to
satellites in adjacent orbits, creating a +grid topology [3]. We
assume that the satellites have sufficient power to operate their ISLs
continuously, which appears reasonable as current LEO deployments
use ISLs. We only consider the operation of a single orbital shell but
our considerations can be extended to multiple shells.

Each user terminal connects to exactly one satellite at a time. The
terminal reaches the Internet via a bent pipe to a ground station and
point of presence (PoP) of the satellite operator. We assume that
Internet traffic is routed to the closest ground station and does not
traverse many ISLs, minimizing ISL use by end user traffic, so that
the satellite operator may bound end user ISL traffic and dedicate an
ISL capacity share to storage traffic 𝑓𝑠 .

Satellites of an orbital shell 𝑂 are at an altitude 𝑎 and at an
inclination 𝛾𝑜 . The shell is comprised of 𝑁𝑝 orbital planes with
𝑁𝑜 satellites per orbital plane (or: orbit), assumed to be evenly
spaced at an angular distance of 𝛼 = 360°/𝑁𝑜 . With a mean Earth
radius of 𝑟 = 6371 km, this yields a distance (line of sight) of 𝑑 =

2(𝑟+𝑎)𝑠𝑖𝑛( 12𝛼) as shown in figure 1a. The distance between satellites
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Figure 2: Satellite architecture showing three ISLs with their
outbound queues for Internet and storage traffic and the re-
spective forwarding logic, content object state table, and an
incoming flow from ISL 2. A data access module matches incom-
ing requests (not shown) against stored content objects with an
optional cache.

on adjacent orbital planes varies, being largest at the equator. Figure
1b illustrates the maximum distance 𝑑𝑠 between the closest satellites
on neighboring planes: the planes are spaced an equal angles of
𝛽 = 360°/𝑁𝑝 , yielding a distance of 𝑑𝑝 = 2(𝑟 + 𝑎)𝑠𝑖𝑛( 12 𝛽) (at the
equator), and the satellites are at a maximum phase shift relative to
each other, i.e., at an offset of 𝑑2 within their respective orbits. The

resulting maximum distance at the equator is then 𝑑𝑠 ≈
√︃

1
4𝑑

2 + 𝑑𝑝 .
To reduce the system dynamics to be accounted for and to obtain
a conservative estimate, we assume the maximum distance 𝑑𝑠 for
computing the propation delay and we ignore that storage capacity
of the links across planes.

Consider the Starlink orbital shell at 𝑎 = 550 km altitude with
𝑁𝑝 = 72 orbital planes at an inclination of 𝛾𝑜 = 53° and 𝑁𝑜 = 22
satellites per orbit. The satellites on an orbital plane are spaced 𝑑 =

1969.72 km apart, at the equator, the distance between two adjacent
orbital planes is 𝑑𝑝 = 603.78 km, and the max distance between the
closest satellites on neighboring orbital planes is 𝑑𝑠 = 1155.29 km.

2.1 System model
Figure 2 sketches part of a single satellite system focusing on the
ISLs, i.e., not including the radio links to the ground stations and
terminals. Each satellite, at a minimum, provides two send queues
of different sizes per interface: one for regular (= Internet) traffic of
size 𝑄𝐼 and one for storage traffic of size 𝑄𝑆 . The queues receive
proportional treatment when scheduling packets for transmission
on an ISL with a share 𝑓𝑠 reserved for storage traffic, e.g., using
weighted fair queuing.

A content object maintained in the data store comprises a se-
quence of packets, each packet including at least the content id (e.g.,
a hash) and total size, its data offset into the object, its expiration
time, the total number of replicas and the replica instance number,
and a (cryptographic) checksum. A meta data table on the satellite
records per content object the id (32 bytes), size (6 bytes), expiration

S …

…

Figure 3: Simple propagation pattern of a single data object
from its originator (S) first along each orbital plane and then in
a defined area to the next plane.

time (6 bytes), sojourn time (6 bytes), and the storage queue (Q,
1 byte), plus internal maintence data, yielding some 64 bytes per
record, so that 1M entries would only consume ≈60 MB of memory.

The figure also shows packets incoming from ISL 2 that are
classified into Internet and data store traffic and then handled by
independent forwarding units that determine their respective next
hops, e.g., ISL 0 or 1: the Internet forwarder implements regular
L2 switching or IP routing while the data store forwarding logic
comprises algorithms to ensure that content object packets circle
through all satellites of an orbital shell, to insert, possibly replicate,
and delete packets, and to perform error control. We will return such
algorithm in §3 and assume for now that a simple one exists that
forwards each packet along one orbit at a time and then shifts to the
next plane, as illustrated in figure 3.

The data store access unit interfaces to all storage queues and
responds to content object requests from satellite terminals (not
shown). The data store forwarder records which content objects are
in which ISL storage queue along with its expected sojourn time.
Given sufficient capacity, a record could be kept for all objects in
orbit until they expire and hold the # replicas per object (cf. §2.2)
and when it last passed through this satellite. This tells the data store
access unit from which queue to fetch the content object, whether it
would be feasible to retrieve it from a nearby satellite, or to predict
when when its next pass through this satellite is expected.

Content requests would, by default, arrive via the radio interfaces
to the ground, but they could also be forwarded by neighbors if those
cannot satisfy a request immediately or in the near future. We leave
this cooperative caching-style optimization using known techniques
for future work.

2.2 Basic properties and trade-offs
We now take a brief look at the theoretical properties of our design.
With content objects in constant flux around the globe, two perfor-
mance metrics are of particular interest: the total storage capacity,
𝐶𝑜 , of the orbital shell and the content periodicity, 𝑡𝑎 . The periodicity
𝑡𝑎 is defined as the time elapsing between a given content object
(or one of its replicas) passing twice through the same satellite and
serves as a rough approximation of the worst case access latency
from a terminal connected to that satellite.

For storage capacity, we consider: 1) the storage queue for each
ISL transmitter, 𝑄𝑆 , and 2) the data in flight on each ISL, 𝐹𝑠 =
𝑑
𝑐 × 𝑓𝑠 × 𝑅𝐼𝑆𝐿 , as per the link’s bandwidth-delay product for the
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1 2 4 6 8 10 15 20 25 30 40 50
# replicas per content object

10.9 5.43 2.71 1.81 1.36 1.09 0.72 0.54 0.43 0.36 0.27 0.22
13.6 6.81 3.41 2.27 1.7 1.36 0.91 0.68 0.55 0.45 0.34 0.27
16.4 8.2 4.1 2.73 2.05 1.64 1.09 0.82 0.66 0.55 0.41 0.33
22.0 11.0 5.49 3.66 2.75 2.2 1.46 1.1 0.88 0.73 0.55 0.44
33.1 16.5 8.27 5.51 4.13 3.31 2.21 1.65 1.32 1.1 0.83 0.66
55.3 27.7 13.8 9.22 6.91 5.53 3.69 2.77 2.21 1.84 1.38 1.11
77.5 38.8 19.4 12.9 9.69 7.75 5.17 3.88 3.1 2.58 1.94 1.55
99.8 49.9 24.9 16.6 12.5 9.98 6.65 4.99 3.99 3.33 2.49 2.0

122.0 61.0 30.5 20.3 15.2 12.2 8.13 6.1 4.88 4.07 3.05 2.44
144.2 72.1 36.1 24.0 18.0 14.4 9.61 7.21 5.77 4.81 3.61 2.88
166.4 83.2 41.6 27.7 20.8 16.6 11.1 8.32 6.66 5.55 4.16 3.33
188.7 94.3 47.2 31.4 23.6 18.9 12.6 9.43 7.55 6.29 4.72 3.77

Periodicity of content objects [s] for Starlink 1 (550km altitude)
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B] 96.9 48.5 24.2 16.2 12.1 9.7 6.5 4.8 3.9 3.2 2.4 1.9
121 60.8 30.4 20.3 15.2 12.2 8.1 6.1 4.9 4.1 3.0 2.4
146 73.2 36.6 24.4 18.3 14.6 9.8 7.3 5.9 4.9 3.7 2.9
195 98.0 49.0 32.7 24.5 19.6 13.1 9.8 7.8 6.5 4.9 3.9
294 147 73.7 49.2 36.9 29.5 19.7 14.7 11.8 9.8 7.4 5.9
492 246 123 82.2 61.6 49.3 32.9 24.6 19.7 16.4 12.3 9.9
690 345 172 115 86.4 69.1 46.1 34.5 27.6 23.0 17.3 13.8
888 444 222 148 111 88.9 59.3 44.4 35.6 29.6 22.2 17.8

1086 543 271 181 135 108 72.5 54.3 43.5 36.2 27.2 21.7
1284 642 321 214 160 128 85.7 64.2 51.4 42.8 32.1 25.7
1482 741 370 247 185 148 98.9 74.1 59.3 49.4 37.1 29.7
1680 840 420 280 210 168 112 84.0 67.2 56.0 42.0 33.6

Effective storage capacity [GB] for Starlink 1 (550km altitude)

Figure 4: Effective storage space and periodicity of a content object passing through the same satellite as a function of the number of
replicas and the content queue size per satellite for Starlink orbital shell at 550km altitude.

traffic share 𝑓𝑠 , with 𝑐 = 299, 792.458 km/s. This yields a capacity
per satellite (including one outgoing ISL within its orbit) of 𝐶𝑠 =

𝑄𝑆 + 𝐹𝑠 , per orbital plane of 𝐶𝑝 = 𝐶𝑠 × 𝑁𝑜 , and per orbital shell of
𝐶𝑜 = 𝐶𝑝 × 𝑁𝑝 . Due to their potential variability, we do not account
for the capacity added by links across orbital planes. If 𝐾 replicas of
content objects are kept, the effective storage capacity of the shell is
𝐶𝑒 =

𝐶𝑜

𝐾
.

For the latter, access latency, we compute how long it takes a
single content item to pass through the entire orbital shell, 𝑡𝑜 . We
consider the processing and queuing delays per satellite, 𝑡𝑓 and 𝑡𝑞 ,
respectively, as well as the propagation delay for each link within an
orbital plane, 𝑡𝑝 , and across orbital planes 𝑡𝑠 . We assume 𝑡𝑓 = 0.1ms
for each content object, which roughly matches the interarrival time
of 1 MB sized objects at 𝑅𝐼𝑆𝐿× 𝑓𝑠 = 80Gbps and allows for sufficient
local processing and state management. We obtain the maximum
𝑡𝑞 =

𝑓𝑠×𝑄𝑆

𝑅𝐼𝑆𝐿
and the propagation delays as 𝑡𝑝 = 𝑑

𝑐 and the worst case

𝑡𝑠 =
𝑑𝑠
𝑐 . This yields the maximum time for a content object to pass

through all satellites of a shell, the rotation time, 𝑡𝑜 , as
𝑡𝑜 = 𝑁𝑜 × (𝑡𝑓 + 𝑡𝑞 + 𝑡𝑝 ) + 𝑁𝑝 × (𝑡𝑓 + 𝑡𝑞 + 𝑡𝑠 )

for the above simple propagation pattern (fig. 3). As for storage
capacity, we may assume 𝐾 replicas of a content item evently spaced
across all satellites, which would reduce the periodicity, i.e., the
effective access latency to 𝑡𝑎 =

𝑡𝑜
𝐾

.
Figure 4 shows the effective storage capacity 𝐶𝑜 (left) and effec-

tive periodicity 𝑡𝑎 (≈ access latency, right) for the Starlink orbital
shell 1 at 550 km altitude. Assuming a target access latency of <10 s,
we see that up to 20 replicas would be needed, whereas staying
below 30 s 1–8 replicas suffice.

There is an obvious tradeoff between capacity and periodicity.
Combining both, we may set a target periodicity and derive the
necessary number of replicas for a given storage queue size, from
which we can then compute the effective storage capacity. Doing
this for all megaconstellations as per table 2 in Appendix B, we
show the effective capacity of the data store for a target periodicity
of 10 s as a function of the queue size in figure 5 (top). We find
that increasing the storage queue size yields an increasing capacity,
albeit not monotonically. The capacity growth is expectedly more
pronounced for shells with fewer orbits (Starlink 3, 4, 5 use just
8, 5, and 6 orbits, respectively) as less data is “in flight” between
satellites on fewer orbits. Fluctuation appears stronger for those
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Figure 5: Storage capacity for the orbital shells of different
megaconstellations for a target periodicity of 10 s (top) and for
varying periodicity at 128 MB queue size (bottom)

shells with fewer satellites. As increasing queue capacity leads to
longer object rotation times 𝑡𝑜 , this needs to be compensated by
additional replicas so that we observe dimishing (if any) returns. The
capacity grows roughly linearly as a step function with increasing
periodicity (figure 5, bottom). Overall, we obtain some 40–80 GB
storage capacity for a periodicity of 10 s pretty much independent of
the megaconstellation.

Above, we assume sending the content objects into one direction
through the orbital plane, hence only considering half the available
transmission and storage capacity. Using both directions would thus
duplicate the available capacity and further reduce the latency; how-
ever, the intervals at which content objects pass through a satellite
would no longer be uniformly distributed; this is left for future study.

3 OPERATION
So far for some theory. We now introduce a strawman algorithm to
realize a baseline for storage in space, with routing (§3.1), insert-
ing/deleting content (§3.2), and error handling (§3.3). We assume a
system without malicious nodes which appears reasonable for closed
satellite systems as today’s megaconstellations are.
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3.1 Steady state operation
A simple strawman routing algorithm as alluded to above makes a
content object traverse one orbital plane and then, upon reaching the
satellite it started at, move to the next orbital plane, shown in figure
6. We number the ISL interfaces clockwise as in figure 2; the odd
numbered ones are for the North-South directions to satellites within
the same orbit, the even numbered ones for East-Wast across orbits.

We assume that each storage packet carries two “hop” counters:
𝑛 to indicate the count of the satellite in the present orbit and 𝑝 to
count the orbital plane: 𝑛 allows determining when all satellites of a
given orbital plane were visited, 𝑝 determines when the entire orbital
shell is covered. 𝑛 is incremented whenever a packet is received
from a satellite within the same orbital plane. If 𝑛 reaches 𝑁𝑜 , 𝑛 is
reset to 0 and the packet is passed on to the next plane, incrementing
𝑝; otherwise, the packet is passed on to the next satellite within the
same plane (cf. fig. 3). This works in either North-South direction.

Input: Packet pkt, Incoming interface # if_in
Return: Outgoing interface #

incomding_storage_pkt (pkt, if_in) {
if (if_in %2 == 1) {

// packets coming from a different orbital plane
if (++pkt.p == N_p)

pkt.p = 0;
return (if_in + 1) % 4;

}
// packets coming from within the orbital plane
if ((++pkt.n) == N_o) {

pkt.n = 0;
return (if_in + 3) % 4;

else
return (if_in + 2) % 4;

}

Figure 6: Simple routing algorithm to make a content object
pass through all satellites of an orbital shell.

Over time, the algorithm needs to adjust 𝑛 to ensure that a packet
is always passed to a neighboring orbital plane when the sending
satellite is close to the equator. This is easily achieved as the satellite
can observe its own position and update 𝑛 by ±1 to pre- or postpone
switching orbital planes.

Obviously, other (smarter) algorithms are conceivable within the
limitations of the time-varying network topology. The task that each
content item should traverse each satellite within the orbital shell
translates into the well-known traveling salesman problem applied to
a grid-like topology with recurring visits. Interesting questions could
be how to use multiple salespersons (i.e., object replicas) to optimize
the distribution of the time between repeated visits by the same or
different salespersons for a given (non-)uniform utility function.

3.2 Adding and removing content
To add a content object into the distributed data store, the originating
satellite defines the object metadata: id 𝐼 , expiration time 𝑡𝑡𝑡𝑙 , and
replication factor 𝑅. The id 𝐼 could be a cryptographic identifier of
the creator plus a hash to identify the content, e.g., like a CID in IPFS
[1]. Transmission of the replicas is evenly spaced by observing the
current rotation time 𝑡𝑜 of a single object , i.e., the time it takes the
object to pass through all satellites of the orbital shell, and dividing
this by 𝑅; each replica is associated with a unique instance identifier

relative to 𝐼 , e.g., by adding a replica count 𝐼𝑅 , 0 ≤ 𝐼𝑅 < 𝑅. The
pair (𝐼 , 𝐼𝑅) can then be used to sample 𝑡𝑟 . To send the content object,
it is split across packets, each of which carries the metadata as a
header (plus the offset for the packet) and enqueued into the storage
queue(s) of its local ISL 0 (and ISL 2) interface(s).

The originating satellite adjusts the initial value chosen for 𝑛
based on its own position to ensure that the object is forwarded to
the next orbital plane close to the equator: setting 𝑛 > 0 reduces
the number of hops before switching orbital planes; in this case, the
object will not do a full circle through all of the initial orbit. The
creator may retain a copy of the object after sending 𝑅 replicas for
later repair.

To determine if there is room for further insertions, satellites
observe the object rotation time 𝑡𝑜 that represents the aggregate fill
level of the overall storage system.1

An object is deleted when its lifetime 𝑡𝑡𝑡𝑙 expires, for which we
may assume coarsely synchronized clocks across all satellites The
originating satellite may also explicitly delete a content object: it
simply stops forwarding any packets belonging to this object. With
our strawman routing algorithm, this would deterministically clear
the object from the orbital shell within 𝑡𝑜 as all packets pass through
all satellites. Other forwarding algorithms may have to rely on the
expiry time or craft explicit deletion packets (“anti-packets” [12]).

3.3 Error handling
Communication is subject to errors that lead to packet losses. Such
errors include 1) bit errors on the laser link, 2) tracking/pointing
errors when tracking the neighboring satellites, and 3) the reconfig-
uration time when connecting to a different neighboring satellite.
While 1) may lead to individual packet losses, 2) could incur short
loss bursts and 3) extended link unavailability and hence longer loss
bursts or delays.

1) could be overcome by applying FEC (e.g., simple XOR, Reed-
Solomon codes) mechanisms and ensure that all packets of an object
can be recovered at each hop to avoid error accumulation. If content
objects are small relative to the storage queue size, recovery could
happen while the object is queued and thus not negatively affect
periodicity. For 3), a simple approach is predicting when a recon-
figuration of a satellite link is to occur and route to the next orbital
plane one satellite earlier or later. The rerouting satellite needs to
consider its own and its neighbors’ queue capacity to not affect the
overall stability of the system.

Concerning 2, assuming the above FEC mechanisms won’t suffice
to cope with an outage, a simple fallback mechanism could be used:
if restoring a replica fails, the satellite in question could just drop all
its packets and rely on the source node to re-instantiate the replica.
For this, the creator monitors if still all 𝑅 replicas of its objects
circulate and recreates the missing ones if a gap in unique replica
numbers is detected. This would just cause a temporary spike in
periodicity and repair would happen within𝑂 (𝑡𝑜 ). Originators could
also send content objects using rateless codes (e.g., fountain codes)
for initial redundancy and add further encoding symbols in response
to observed losses.

1This somewhat coarsely resembles FDDI token ring networks that use a target token
rotation time to determine the current utilization of the ring and thus if an attached
station is allowed to send data [9].
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4 INITIAL EVALUATION
To understand how does the above strawman design works “in prac-
tice”, we developed a custom simulator in Python that implements
the connectivity pattern of fig. 3 and the forwarding algorithm of
fig. 6. Objects are forwarded as messages and only processed by
the receiver after they were received in full, for which a dedicated
receive buffer is available. Once received, an object is moved to
the next hop storage queue provided that there is enough space;
otherwise it waits in the receive buffer. Objects sourced at a satel-
lite are kept in a source queue and wait there until there is enough
space in the next hop queue. Forwarding objects takes precedence
over introducing new locally sourced ones. In our simulations, we
introduce dedicated tokens (size: 1024 B), one per orbital plane, to
continuously measure the rotation time. For our initial evaluation of
the basic system properties, we consider only a period with stable
satellite topology. Simulations operate in ticks of 1 ms and collect
statistics every 10 ms.

We are interested in how the system stores incoming objects and
how the rotation time evolves compared to our theoretical consider-
ations. Therefore, we simulate the ramp-up phase from an initially
empty system until its theoretical storage capacity is exhausted. We
use a warmup time until all tokens have rotated once through the
constellation so that each satellite can independently compute the ro-
tation time. After the warmup, we start generating objects of fixed or
variable size in fixed intervals (just one replica per object, 𝑡𝑡𝑡𝑙 = ∞)
at randomly chosen satellites (uniform distribution). We observe the
data volume of the objects that are effectively stored in the system,
the evolution of the rotation time (measured via our tokens), and the
queue sizes across all satellites.

4.1 Basic operation
Fig. 7 shows a sample run for the Iridium constellation of 66 satel-
lites (𝑁𝑝 = 6 orbits, 𝑁𝑜 = 11 satellites, 𝑎 = 871 km).2 After a
warmup time of 8 s, objects are generated in 1 ms intervals, the to-
tal data volume of data generated indicated by the green line. In
the beginning, objects are usually sent immediately when they are
sourced as the queues are mostly empty, shown by the steep slope of
orange line representing data stored in flight, closely following the
objects generated. This is confirmed by the curve for data stored in
queues only growing gradudally in the beginning. At around 6.5 s,
an inflection point is reached and, statistically, all queues always
contain data so that all the links are constantly busy and no more data
can be stored in flight, so that further generated objects increase the
share of data stored in queues. At around 7 s, the system is saturated
and no further objects can be accepted. At this point, the theoretical
system capacity (purple line at the top) is not fully reached, i.e., a
fraction of objects never make it from the source queue into the
system.

This effect is expected because sourcing new objects is distributed
randomly across the satellites: since forwarding objects takes prece-
dence, a newly sourced object can only enter the storage queue if
there is room. Once a queue becomes full, it can only drain is there
is less incoming than outgoing traffic. However, at a certain fill level,

2We use Iridium here because its constellation with just 66 satellites helps readability of
the following graphs; result summaries for today’s megaconstellations are included in
Appendix B.
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Figure 7: Evolution of storage utilization for 𝑄𝑆 = 64MB and
𝑆 = 8MB in the simulated Iridium constellation: a) shows how
much of the sent data is stored in queues vs. in flight as well
as the evolution of the mean rotation time measured across all
satellites (top); b) depicts the evolution of queue occupancy of
the satellite queues used (bottom).

all satellites have developed standing queues (at the above inflection
point) so that all links are constantly busy and queues cannot drain.

We illustrate this by looking at the queue occupancy across all
satellite queues: the Northbound queues of all satellites (0–10, 12–22,
... in the plot) plus the Eastbound ones for cross-orbit connectivity
(11, 23, 34, ...). Initially, only a few objects pass through the queues,
which are partly filled and then emptied again. Between 6 and 7 s,
we see queues grow so that standing queues develop and queue sizes
largely stabilize. While there is still room in some queues to hold
further objects, this space isn’t available to objects sourced at other
satellites. The remaining darker, i.e., less occupied, queues are the
Eastbound ones because new objects contributing to queue buildup
are only inserted into the Northbound ones.

4.2 Subtle Backpressure
To alleviate this statistical effect, the system needs to “move” space
in the queues around to those satellites what have new objects wait-
ing. While this could happen over time as objects expire, such an
optimistic do-nothing-and-wait approach would only work proabilis-
tically. Instead, we seek to actively make room. Since queues only
drain if the incoming rate is less than the outgoing rate, we can apply
some backpressure to ask the preceding satellite to reduce the outgo-
ing rate. This must be done with care because: 1) any reduction in
data rate immediately reduces the in-flight storage capacity. 2) Every
satellite has a predecessor, all of which ultimately form a circle, so
we must beware of cascading and oscillation effects.
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At a storage traffic rate of 80 Gbps for the ISLs, a rate change
of 1% rate yields 100 MB/s and hence can assist shifting queue
occupancy at short timescales. Based upon extensive simulations,
we choose to limit rate adjustment 𝑅𝑎𝑑 𝑗 ∈ [0.0, 1.0]%. We define a
simple feedback message sent to a neighbor satellite if the own send
queue is full and (sourced) data is pending to ask the neighbor to
reduce its traffic by 𝑅𝑎𝑑 𝑗 . We compute 𝑅𝑎𝑑 𝑗 , capped at 1 %, from
the space in the send queue of an ISL, the size of waiting locally
sourced objects, and the ratio of the incoming to outgoging traffic
rate so that the queue drains faster than it fills until there is enough
room to hold the locally sourced objects. These control messages
propagate into the opposite direction and hence do not interfere with
data traffic, but they could also go into a priority queue to ensure
transmissioin without delay.
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Figure 8: Applying a simple backpressure protocol helps uti-
lizing the full storage capacity (top) and dissolve the standing
queues (middle). The bottom plot shows where which backpres-
sure is applied.

Fig. 8 depicts the effects of applying the simple backpressure pro-
tocol. The objects stored in total now reaches the objects generated
(top) and the standing queues are dissolved (middle). The plot also
shows the rate adjustments applied to each queue over time (bottom),
indicating that the system enters and stays in a state of constant
flux of minor rate adjustments. This is due to the communication
latency between neighboring satellites that delays the effect of the
rate adjustments: simulations without delays have shown the system
to stabilize. We leave exploring proactive adjustment algorithms that
can make up for the latency for future study.

The above figures show findings for the small Iridium topology
to illustrate the observed effects. Appendix B also summarizes the
results for the ten constellations also shown in fig. 5.

5 DISCUSSION AND CONCLUSION
In this paper, we take an unconventional approach to distributed data
handling: we exploit the vast distances in space between satellites to
store data “in flight” and have objects constantly rotate through all
access locations so that requesting nodes just have to wait for them
to pass by—rather than fixing the (replicated) storage locations and
maintaining an index to find the data via a control plane. The avail-
ability of powerful ISLs in LEO satellite megaconstellations could
provide a foundation for such design. While our strawman algorithm
makes full use of ISLs within an orbital plane and largely spared
those interconnecting different orbital planes, other configurations
are conceivable, including mixing different shells to differentiate on
latency and capacity needs.

But what to do with a modest amount of distributed storage ca-
pacity of some 40–80 GB at an access latency of <10s (or more
with additional delay)? Anything requiring large volumes such as
CDNs [4] would need different mechanisms but other interesting
uses come to mind: One option is building a global user directory
(a key-value store) with entries exclusively updated by their owners,
e.g., along the lines of a Minimal Global Broadcast [10]: 128 B per
user would just require 675 MB of storage and be hardly noticeable,
leaving room for growth; extending this to today’s 5.5 bn Internet
users would require 670 GB and thus 512 MB storage queues. An-
other idea is using space as a backup for critical infrastructure data,
such as the globale BGP routing tables: the 1.5 GB data (Sep 2024,
from routeviews.org) would fit easily and need only a very small
link capacity share.

While we explored storage queues of various sizes, an interesting
case is an effectively queueless system for global broadcasting with
memory: as shown in table 3, small content objects of a total volume
of 7–100 GB could circulate once per 1–11 s. We may exploit these
properties to efficiently distribute state synchronization messages in
global consensus protocols where individual transactions are rather
small. This may allow for a small high-priority traffic share 𝑓𝑠 , in
some cases, even LEDBAT-style scavenging traffic may suffice: both
could be a start to explore this concept further.
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A NOTATION USED IN THIS PAPER
Table 1 summarizes the notation used in this paper.

Symbol Explanation

𝑟 Earth radius (≈ 6371 km)
𝑎 sallite altitude above ground
𝑑 distance between two consecutive satellites in the same orbital plane
𝑑𝑝 distance between two adjacent orbital planes at the equator
𝑑𝑠 max distance between two satellites on adjacent orbital planes around the equator
𝑁𝑜 number of satellite per orbital plane
𝑁𝑝 number of orbital planes in a constellation
𝑅𝐼𝑆𝐿 data rate of the ISL laser links
𝑓𝑠 fraction of 𝑅𝐼𝑆𝐿 allocated to storage traffic
𝑄𝑆 size of the storage queue
𝐹𝑠 Data volume in flight between two satellites on the same orbit at rate 𝑅𝐼𝑆𝐿 × 𝑓𝑆
𝐶𝑠 STorage capacity per satellite: 𝐶𝑆 = 𝑄𝑆 + 𝐹𝑆
𝐶𝑝 Storage capacity per orbital plane: 𝐶𝑝 = 𝐶𝑠 × 𝑁𝑜
𝐶𝑜 Storage capacity of the orbital shell 𝐶𝑂 = 𝐶𝑝 × 𝑁𝑝
𝐾 number of replicas per content object
𝐶𝑒 effective storage capacity of the orbital shell with 𝐾 replicas: 𝐶𝑒 = 𝐶𝑂/𝐾
𝑐 speed of light in vacuum: 𝑐 = 299, 792.458𝑘𝑚/𝑠
𝑡𝑓 processing delay per satellite: 𝑡𝑓 = 0.1ms
𝑡𝑞 queuing delay per satellite: 𝑡𝑞 = 𝑓𝑠 ×𝑄𝑠/𝑅𝐼𝑆𝐿
𝑡𝑝 propagation delay between consective satellites within an orbit: 𝑡𝑞 = 𝑑/𝑐
𝑡𝑠 propagation delay between satellites in adjacent orbits at distance 𝑑𝑠 : 𝑡𝑞 = 𝑑𝑠/𝑐
𝑡𝑜 rotation time of a single object through all satellites of an orbital shell
𝑡𝑎 mean access time to one of 𝐾 replicas of an object in a orbital shell
𝑡𝑠 submission time of a newly created object to a satellite
𝑡𝑒 time at which a newly created object enters the storage queue
𝑡𝑤 waiting time between object creation and its entering the storage queue: 𝑡𝑤 = 𝑡𝑒 − 𝑡𝑠

Table 1: Overview of the symbols and notation

B DETAILED SIMULATION RESULTS
This appendix has further details on our simulations results for all the
network topologies we investigated; those are summarized in table 2.
As discussed above, the storage capacity of these megaconstellations
is a function of the queue size per outgoing satellite link and the data
in flight between any two satellites on the circular path through the
orbital shell. The in-flight capacity obviously grows linearly with
the number of orbits (plus marginally with the altitude) while the
queue capacity grows linearly with the number of satellites; this also
holds for the periodicity 𝑡𝑎 of a data object.

Constellation Altitude #orbits #sats/orbit Inclination

S1: Starlink 1 550 km 72 22 53.0°
S2: Starlink 2 1110 km 32 50 53.8°
S3: Starlink 3 1110 km 8 50 74.0°
S4: Starlink 4 1275 km 5 75 81.0°
S5: Starlink 5 1325 km 6 75 70.0°
K1: Kuiper 1 630 km 34 34 51.9°
K2: Kuiper 2 630 km 36 36 43.0°
K3: Kuiper 3 590 km 28 28 33.0°
T1: Telesat 1 1015 km 27 13 98.98°
T2: Telesat 2 1325 km 40 33 50.88°

I: Iridium 871 km 6 11 86.4°

Table 2: LEO megaconstellation characteristics [6]

We carry out simulations using our custom simulator, written in
Python, that simulates a short (stable) period in a +grid topology.
We simulate different queue sizes𝑄𝑠 ∈ {16, 32, 64, 128, 192, 256} MB
and explore constant objects sizes of 𝑠 ∈ {1, 2, 4, 8, 16} MB as well as
objects sizes uniformly distributed in 𝑠 ∈ [1, 16] MB. We compute
the maximum capacity 𝐶𝑂 as per §2.2 of a (constellation, queue
size) pair and then, after a warmup period (> 𝑡𝑎), fill the system up
to 100% capacity, with new objects generated in 1 ms intervals at a
randomly chosen satellite; objects do not expire. After capacity is
reached, we run the simulation for another 10 s to determine if all
objects are distributed across the storage queues.

We explore both the baseline operation (§4.1) and the simple back-
pressure mechanism (§4.2). To characterize the system operation,
we consider two metrics: 1) The object waiting time 𝑡𝑤 is defined
as the difference between the time 𝑡𝑠 at which the object is created
at (or: submitted to) the source queue of a satellite for storage and
the time 𝑡𝑞 at which the respective object leaves the source queue
and enters the storage queue and thus is effectively stored in the
syste: 𝑡𝑤 = 𝑡𝑞 − 𝑡𝑠 . Recall that stored objects take precedence over
newly generated ones so that a newly created object can only enter
the system if the storage queue has enough space, hence, this is a
measure for the agility of the system. 2) We count 𝑛𝑓 how many
objects (if any) were not accepted into the storage system (before the
end of the simulation), i.e., 𝑡𝑤 = ∞, dubbed (submission) failure.

We run each simulation with ten different random seeds and report
the mean number of objects created, the mean number of failure 𝑛𝑓 ,
and the maximum waiting time 𝑡𝑤 . We show the results in tables
4–14. For each message size, the upper line of the row indicates the
performance of the baseline operation (§4.1), whereas the lower line
shows results with backpressure (§4.2).

Across almost all simulated configuration, we find that the simple
backpressure algorithm can substantially reduce the number of object
submission failures by shifting queue contents around. The exception
is when the queue size equals the object size, 𝑄𝑠 = 𝑠 = 16MB,
in which case the message either all fit without backpressure or
backpressure won’t help. For the failures, note that 𝑛𝑓 includes
objects that were created close to the end of the simulation but could
not be sent before the simulation ended—which may hold for some
configurations with large queue sizes.
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Const. Periodicity (s) Storage capacity (GB)

𝑄𝑠 (MB) – 16 32 64 128 192 256 – 16 32 64 128 192 256

Starlink 1 10.9 13.6 16.4 22.0 33.1 44.2 55.3 97 122 146 196 295 394 493
Starlink 2 5.3 8.1 10.8 16.3 27.2 38.2 49.2 47 72 97 147 247 347 447
Starlink 3 1.4 2.1 2.8 4.2 6.9 9.7 12.4 12 18 24 37 62 87 112
Starlink 4 1.0 1.6 2.3 3.5 6.1 8.6 11.2 7 13 19 31 54 78 101
Starlink 5 1.2 1.9 2.7 4.2 7.3 10.3 13.4 9 16 23 37 65 93 122

Kuiper 1 5.3 7.3 9.3 13.3 21.2 29.2 37.2 46 64 83 119 191 263 335
Kuiper 2 5.6 7.8 10.0 14.5 23.5 32.4 41.3 49 69 90 130 211 292 373
Kuiper 3 4.3 5.7 7.0 9.8 15.2 20.7 26.1 38 50 62 87 136 185 234

Telesat 1 4.4 5.0 5.7 6.9 9.5 12.0 14.5 39 44 50 60 82 104 126
Telesat 2 6.8 9.0 11.3 15.9 25.0 34.1 43.3 60 81 101 142 225 307 390

Iridium 1.1 1.2 1.3 1.5 2.0 2.5 3.0 8 9 10 12 17 21 25

Table 3: Periodicities and max storage capacities for different satellite constellations and queue sizes. These theoretical values do not
consider the inter-orbit links and queues, while the simulations below do, which leads a systematically lower values in this table.

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 128404 11 0.533 154900 808 1.228 207892 2995 0.488 313876 7467 0.6 419860 11859 0.722 525844 15942 0.272
0 0.018 0 0.108 0 0.24 0 0.559 0 4.475 0 1.933

2 64202 7 11.196 77450 611 0.086 103946 2063 0.431 156938 4674 1.038 209930 7057 0.833 262922 9376 3.457
0 0.046 0 0.942 0 1.542 0 4.202 0 4.683 0 5.949

4 32101 0 6.332 38725 543 1.358 51973 1592 0.297 78469 3279 1.025 104965 4714 0.748 131461 6038 1.047
0 2.928 0 6.23 1 9.844 3 12.312 6 12.811 26 17.982

8 16050 0 3.238 19362 368 1.992 25986 1157 0.225 39234 2260 0.528 52482 3152 2.092 65730 3975 0.313
0 3.238 6 11.777 16 10.943 56 13.057 105 15.135 163 15.173

16 8025 671 1.305 9681 50 9.769 12993 511 0.249 19617 1216 0.193 26241 1792 0.144 32865 2294 0.122
671 1.305 8 10.83 23 11.415 66 12.292 110 14.439 176 16.095

1,16 15106 3 10.822 18223 2 9.089 24457 29 12.379 36926 94 15.378 49395 162 19.435 61864 234 21.841
3 10.347 0 10.259 0 11.131 1 11.571 4 13.195 4 14.338

Table 4: Constellation starlink-1 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 75496 0 0.0 101608 44 0.007 153832 732 0.027 258280 2831 0.439 362728 4979 0.26 467176 7037 0.041
0 0.0 0 0.035 0 0.052 0 0.099 0 0.15 0 0.24

2 37748 0 0.0 50804 84 0.062 76916 773 0.392 129140 2363 0.13 181364 3831 0.354 233588 5218 0.334
0 0.0 0 0.087 0 0.137 0 0.748 0 1.236 0 4.043

4 18874 0 0.019 25402 124 1.314 38458 828 0.147 64570 2045 0.122 90682 3057 0.156 116794 3988 0.238
0 0.019 0 0.544 0 3.013 0 4.082 0 8.987 0 11.35

8 9437 0 0.204 12701 98 10.16 19229 705 0.365 32285 1606 0.166 45341 2296 1.677 58397 2916 1.311
0 0.204 0 1.36 0 6.592 2 13.329 9 14.506 22 14.142

16 4718 0 2.186 6350 0 8.011 9614 334 0.165 16142 943 0.057 22670 1420 0.048 29198 1809 0.134
0 2.186 0 1.163 0 9.684 9 12.444 34 13.927 69 14.879

1,16 8881 0 0.497 11953 0 4.23 18097 16 12.333 30385 61 16.095 42673 109 16.986 54961 167 17.941
0 0.579 0 2.025 0 2.848 0 8.722 0 12.553 1 12.428

Table 5: Constellation starlink-2 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 19944 0 0.0 26472 12 0.005 39528 188 0.254 65640 687 0.076 91752 1220 0.272 117864 1737 0.091
0 0.0 0 0.02 0 0.062 0 0.519 0 1.66 0 2.787

2 9972 0 0.001 13236 20 0.012 19764 207 0.393 32820 591 0.065 45876 961 0.083 58932 1285 0.079
0 0.001 0 0.099 0 1.287 0 1.959 0 3.874 0 4.199

4 4986 0 0.109 6618 35 0.012 9882 207 0.152 16410 510 0.778 22938 762 0.147 29466 995 0.086
0 0.07 0 0.647 0 2.323 0 6.031 0 8.656 0 11.956

8 2493 0 0.37 3309 32 10.598 4941 179 0.145 8205 409 0.137 11469 578 0.124 14733 732 0.146
0 0.37 0 4.528 0 8.05 3 11.544 6 11.421 25 11.651

16 1246 0 1.905 1654 0 3.018 2470 89 6.98 4102 238 3.001 5734 353 1.788 7366 458 2.304
0 1.905 0 2.881 2 9.631 7 10.912 19 11.06 26 11.81

1,16 2346 0 0.403 3114 0 1.266 4650 4 8.672 7722 21 10.246 10794 34 11.29 13866 47 10.78
0 0.422 0 1.65 0 3.191 0 10.616 0 10.2 1 11.527

Table 6: Constellation starlink-3 storage properties
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𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 15149 0 0.0 21229 9 0.033 33389 144 0.09 57709 570 0.07 82029 983 0.129 106349 1366 0.046
0 0.0 0 0.005 0 0.066 0 0.174 0 1.257 0 2.124

2 7574 0 0.0 10614 21 0.008 16694 170 6.248 28854 503 2.388 41014 819 4.726 53174 1094 8.658
0 0.0 0 0.123 0 0.588 0 1.522 0 3.653 0 4.55

4 3787 0 0.009 5307 29 0.114 8347 185 0.105 14427 444 0.075 20507 665 0.12 26587 866 0.136
0 0.006 0 0.495 0 2.421 0 4.679 0 9.094 0 9.9

8 1893 0 0.096 2653 26 0.299 4173 159 0.161 7213 365 0.121 10253 512 0.124 13293 646 0.111
0 0.096 0 2.465 0 5.749 0 10.021 4 12.838 15 12.737

16 946 0 0.825 1326 0 1.928 2086 80 0.111 3606 211 0.291 5126 316 0.194 6646 410 0.231
0 0.825 0 1.283 0 10.757 4 10.71 7 11.577 22 11.645

1,16 1782 0 0.239 2497 0 0.573 3928 4 10.001 6789 17 10.374 9650 28 11.603 12511 44 12.708
0 0.258 0 3.875 0 2.615 0 9.551 0 10.405 0 10.16

Table 7: Constellation starlink-4 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 17992 0 0.0 25288 11 0.145 39880 185 0.081 69064 718 0.105 98248 1259 0.12 127432 1793 0.101
0 0.0 0 0.022 0 0.037 0 0.165 0 1.609 0 2.928

2 8996 0 0.0 12644 26 0.537 19940 226 0.321 34532 643 0.441 49124 1028 0.49 63716 1361 0.498
0 0.0 0 0.098 0 0.586 0 2.246 0 4.524 0 6.295

4 4498 0 0.016 6322 40 0.241 9970 230 0.564 17266 563 1.04 24562 830 0.974 31858 1043 0.985
0 0.016 0 0.651 0 4.198 0 6.622 1 11.755 2 12.347

8 2249 0 0.14 3161 33 10.318 4985 197 0.149 8633 446 0.119 12281 635 0.648 15929 806 0.163
0 0.14 0 6.01 0 5.081 2 10.823 5 12.223 17 13.011

16 1124 0 1.151 1580 0 2.422 2492 96 0.137 4316 261 0.085 6140 388 0.039 7964 504 0.04
0 1.151 0 2.39 0 10.351 5 10.82 11 11.45 33 11.646

1,16 2116 0 0.272 2975 0 7.671 4691 4 10.511 8125 17 10.724 11558 36 12.543 14992 52 11.513
0 0.302 0 0.787 0 2.962 0 6.426 0 9.036 0 10.736

Table 8: Constellation starlink-5 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 68111 0 0.001 87151 136 0.133 125231 1036 0.802 201391 3165 5.505 277551 5217 0.167 353711 7264 1.031
0 0.001 0 0.069 0 0.137 0 0.343 0 0.463 0 0.413

2 34055 0 0.004 43575 157 0.059 62615 869 0.05 100695 2351 1.378 138775 3662 3.248 176855 4892 1.984
0 0.004 0 0.097 0 0.705 0 1.99 0 4.836 0 7.375

4 17027 0 0.273 21787 186 0.972 31307 781 0.291 50347 1742 1.074 69387 2629 0.803 88427 3408 1.127
0 0.036 0 0.845 0 2.657 0 7.666 0 10.843 0 12.662

8 8513 0 1.116 10893 142 0.969 15653 626 0.713 25173 1333 2.242 34693 1872 1.579 44213 2371 0.938
0 1.116 0 5.928 1 10.424 6 12.377 18 13.096 57 15.127

16 4256 87 5.876 5446 2 10.086 7826 288 0.117 12586 762 0.081 17346 1133 0.892 22106 1453 0.274
87 5.876 0 6.231 4 10.337 17 12.029 45 13.427 80 14.21

1,16 8013 0 2.376 10253 0 8.424 14733 16 10.871 23693 51 11.527 32653 97 14.55 41613 144 14.534
0 1.978 0 4.02 0 9.95 0 10.557 1 11.268 2 11.996

Table 9: Constellation kuiper-1 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 73186 0 0.0 94498 22 0.003 137122 541 0.061 222370 2346 0.096 307618 4423 0.175 392866 6506 0.4
0 0.0 0 0.012 0 0.092 0 0.104 0 0.189 0 0.302

2 36593 0 0.0 47249 60 0.033 68561 635 2.293 111185 1988 2.814 153809 3264 1.881 196433 4547 1.557
0 0.0 0 0.058 0 0.216 0 1.11 0 2.78 0 3.182

4 18296 0 0.022 23624 88 0.181 34280 638 0.408 55592 1658 0.132 76904 2569 0.234 98216 3386 0.862
0 0.022 0 0.241 0 2.005 0 3.775 0 7.094 0 10.098

8 9148 0 0.205 11812 72 2.383 17140 556 2.13 27796 1288 2.048 38452 1931 0.951 49108 2463 2.141
0 0.205 0 1.134 0 6.866 1 11.237 6 14.895 14 15.543

16 4574 0 7.308 5906 0 5.347 8570 268 1.432 13898 769 0.074 19226 1175 1.203 24554 1509 0.325
0 7.308 0 3.118 0 9.897 8 11.545 18 13.297 52 14.913

1,16 8610 0 0.658 11117 0 3.83 16132 13 12.355 26161 51 16.913 36190 100 16.26 46219 146 19.686
0 0.757 0 0.373 0 4.421 0 9.127 0 12.369 0 16.164

Table 10: Constellation kuiper-2 storage properties
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𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 53419 0 0.0 66411 47 0.01 92395 564 0.058 144363 2014 0.112 196331 3564 0.13 248299 5088 0.173
0 0.0 0 0.026 0 0.114 0 0.265 0 0.479 0 0.924

2 26709 0 0.002 33205 77 0.047 46197 522 2.743 72181 1505 11.831 98165 2468 2.928 124149 3351 2.75
0 0.002 0 0.088 0 1.244 0 2.537 0 3.615 0 7.208

4 13354 0 0.357 16602 95 0.111 23098 495 0.113 36090 1189 0.12 49082 1789 0.123 62074 2371 0.124
0 0.053 0 1.277 0 3.074 0 4.948 0 10.989 0 10.887

8 6677 0 1.178 8301 79 5.654 11549 401 0.12 18045 893 0.16 24541 1294 0.172 31037 1658 0.124
0 1.178 0 5.281 0 10.613 3 12.983 14 11.997 29 13.205

16 3338 87 3.623 4150 0 8.034 5774 189 4.691 9022 507 2.213 12270 768 4.833 15518 998 0.164
87 3.623 0 4.083 2 10.918 8 11.944 25 12.034 51 13.175

1,16 6284 0 1.354 7813 0 4.359 10870 12 10.241 16983 42 12.143 23097 70 13.479 29211 101 13.373
0 1.669 0 3.433 0 8.42 0 10.922 1 11.885 1 13.938

Table 11: Constellation kuiper-3 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 47635 70 0.611 53683 436 0.25 65779 1235 0.788 89971 2826 0.247 114163 4416 2.583 138355 6002 0.397
0 0.778 0 0.928 0 1.304 0 2.802 0 3.425 0 4.091

2 23817 48 1.764 26841 281 0.427 32889 724 0.175 44985 1582 0.406 57081 2398 0.169 69177 3197 0.14
0 1.601 0 2.411 0 3.143 0 4.982 0 6.171 0 9.563

4 11908 2 9.356 13420 214 0.358 16444 490 0.903 22492 986 0.615 28540 1429 0.791 34588 1853 1.014
0 9.255 1 10.498 4 10.889 16 11.746 31 12.878 48 14.381

8 5954 0 6.67 6710 134 0.937 8222 334 0.143 11246 626 0.123 14270 893 0.12 17294 1122 0.117
0 6.67 18 10.623 30 11.492 52 12.165 71 12.535 88 13.375

16 2977 364 0.914 3355 32 10.486 4111 161 2.42 5623 339 1.534 7135 481 0.262 8647 621 0.418
364 0.914 11 10.956 22 11.156 43 11.412 57 11.587 79 10.97

1,16 5604 14 10.225 6315 1 5.46 7738 11 10.671 10584 35 10.687 13431 57 11.322 16277 81 11.932
5 10.547 0 10.45 1 7.98 2 10.473 2 11.315 5 12.608

Table 12: Constellation telesat-1 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 84993 420 0.303 106753 1771 0.105 150273 3794 0.074 237313 7003 0.292 324353 9887 0.563 411393 12600 0.118
0 0.466 0 2.54 0 7.201 0 9.045 0 10.067 1 11.593

2 42496 207 0.69 53376 1100 3.095 75136 2369 0.169 118656 4357 2.191 162176 6059 0.346 205696 7594 8.992
0 8.017 0 5.519 0 7.589 3 12.299 3 12.848 20 14.907

4 21248 101 10.049 26688 797 1.052 37568 1687 1.059 59328 2943 0.563 81088 4005 0.657 102848 4950 2.024
4 10.802 11 10.815 30 11.406 66 14.125 105 15.53 164 15.636

8 10624 5 10.798 13344 498 2.255 18784 1127 0.865 29664 1983 1.539 40544 2643 0.727 51424 3230 0.57
5 10.798 58 11.166 93 12.009 147 12.83 195 15.739 244 15.329

16 5312 543 1.108 6672 101 9.683 9392 513 0.208 14832 1075 0.142 20272 1506 0.107 25712 1868 0.095
543 1.108 26 10.58 45 12.382 91 12.659 134 13.95 192 15.031

1,16 9999 14 9.94 12559 6 10.812 17679 32 12.465 27919 87 14.808 38159 142 17.377 48399 193 18.219
4 9.728 1 10.203 1 10.41 2 11.058 3 14.005 7 14.779

Table 13: Constellation telesat-2 storage properties

𝑄𝑠 16 MB 32 MB 64 MB 128 MB 192 MB 256 MB
𝑠 (MB) # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤 # obj # fails max 𝑡𝑤 # obj 𝑛𝑓 max 𝑡𝑤

1 11155 5 4.135 12307 54 0.135 14611 187 0.15 19219 511 0.262 23827 861 0.286 28435 1221 0.223
0 0.489 0 0.976 0 1.508 0 2.721 0 3.49 0 4.514

2 5577 0 1.831 6153 50 0.021 7305 137 0.551 9609 313 0.324 11913 491 0.21 14217 659 0.262
0 1.154 0 1.506 0 2.478 0 3.403 0 4.693 0 5.652

4 2788 0 1.178 3076 40 0.127 3652 91 0.16 4804 183 1.318 5956 275 0.563 7108 362 0.959
0 0.986 0 3.265 0 6.276 0 9.585 0 10.046 0 10.273

8 1394 0 1.327 1538 29 0.649 1826 63 0.077 2402 125 0.134 2978 179 0.045 3554 228 0.038
0 1.327 0 9.236 1 10.084 2 10.774 7 10.157 14 10.56

16 697 82 0.329 769 4 2.877 913 30 0.156 1201 63 2.604 1489 92 2.183 1777 122 1.645
82 0.329 0 3.972 1 9.864 3 10.883 6 10.654 12 10.31

1,16 1312 3 9.931 1447 0 6.407 1718 2 8.868 2261 7 10.799 2803 11 10.359 3345 16 10.211
1 7.756 0 1.336 0 6.362 0 7.903 0 10.248 1 10.699

Table 14: Constellation iridium storage properties
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