
On-Demand Container Partitioning for Distributed ML

Giovanni Bartolomeo*

Technical University of Munich
Navidreza Asadi*

Technical University of Munich

Wolfgang Kellerer
Technical University of Munich

Jörg Ott
Technical University of Munich

Nitinder Mohan
TU Delft

Abstract
As machine learning (ML) models grow in complexity

and scale, distributed deployment across multiple devices has
become essential for ensuring performance and scalability.
However, the dynamic nature of distributed ML, where mod-
els must be frequently retrained, partitioned, and updated,
exposes severe limitations in the current de-facto container-
based model deployment. Specifically, the layered architec-
ture of container filesystems is not well-suited for handling
fine-grained model updates and partitioned ML deployments,
leading to inefficient rebuilds and long delays. In this pa-
per, we present 2DFS, a novel two-dimensional filesystem
that enables independent updates, caching, and distribution of
ML model components. We design and develop a complete
ecosystem, including a builder, registry, and cache hierarchy,
to streamline the build and deployment processes of ML mod-
els leveraging 2DFS. Our comprehensive evaluation of 14
real-world ML models demonstrates that 2DFS achieves up
to 56x faster build times, 25x better caching efficiency, while
providing on-demand image partitioning with negligible over-
head. 2DFS is fully OCI-compliant and integrates seamlessly
with existing infrastructures and container workflows.

1 Introduction
In recent years, machine learning (ML) has emerged as a

dominant paradigm in modern applications, from real-time
video analytics [40, 42, 80, 82, 92] to intelligent transporta-
tion/operations [14, 51], and has radically transformed the
field of computing [5, 48, 64, 65]. The increasing complexity
and size of the models powering these applications has cre-
ated a demand for high-performance warehouse computing
infrastructures offering significant resources [18, 67, 104]. As
the applications become more nuanced, latency has emerged
as a driving operational factor, which has led to the devel-
opment of distributed ML frameworks [1, 15, 20, 74], ML
model optimizations [22, 34, 51, 89, 92], and split comput-
ing [3, 32, 39–41, 43, 50, 54–56, 63, 66, 95], also enabling

* Both authors contributed equally to this research.

executions on relatively constrained devices outside of tradi-
tional data center environments [7, 51, 103]. ML models can
be partitioned and distributed independently to fit real-time
hardware availability. This also guarantees improved resource
utilization in shared infrastructures as well as better scalability
to fulfill increasing user requests.

Despite all the advances, the practical deployment and
management of these “optimized” models across distributed
infrastructures remains a challenge [9,19,23,66,68,81]. Popu-
lar Machine Learning Operations (MLOps) frameworks, such
as MLflow [71], TFX [94], and KubeFlow [52], offer robust
support for the training, versioning, and lifecycle management
of models. However, when it comes to actual deployment,
these frameworks typically rely on container-based virtual-
ization (more specifically, Docker) to package models and
their dependencies. That is because containers encapsulate
both runtime environments and application dependencies in a
lightweight and portable manner [14,21,40,40,51,88,94,108].
We argue that while containers, backed by the Open Container
Initiative (OCI) [45], provide portability and isolation, they
limit the real-world applicability of many distributed ML op-
timizations and model partitioning techniques. In fact, when
model weights are embedded in the container images, model
updates caused by continuous re-training require a new im-
age build every time [14, 21, 51]. This limitation also affects
solutions based on live model partitioning. These approaches
optimize inference by splitting and parallelizing the model
based on real-time infrastructure changes. Unfortunately, new
containers must be built for each generated partition and each
partition update [40, 108]. Solutions managing model param-
eters using on-demand download via MLOps frameworks are
extremely difficult to cache and optimize in edge environ-
ments. Instead, approaches using container volumes require
considerable manual effort to provision the necessary exter-
nal storage. These solutions are expensive to realize in edge
infrastructures, where hardware availability is scarce, network-
ing is limited, and infrastructure ownership is heterogeneous.

In this work, we address these limitations by introducing
2DFS, a two-dimensional container filesystem tailored to dis-

tributed ML model packaging and deployment. The proposed
solution exploits the well-consolidated container registries
and runtimes technologies for caching and distribution of the
image layers, the ML model parameters, and further any large
file required by the container. This prevents developers from
reinventing the wheel with no need to manually provision and
manage their own storage solutions or use third party tooling.
2DFS introduces a new 2dfs.field container image layer
type that decouples model weights and partitions from the
traditional container layered filesystem. By organizing data
into a two-dimensional matrix of independent “allotments”,
2DFS enables model components to be built, cached, and up-
dated independently. Furthermore, it also enables on-demand
partitioning of the images, enabling flexible split-computing
deployments. Specifically, our contributions are as follows.
I. We propose 2DFS, a novel extension to the OCI container

format. It adopts a two-dimensional filesystem design
where model components, encapsulated as 2dfs.field
layer, can be processed, cached, and updated indepen-
dently. This eliminates the inefficiencies of traditional
hierarchical layering, where even minor updates would
trigger expensive rebuilds across the entire container.

II. We design and develop the complete 2DFS ecosystem that
includes several core components: a builder utility for
construction of OCI+2DFS images, a partitioning operator
for on-demand image partitions, and an OCI-compliant
registry supporting the new layer type and functionalities.

III. We conduct a comprehensive evaluation of 2DFS using 14
real-world ML models. The results demonstrate signifi-
cant improvements in build times and caching efficiency
compared to traditional OCI images built with Docker.
Specifically, 2DFS achieves up to 56× faster build times
and a 25× faster image updates; and in some cases, such
as with large EfficientNet-V2L model which allows 82
splits, 2DFS builds were up to 120× faster.

Note that while 2DFS is well-suited to distributed ML, it is
not limited to such but has broader applicability in distributed
computing field. For example, it can be used to efficiently
package binaries in container images §5. The 2DFS project is
open-source and available on GitHub [10].

2 Background and Motivation
Containers have emerged as a de facto standard for packag-

ing applications and dependencies and have seen widespread
adoption in the industry. Furthermore, with the increasing
sophistication of container management platforms, thanks to
Open Container Initiative (OCI) standardization [46], the cre-
ation, execution, and sharing of container images has become
more streamlined. Even in the context of ML applications,
containers have become the preferred method for packaging
and deploying ML models [13, 101, 102], as they provide a
consistent runtime environment and simplify management,
especially when dealing with diverse hardware and software

Layers

Root FS

Changeset

ChangesetOCI

hash pointer includes

Index

Manifest

Manifest

Manifest

Config layer[n].v1

layer[n-1].v1

layer[0].v1Annotations

Figure 1: Cross-section of OCI image format.

configurations at the edge [24, 77, 88]. However, the current
containerization methods have significant overhead for sup-
porting distributed/split ML model deployment – particularly
for model partitioning and continuous model updating tasks.
To grasp these limitations, we first provide a brief overview
of containers under the hood.

2.1 Container Dissection and Lifecycle
Figure 1 shows the cross-section of an OCI image, which

contains all necessary files to run a container. Internally, the
image is structured as a Directed Acyclic Graph (DAG) com-
posed of an index, a set of manifests, config files, and lay-
ers. A manifest represents an image tailored to a specific
platform and contains references to the filesystem layers and
a config file. A layer describes a filesystem change; starting
from the RootFS, each layer updates, adds, or removes files
from the previous layer. Layers are stacked on top of each
other and joined together to form the container filesystem
(e.g., OverlayFS [30]) A layer is stored as a compressed tar-
ball called blob and referenced via a hash of their contents (the
digest). When multiple containers are created from images
that use identical layers, the layers are shared, reducing the
storage overhead. Every change in a layer invalidates its hash,
causing a cascade effect that propagates up to the index. The
config file holds the container’s configuration details, such
as execution parameters and environment variables, along
with the root filesystem changes expressed as a list of Dif-
fIDs. A DiffID is the hash of an uncompressed image layer,
not to be confused with the digest mentioned above.

A container image build process is handled by a builder
component, which is composed of a front end and a back end.
The front end parses the build file descriptor and converts it
into a set of instructions that can be used by the backend. Let
us take the example of Docker’s builder component, buildx,
which uses BuildKit [72] as the default backend. The dock-
erfile frontend takes Docker’s build descriptor file (called
Dockerfile [27]) and translates it to high-level LLB definitions.
The BuildKit backend then creates the image’s build graph
from the definitions, and the solver component builds the
container by executing the graph nodes one after another. At
this stage, container layers are created as a result of file oper-
ations in the definition, such as copying files from the host to
the container. Note that despite BuildKit being known for its
optimized builder backends that can parallelize image builds,
the process of layer generation is still sequential due to the
nature of the filesystem operations.

2.2 The Rise of Distributed ML
Deploying ML applications can be challenging due to the

high computational resources required by their underlying
ML models [77, 82]. This challenge is more pronounced in
edge computing environments, where machines are of hetero-
geneous hardware configurations and multiple applications
share the resources [58, 61, 69, 92]. As a result, large ML
models with several layers and parameters are often found
unsuitable for edge infrastructures [68, 80, 91].

One approach focuses on designing compact models that
are smaller and more efficient than their larger counterparts.
Such models are developed using a combination of techniques
such as using fewer network blocks/layers, blocks with fewer
parameters, reducing the precision of model weights through
quantization, removing unnecessary connections through
pruning, and transferring knowledge from large models to
smaller ones through distillation [14, 60, 66, 87, 89]. However,
compact models often struggle to adapt to dynamic data distri-
butions as effectively as larger models, making them suscepti-
ble to data drift and requiring regular updates [14, 22, 51, 81].
As such, these models require frequent periodic retraining
and updating (as often as 30-50 seconds [51, 92]) to ensure
they remain accurate and adaptable to edge environments.

Another approach is to split the large ML model into mul-
tiple parts and distribute them across multiple devices for
parallel execution [39, 40, 50, 54, 66]. More specifically, the
model is partitioned into several slices, each of which is de-
ployed on a separate machine, forming an execution pipeline.
An “early-exit” head can optionally be added to some of the
splits [98, 100], providing the possibility of not processing all
the splits until the end, trading accuracy with better response
time. Table 2 shows the splitting potential of popularly used
ML models, where some models can be split into as many as
82 layers. Recent work has explored its applicability in edge-
cloud computing, where privacy or performance concerns
dictate that the first few splits be processed at the edge, and
intermediate information is sent to nearby and distant cloud
infrastructure for further processing [54, 79, 95, 96]. However,
model partitioning introduces new challenges, particularly in
dynamic edge environments where the number of available
devices can change over time due to failures, poor connec-
tions, or resource sharing with multiple applications [7,61,99].
Furthermore, since the hardware configurations of these de-
vices are heterogeneous, the subset of model partitions that
can be deployed on a device can vary [40, 103] – requiring
flexible methods for distribution and deployment.

2.3 Containers for Distributed ML?
Almost all popular ML management frameworks, such

as MLflow [71, 102], Flower [13], and SkyPilot [101], rely
on containers for model deployment due to their agility
and ability to replicate the runtime environment across dif-
ferent hardware configurations. The typical packaging pro-
cess involves frameworks creating a container image that

Images Build Time (s)

1 81.67
20 113.78
41 157.64
62 149.92
82 242.66

Table 1: Docker build time
with increasing splits of Effi-
cientNet (ENv2L) across dif-
ferent images.

Our solution

Figure 2: OCI image size ex-
plodes with increasing model
splits, unlike our solution.

includes the ML model and its dependencies, which is
then pushed to a central storage (registry) for distribution
[13,17,44,49,51,70,71,73,76]. Each device periodically con-
nects to the registry and fetches the updated images specific
to their requirements.

However, model optimization and partitioning techniques
noted earlier do not function well for containerized models.
Let’s consider how split ML models can be distributed using
containers. The obvious approach is to create a separate con-
tainer image for each model partition (e.g., a model with 60
splits can be stored as 60 images). However, bigger devices
might be able to compute larger chunks of the model or might
provide better hardware acceleration for specific layers, there-
fore requiring a special image configuration. An ML cluster
may also experience resource losses, and the splits must be
re-computed to reduce the model fragmentation. The number
of possible image configurations can grow exponentially with
the number of splits. Additionally, computing these images
for AI models can be an extremely time-consuming operation.

To demonstrate this, we conducted an experiment with the
EfficientNetv2L (ENv2L) model, where we built an increasing
number of Docker images while increasing the number of
splits of a model. For example, 2 splits would result in 2
images, 3 splits would result in 3 images, and so on. Table 1
shows a significant increase in Docker image build time with
increasing model splits – leading up to a 3× longer build
compared to the 1 split use case. To combat this, one option
could be pre-building all possible container images, ensuring
that any requested subset of partitions is readily available
for devices to pull from the registry. However, this approach
becomes prohibitively expensive in terms of build time as
well as the required storage space at the registry, as illustrated
in Figure 2. Assuming we can map each model layer to a
container image layer li ∈ L. Then, a model split is a container
image where for each i, layer li is either included in the image
or not. Each combination is an image manifest referencing
the included layers, leading to 2n combinations, where n is the
number of splits. Thus, the combination of manifests required,
as shown in the figure, explodes, leading to significant space
overhead. We leave it to the reader to imagine the build time
necessary to compute such a set of images. Moreover, if the
build time is not enough of a concern, these models are also

Layers

OCI + 2DFS

Index

Manifest

Manifest

Manifest

Config

layer[0].v1Annotations

blob[n]

blob[n-1]

blob[1]

2dfs.field

layer[n].v1

hash pointer includes

Figure 3: Cross-section of a 2DFS image.

frequently re-trained and updated – thus, the image build
procedure must be repeated.

Alternative state-of-the-art solutions distribute model pa-
rameters by (a) independently storing and then mounting
them to the containers as volumes or (b) downloading them
on the fly. The former approach prevents data sharing across
untrusted parties and requires considerable engineering ef-
forts in edge environments where object stores are not widely
available. The latter approach is transparent to the container
runtimes, preventing efficient parameters caching and shar-
ing across workloads but instead forcing the applications to
download the parameters at startup every time. Local model
registry caches can be used to mitigate bandwidth usage at
the cost of additional resource usage.

2.4 Why 2DFS?
We believe that the limitations of containerized ML model

distribution lie in the layered filesystem structure of container
images, which is well-conceived for code and dependencies
but not intended for large files, libraries, and drivers, resulting
in severely bloated images [105]. This structure prevents the
retrieval of on-demand data subsets and forces continuous
container image rebuild for fine-grained file updates, which
is expensive and time-consuming. For example, driver and
library updates usually invalidate the cache of entire con-
tainer images even if the underlying code did not change. On
the other hand, by addressing content by digest, container
registries offer an excellent mechanism for object retrieval.
With this work, we aim to extend the OCI image format to
recycle the well-known and commonly used container image
registries to distribute not only code and dependencies but
also binaries, model parameters, and any large file without
affecting the complexity of the CI/CD pipelines. By building
a specialized container layer offering independent file point-
ers, the ML model splits, drivers and dependencies can be
independently cached in image registries and downloaded on-
demand by container runtimes. Registries can then provide
each client with image partitions, including only the necessary
files, to avoid downloading bloated images.

3 2DFS System Design
2DFS is a two-dimensional filesystem build and distribution

framework for containers. The first building block is the exten-
sion of the conventional layered filesystem used in container
architectures, which often restricts optimization due to the
linked nature of layer changesets. 2DFS introduces an addi-
tional layer type called 2dfs.field. Figure 3 shows a cross-

section of an OCI container image with the new 2dfs.field
layer type (OCI+2DFS). A field is a sparse hash-pointer matrix
of allotments representing a self-contained, non-overlapping,
and independent filesystem space. Each allotment links one
or more files or, for instance, a split of a neural network. This
design relaxes intra-layer dependencies, enabling more effi-
cient filesystem distribution (see §3.1) and fast image builds
with extremely high parallelism (see §3.2). The second im-
portant building block of the proposed system is the image
partitioning operation, supported by the 2DFS compliant reg-
istry (see §3.5). This operation allows field partitions that can
be retrieved independently. The sub-fields are serialized as
regular OCI layers and are compliant with any existing con-
tainer runtime. The two-dimensional design is well suited for
flexibly partitioning ML models, allowing for more efficient
and on-demand “best-fitting” deployments (see §3.4).

Figure 4 shows the end-to-end workflow of 2DFS container
image specification, build, and distribution. At step 1 , the
developer specifies a base image and the allotments content
(e.g., different model splits) with their position in the field via
2dfs.json descriptor file. For instance, model splits s1 and
s2 are assigned to the allotments <0.0> and <0.1>, respec-
tively. 2DFS builder (§3.2) extends a regular OCI image with
a 2dfs.field (§3.1) layer and is responsible for (i) creating
the filesystem, (ii) filling the field with allotments, (iii) attach-
ing field to the image and (iv) caching the allotments. The
extended image format, referred to as OCI+2DFS, is stored
locally in the builder cache (§3.3) and can be pushed to a
2DFS-compliant registry (§3.5) in step 2 . Developers can
fetch partitioned images from the registry on-demand (step
3) by specifying the semantic tag in the pull request (§3.4).

Note that the registry image partitioner only performs man-
ifest operations on the pre-built allotments, restricting the
partitioning overhead as much as possible. Upon receiving
the image partition pull request (step 4), the registry seri-
alizes the image partition into a fully OCI-compliant image
and serves it to the runtime which can be used by any OCI-
compliant runtime without modifications.

3.1 2dfs.field layer
We extend the OCI Image Specification [46] to introduce

2dfs.field layer type as a new media type. As previously
discussed, 2dfs.field is represented as a sparse matrix that
organizes allotments in a grid structure. Among all the pos-
sible geometrical structures, this work represents a field as a
2-dimensional plane to simplify the definition of partitions
and to easily map the structure of neural networks. In such
a plane, allotments can be easily defined to contain model
splits or can be graphically organized based on different use
cases. Check §5 and Appendix A for further details. Inside
the field, each allotment contains: (i) an index in the form of
<row.column>, (ii) a digest, which serves as a hash-pointer
reference to an OCI artifact, and (iii) the DiffID, represent-

application/vnd.oci.image.layer.v1.2dfs.field

CLI (tdfs)

2DFS

OCI Manager

Cache
Manager

OCI Image

Index CacheKey Cache
01001->0F2F1A
01111->1B2FAC
11011->3A1F1D
11001->5F2F72

2DFS Build Client

Compress.
Utils

Exporter

 {"allotments": [
 {
 "src":
 ["DLv3_split1_conv1.h5"],
 "dst":
 ["/DLv3_split1_conv1.h5"],
 "row": 0,
 "col": 0},
 {
 "src":
 ["DLv3_split2_conv1.h5"],
 "dst":
 ["/DLv3_split2_conv1.h5"],
 "row": 1,
 "col": 0
 },...]}

1

2

Worker Node

Worker Node

Image
Partition

Image
Partition

4

img:tag--0.0.0.0

img:tag--1.0.1.1

3
OCI+2DFS
Deserializer

Partitioner Blob Cache Manifest Cache

2DFS Registry

Distribution

2dfs.json

layer.v1.tar+gzip

layer.v1.tar+gzip

Blob Cache

Layers
Allotments

layer.v1.2dfs.field
2DFS Builder

s1
s2

s3

s1

s2

Figure 4: 2DFS end-to-end workflow and component architecture.

1 "allotments":[
2 {
3 "row": int,
4 "col": int,
5 "digest": str,
6 "diffid": str,
7 },
8]
9 "tot_rows": int

10 "owner": str

Listing 1: Description of the 2dfs.field manifest

ing the hash of the uncompressed content as defined by the
OCI specification. Listing 1 illustrates the manifest descrip-
tion of 2dfs.field inside an image. OCI artifacts referenced
by allotments are standard .tar.gz blobs that contain user-
defined compressed content and are indistinguishable from
regular OCI layer objects. The 2DFS builder (see §3.2) makes
sure these blobs satisfy the following three properties: (i) they
are commutative and can be applied in any order to a con-
tainer filesystem without altering the final state, (ii) they can
be cross-referenced across multiple fields, supporting efficient
data sharing and caching across images, and (iii) they can be
serialized as conventional OCI layers, ensuring seamless in-
tegration with existing OCI runtimes. Changeset operations
in 2DFS closely resemble those in OCI layers. When a blob
referenced by an allotment is updated, a cascade of hash in-
validations occurs, requiring reconstruction of the field data
structure. However, unlike intermediate layers in conventional
container systems, where linked changesets force rebuilding
all dependent layers, only allotments referencing modified
files are updated, while the rest are served from the cache (see
§3.3). For instance, if model split s1 in Figure 4 is updated,
s2 allotment remains unaffected and will not be rebuilt in the
new image. The next section details the 2DFS builder.

3.2 2DFS Builder
Starting from a regular OCI image and a 2dfs.json file

descriptor, the builder composes the 2-dimensional field to cre-
ate an extended OCI+2DFS image. The 2DFS builder consists

of several components: (a) CLI utility, (b) image manager,
(c) 2DFS filesystem serializer/deserializer, (d) cache manager,
(e) exporter, and (f) compression utility. CLI Utility provides
a range of commands to build, push, and manage both OCI
and OCI+2DFS images locally. The core of the utility is the
following build command:

tdfs build [base-image] [target-image] [flags]

Here, the base-image is a fully-compliant OCI image de-
scriptor in the format registry/repository/image:tag.
In case the registry or the tag is omitted, the tool defaults
to Docker registry and latest, respectively. The command
expects a descriptor file called 2dfs.json. The descriptor
file contains a list of allotments defined by the user. For each
allotment, the user describes the source files list and the desti-
nation path in the target image, as well as the row and column
of the allotment in the field (see fig. 4).
The OCI Manager component is responsible for the lifecy-
cle of an image within the builder – from its initial state as
base-image to its final form as extended OCI+2DFS image.
The build command utilizes the OCI Manager to retrieve the
base-image, either from the local cache or from a remote
registry, and then extend it with the 2dfs.field layer.
The Cache Manager handles the storage of image indexes,
manifests, and blobs in the local caches, detailed in §3.3.
The 2DFS component generates the field data structure and its
allotments based on the 2dfs.json descriptor. Its descriptor
is parsed, and the referenced files are copied into temporary
directories, which are structured according to the path hier-
archy defined by the user. Each temporary directory is first
hashed to generate a DiffID—the digest of the uncompressed
layer, as per the OCI specifications.
The Compression Utilities compress the directories generated
by the filesystem component into a .tar.gz file (referred to
as a blob), which is cached and hashed. The blob hash, along
with the DiffID, column, and row information, is used by the
2DFS serializer to create the allotments for the 2dfs.field
layer. After the 2dfs.field layer is serialized, and the refer-
enced blobs are successfully cached, the layer is appended to

File.txt

Dir/
Archive Compressed

Dir/
Archive

File
Key

Content
key

Layer
Key

Field
Key

File.txt

Figure 5: Caching layers architecture.

oci.image.layer.v1.2dfs.field

oci.image.layer.v1.tar+gzip

oci.image.layer.v1.tar+gzip

Blob Storage

oci.image.layer.v1.tar+gzip

oci.image.layer.v1.tar+gzip

oci.image.layer.v1.tar+gzip

oci.image.layer.v1.tar+gzip

Layers selected by
partitioning operator

OCI+2DFS Image Partitioned OCI Image

b1
b2

b3

Hash Pointer

Figure 6: Example showcasing image partitioning.

each manifest referenced by the index. Since allotment gener-
ation is a platform-independent operation, the builder appends
the new field structure to all manifest variants, regardless of
OS or architecture – ensuring cross-platform compatibility.
The corresponding config for each image is also updated
to include all the DiffIDs for the allotments as if they are
layered. This step is necessary to ensure compliance with the
OCI runtime specification. If certain layers are removed from
the image, e.g., due to image partitioning, the config is up-
dated accordingly to reflect the modified image structure. The
builder dynamically re-computes new config files using the
DiffIDs embedded in the field’s allotments. Modifying the
manifest’s layers and config file invalidates its hash-pointer
reference at the index level, so the builder generates a new
index file for the OCI+2DFS image to maintain integrity.
The OCI Manager Exporters use the updated index files to
retrieve cache entries and package the new image. 2DFS sup-
ports two exporters: tarball and registry. The tarball exporter
can package either a full extended OCI+2DFS image or a par-
titioned image in plain OCI format. The registry exporter, on
the other hand, pushes all image layers, fields, allotments, and
blobs to a remote registry as OCI artifacts, utilizing standard
REST API calls defined in the OCI distribution spec [45] to
ensure compatibility with existing registries.

One key advantage of the 2DFS build process is that it
removes the need to mount the files into a running con-
tainer to build and extract layers. This is possible because
the 2dfs.field layer only references static files used at run-
time. As a result, the build process is significantly faster and
scalable, particularly for large files, while minimizing disk
I/O. Additionally, due to the independence of each file (allot-
ment), the blobs can be built in parallel, further accelerating
the build process.

3.3 Cache Hierarchy
The builder employs a multi-layer cache system to effi-

ciently store files, allotments, and fields. Every time the Cache
Manager modifies or creates an object, a hash of its bytes is
generated, known as a cache key. This key uniquely identifies

the object, allowing the builder to skip upcoming build stages
if the key already exists. At each stage, the builder works
with dedicated caching layers, generating or interacting with
objects from previous stages.

Definition 1 In a caching hierarchy, ranging from C0 to C j,
the following rules apply when building a generic object ok

i
for each caching layer i with 0 < i < j:

R1. ok
i and key Kk

i are built from at least one object of Ci−1.

R2.

{
Ci←Ci∪{Kk

i : ok
i }; i← i+1 if Kk

i /∈Ci

i← j otw

For allotment generation, the build stages and correspond-
ing cache operate as shown in Figure 5. At any level i in
the hierarchy, a change has a cascade effect on the layers
above. For instance, if a file within an allotment is updated,
the following steps occur: (i) the file’s key is invalidated, the
builder copies the new file in a temporary directory used for
the allotment build and the key of the uncompressed folder is
generated (ii) the updated directory is compressed into a blob,
generating another key; and (iii) the field is re-constructed. If
a key matches an existing one during this process, the builder
skips to the last cache layer and proceeds with the final stages
of the build. Since allotments can be built independently, the
2dfs.field is constructed from separate parallel build pro-
cesses. Changes in the file structure trigger reconstruction of
only affected allotments, resulting in significant build perfor-
mance improvements (see §4).

The Cache Manager module is used by the OCI Manager
component of 2DFS builder. It employs three different cache
storages for different object categories. The Key Cache
stores intermediate keys for the file copying, allotment
creation, and compression, which only serve as metadata
for cache hierarchy. Note that the cache only stores the
keys and hash-pointers referencing the blobs, which are
instead stored in the Blob Cache. This cache contains every
object in the builder except for the image indexes. Each
object in this cache is named based on the sha256sum of
its content, ensuring efficient content validation and easy
retrieval using hash pointers. The media type for each blob
in this cache is defined by its hash-pointer reference. This
means that when a blob is retrieved from the cache, its
media type is already known for deserialization, avoiding
the need to duplicate this information elsewhere. Finally,
the Index Cache stores the OCI index of all the images
that are referenced via the hashed fully-qualified OCI
name: sha256sum(registry/repository/image:tag).
Extended OCI+2DFS images are annotated with the name
of the base image and a "2dfs" label indicating that the
2dfs.field layer is present in the image DAG hierarchy.

3.4 Image Partitioning
The design of 2DFS focuses on flexibility and ease of use.

In a two-dimensional space, users are free to arrange ML
models, files, libraries, and other resources to fit any area of

the field (Appendix A discusses this further). This design
makes it easy for the user to select a subset of the field with
only the desired functionalities. We call this process image
partitioning, and it must allow retrieving only the necessary
parts of an image on-demand, without needing to re-build or
re-push any additional manifest. In 2DFS, partitions from the
two-dimensional field can be easily extracted and serialized
as regular OCI layers.

Definition 2 Given a field F composed of allotments A where
F = Am×n, a partition P is the union of subfields P =

⋃
i fi

where fi = A[f x1
i : f x2

i , f y1
i : f y2

i]; i,x,y ∈ N;x≤ m,y≤ n.

Given a partition P, a 2DFS exporter can create an OCI bundle
where the allotments composing the union of the subfields fi
are flattened into regular OCI layers. Figure 6 illustrates an ex-
ample of the operation. The center shows the selected partition
P of the 2DFS+OCI image composed of subfield A[1 : 2,4 : 5]
spanning from <row 1.column 4> to <row 2.column 5>.
This subfield only has two allotments (shown as different
green shades). The image partitioning operation (i) fetches
the corresponding allotment’s blob from the local blob store,
(ii) serializes the blob as regular OCI layers in the image
manifest, and (iii) updates the manifest config file with the
layer’s DiffIDs. The result is the base image from the 2DFS
build phase, without the special 2dfs.field layer, but with
additional flattened allotments selected by the partitioning
operator. To enable seamless image partitioning without addi-
tional registry endpoints, we define the partitioning operator
as a semantic image tag, i.e., a string containing a special
suffix defining the image operation.

registry/repository/image:tag--x1.y1.x2.y2

x1 and y1 are the coordinates of the top-left corner, and x2 and
y2 the bottom-right corner of sub-field fi (e.g., tag for fig. 6
partition is tag−−1.4.2.5). While only a 2DFS compliant
registry can correctly parse the semantic tag, any runtime
can use semantic tags to retrieve a partitioned image. The
partitioning operators can be concatenated, allowing for an
unlimited number of sub-fields for each partition. The sub-
fields are parsed by the exporter or a compliant registry and
transformed into the actual partition. The partition is pro-
cessed to generate the requested image.

3.5 2DFS Registry
2DFS registry is an OCI compliant registry with support for

.2dfs.field media type and partitioning operator. Starting
from the open-source OCI implementation, we introduced the
following updates:
1. Partitioner: Serializes the partition of an OCI+2DFS into

an OCI manifest.

2. Partitioning Operator Support: Enables parsing of smantic
tags for partitioning at the image/pull endpoint.

3. OCI+2DFS Deserializer: Provides support the 2dfs.field
media type.

The partitioner efficiently generates OCI-compliant mani-
fests and configs by fetching the OCI+2DFS image, decoding
the 2dfs.field layer, and applying the selected allotments as
OCI layers. It then removes the 2dfs.field layer, replacing
it with standard layer descriptors, and it applies the layers Dif-
fIDs to the rootfs of the image’s config file. Finally, the new
manifest is cached. When a semantic tag with a partition is
detected at the /v2/<name>/manifests/<reference> end-
point, the tag parser triggers the partitioner, which fetches the
manifest and generates the new partitioned image based on
the requested subfields. The OCI+2DFS Deserializer extends
the registry to handle 2dfs.field media types, leveraging
distribution.UnmarshalFunc [25] type to deserialize and
access the manifest content.

4 Evaluation
We evaluate the performance of 2DFS and compare

it against Docker – the most popular container-building
tool [28]. Since 2DFS is a completely new approach to layer-
ing, in most scenarios, multiple Docker images were used to
simulate the same functionality of an OCI+2DFS image. For
example, for three partitions of 2DFS image, we require three
separate Docker images. In this evaluation, we focus on the
continuous model updating and split computing use cases,
where a ML model is stored as several partitions or splits. We
compare the performance of 2DFS while varying the amount
of splits of a model.

4.1 Experimental Setup
Build Infrastructure. All the build experiments are carried
out with Docker runtime version 27.3.1 with containerd
snapshotter and all default settings, such as buildx builder
and BuildKit backend. The base image used for all the builds
is the tensorflow/tensorflow image version 2.17.0. The
image build is performed on a bare-metal server with 2×
AMD EPYC 7302 16-Core Processors, 256GB DDR4 RAM,
and 2TB 12Gb/s Solid State Drive. For the build, we compare
the 2DFS builder (in §3.2) against the default Docker build
command. The 2DFS compliant registry is hosted on a server
running 1× Intel Core i9-9820X CPU, 128GB DDR4 RAM,
1TB NVMe 3.5Gb/s Solid State Drive. The machines are
interconnected with a 1Gb/s Ethernet connection.

Edge Infrastructure. We created a distributed edge com-
puting infrastructure consisting of 10 Raspberry Pi 4B (RPi)
devices, each equipped with four ARM Cortex-A72 cores and
8GB of RAM. Additionally, we utilized a Linux PC with an
Intel Core i7-4790 4-Core Processor and 16GB RAM as the
gateway for our experiment in §4.5. All machines were inter-
connected via a 1Gb/s Ethernet switch. The gateway served as
the controller for dynamically deploying different model splits
on varying numbers of RPis, generating load, and aggregating
output to calculate end-to-end response time. Notably, the
gateway did not execute any model splits itself. The RPis rely
on the remote server for cross-device clock synchronization.

Model Label Application #Parameter Total Size (MB) #Splits Avg #Params per Split ±σ

ResNet50 RN50 Recognition 25.6 M 97.8 18 1.39 ± 1.76 M
MobileNetV2 MNv2 Recognition 3.5 M 13.5 19 0.13 ± 0.15 M
MobileNetV2α=1.4 MNv2L Recognition 6.2 M 23.5 19 0.24 ± 0.29 M
DeepLabv3+* DLv3 Segmentation 39.1 M 150 19 2.17 ± 3.67 M
EfficientNet-V2-B0 ENv2B0 Recognition 7.2 M 27.5 24 0.26 ± 0.22 M
EfficientNet-V2-B1 ENv2B1 Recognition 8.2 M 31.3 30 0.24 ± 0.22 M
EfficientNet-V2-B2 ENv2B2 Recognition 10.2 M 38.8 31 0.29 ± 0.26 M
EfficientNet-V2-B3 ENv2B3 Recognition 14.5 M 55.2 35 0.38 ± 0.33 M
ResNet101 RN101 Recognition 44.7 M 170.5 35 1.25 ± 1.25 M
YOLOv3 YOLOv3 Detection 62 M 236.3 36 1.68 ± 2.29 M
EfficientNet-V2S ENv2S Recognition 21.6 M 82.5 43 0.48 ± 0.39 M
ResNet152 RN152 Recognition 60.4 M 230.5 52 1.14 ± 1.06 M
EfficientNet-V2M ENv2M Recognition 54.4 M 207 60 0.90 ± 0.99 M
EfficientNet-V2L ENv2L Recognition 119 M 454 82 1.45 ± 1.60 M

Table 2: Overview of our Model Zoo which includes popularly used models for different application categories.

To ensure accurate timing measurements, we deployed a net-
work time protocol (NTP) server on the gateway. This setup
results in a maximum clock offset of approximately ±100µs
and a jitter less than ±100µs, allowing for precise device-to-
device response time reporting. We perform all experiments
10 times and report the median across runs.
Model Zoo. Table 2 presents the model zoo utilized in our
evaluation, comprising 14 models across three diverse applica-
tion scenarios, including Object Recognition, Detection, and
Segmentation. These models offer varying splitting options
based on their architectural characteristics (cf. §4.1.1). The
number of splits per model ranges from 18 to 82. The results
are obviously expected to generalize to much larger models.
4.1.1 Generating Model Splits

To accommodate a wide range of models and offer a gen-
eral solution, we employ the Keras API due to its ability to
leverage multiple backends, such as PyTorch, TensorFlow, or
JAX, catering to different hardware needs. We automatically
generate the 2dfs.json descriptor as a direct output of the
model split generation. For all the models in the zoo, a de-
scriptor shows the position of splits’ weights and architecture
in the two-dimensional structure. Our approach draws inspi-
ration from previous work [40, 54, 92] on model slicing and
is guided by three key principles:
1. Minimizing output size. We avoid slicing at branch or

shortcut points, as this would require passing multiple
tensors to the next device. Instead, we identify inherent
information bottlenecks, typically located after aggrega-
tion layers (e.g., Add or Concatenation), which serve as
suitable split points.

2. Maximizing flexibility. By introducing as many splits as
possible while adhering to the first principle, we increase
deployment flexibility and enable more efficient utilization
of available resources.

3. Balancing split inference times. While not as critical as

the first two principles, we strive to achieve a fair distribu-
tion of inference time across each split, ensuring that no
single device is disproportionately burdened. Our end-to-
end results on MNv2L (fig. 14) supports this goal.

Guided by these principles, our slicing strategy targets bot-
tleneck layers whenever possible or, alternatively, those with
relatively smaller output sizes compared to their neighbors
as candidate split points. Each split was designed to contain
two or three computationally expensive operations, such as
various forms of convolution or fully connected layers. In cer-
tain applications, like object detection, the output of multiple
splits may need to be transmitted and utilized in a later stage.
We restructured these model graphs to transmit the neces-
sary information directly to the specific split(s) that require it,
thereby avoiding unnecessary data passing through all splits.
Furthermore, whenever possible, we identified opportunities
for parallel computation without tensor sharing and created
separate splits to leverage these possibilities. For instance,
a few blocks in YOLOv3 have such a characteristic. By ex-
ploiting parallelism in the model graph, we can accelerate
inference and improve scalability.

Our model slicing approach yields a varying number of
splits across the 14 models in our Model Zoo (Table 2), rang-
ing from 18 (e.g., RN50) to 82 (e.g., ENv2L). Each split can
be deployed and containerized as a standalone application,
enabling flexible deployment scenarios. We include in fig. 18
the parameter count and size distribution of different splits,
showing the variability among models. Note that each split
comprises multiple model layers. Each layer potentially has
weights and biases that may change values after model up-
dates or have distinct versions (e.g., FP32, quantized INT8) to
accommodate diverse use cases. To comply with this dynamic
nature, we detangle the split model architecture (computation
graph) from the weights themselves to improve flexibility. We
then apply BZip2 compression to the splits and store them as
separate allotments in the OCI+2DFS format.

4.2 Image Build
We begin by measuring the build performance of 2DFS and

Docker builder. For each model in the zoo, we define a split
capacity ranging from 0% to 100%. We define split capacity
as the percentage of the splits we divide the model compared
to the maximum allowed splits. For example, at 50% split
capacity for ENv2L, we only generate 82×0.5=41 splits and
divide the model into 41 portions instead of 82. With 0%
split capacity, we do not split the model at all resulting in
one large "split" representing the entire model. Each split is
allocated in a separate 2DFS allotment or OCI layer. Therefore,
an image containing YOLOv3 at 100% split capacity features
37 layers (RootFS + 36 splits), while an image with 100%
split of ENv2L has 83 layers. We perform the experiments for
all the models in the zoo, but only report results for a subset
for brevity. We refer interested readers to Appendix B for the
remaining results.

Figure 7 shows the results of build-time of 1 image with re-
spect to split capacity %. On average, 2DFS builds OCI+2DFS
images 16× faster than Docker with standard OCI images.
Even in the base case of 0% split capacity, 2DFS is already
outperforming Docker. For deep models with larger layer
sizes, such as ENv2L, we observe a counterintuitive pattern
in the Docker build. The build is slower when either the lay-
ers are too big (e.g., 0% split capacity) or the layers are too
many (e.g., 100% split capacity), with a sweet spot at 50%
split capacity. For smaller models, instead, Docker build time
decreases somewhat linearly with the number of layers. This
behavior hints that there is a tradeoff between layer size and
layer number. Generally, it looks faster to build smaller layers
until they are confined in numbers (E.g., less than 50 lay-
ers.). With 2DFS, we observe that the more we split, the faster
the build time. The performance gap between the two build
systems is related to how Docker handles the layer creation.
Docker uses a build container to which all the files are copied
during the build. Mounting the model weights into the build
container and extracting a layer changeset is an expensive and
time-consuming operation. Moreover, each layer operation is
executed using the input mount point from the previous phase
sequentially since Docker cannot know if the layer’s applica-
tions are commutative. On the other hand, 2DFS exploits the
allotment independence to parallelize the build process, thus
escalating the cache hierarchy described in §3.3 for all the
allotments simultaneously. The 2DFS builder runs under the
assumption that a 2dfs.field layer is immutable and only
contains static files. Therefore, a build container is not nec-
essary, and the allotments are computed locally, minimizing
disk I/O utilization also for the 0% split capacity scenario.

With OCI+2DFS image format, we can retrieve on-demand
any possible image split with a random partitioning. In fig. 8,
we compare the build time needed to pre-compute multiple
OCI images for each split. Because the total number of split
and partition combinations would be unfeasible to build, we
simplify the experiment by only building a small subset of

possible image splits for Docker. In particular, we compute
one Docker image for each split based on the Split Capacity.
E.g., ENv2L50% split capacity in the context of this plot means
that we partition the model in 41 splits, and we generate 41
different Docker images, one for each split, while only one
OCI+2DFS image with 41 equal partitions from the original
82 allotments. Note that an OCI+2DFS image can actually
generate up to 282 different partitions with such split capacity,
but it would be unreasonable to build so many Docker images
as demonstrated in fig. 2. The results show an average of 56×
faster build time for 2DFS, with a peak of 120× faster builds
for the ENv2L model with 100% split capacity. The build
time of OCI+2DFS in this experiment is constant and does not
depend on the split capacity because we always build one
image including all the allotments, while to achieve the same
result with traditional OCI images, we need to build a new
image for each split, increasing the build time manyfold.

Figure 9 shows the CPU and Memory usage of the builder
machine measured during the experiment shown in fig. 7.
The results show that while 2DFS and Docker have similar
memory usage, 2DFS has higher CPU consumption, especially
with higher image split capacity. With 0% split capacity, we
observe similar consumption. The more we increase the split
capacity, the higher the values of CPU usage. While 2DFS
builder computes each allotment’s DiffID and blob simulta-
neously, which are both CPU-intensive operations, Docker
performs these operations in sequence, resulting in lower CPU
usage but longer builds. It is worth noting that even if, in this
experiment, Docker shows up to 20% lower CPU consump-
tion over the build time, 2DFS build time was on average 16x
faster, resulting in an overall lower total CPU time.

4.3 Image Download and Partitioning
We now evaluate the overhead caused by the partition-

ing operation at the registry compared to pull of traditional
OCI images. Figure 10 compares the download time of four
different partitions for the ENv2L and RN50 images, each con-
taining respectively 25, 50, 75, and 100% of the total splits.
For Docker, we pre-compute the splits, and we push all four
images to the registry independently. For 2DFS, we just push
to the registry a single OCI+2DFS image and ask for an on-
demand partition every time. The pull requests are performed
on a separate worker machine using the Docker CLI. We ob-
serve how the on-demand partitioning is performed by the
registry with minimal overhead, leading to a comparable total
download time with on average only 20 ms additional latency.

Figure 11 shows the bandwidth usage at the client side
during the download of the pre-computed OCI images built
using Docker versus the OCI+2DFS partitioned image. The
result shows comparable bandwidth usage across the two
approaches. Therefore, serialized allotments bring negligible
overhead in terms of download time and data rate.

Figure 12 shows the CPU usage at the registry side during
the download of traditional OCI images built using Docker and

0 25 50 75 100
Model Split Capacity (%)

0

10

20

30

T
im

e
(s

)

RN50

0 25 50 75 100
0

10

20
MNv2L

0 25 50 75 100
0

10

20

30
DLv3

0 25 50 75 100
0

10

20

30
ENv2B1

0 25 50 75 100
0

10
20
30
40
50

YOLOv3

0 25 50 75 100
0

30
60
90

120
ENv2L

2DFS Docker

Figure 7: Build time for a single image with increasing number of splits per layer.

25 50 75 100
Model Split Capacity (%)

0
10
20
30
40
50
60
70

T
im

e
(s

)

RN50

25 50 75 100
0

10
20
30
40
50
60

MNv2L

25 50 75 100
0

10
20
30
40
50
60
70

DLv3

25 50 75 100
0

20
40
60
80

ENv2B1

25 50 75 100
0

20
40
60
80

100
YOLOv3

25 50 75 100
0

60
120
180
240

ENv2L

2DFS Docker

Figure 8: Build time for different split partitions where each partition is packaged as a separate image.

0 25 50 75 100
Model Split Capacity (%)

0

5

10

15

20

25

R
es

ou
rc

e
U

sa
ge

(%
)

2DFS/Docker CPU

2DFS/Docker Memory

Figure 9: Resources consump-
tion during image build.

25 50 75 100
Partition Size (%)

0

1

2

3

4

5

6

T
im

e
(s

)

2.
23

2.
97

5

4.
05

5

5.
56

5

2.
22

5 2.
93

5

4.
02

5

5.
53

1.
52

5

1.
72

5

2.
06

2.
54

1.
5 1.

70
5

2.
01

2.
52

2DFS/Docker ENv2L

2DFS/Docker RN50

Figure 10: Download of parti-
tioned vs prebuilt images.

25 50 75 100
Partition Size (%)

0

20000

40000

60000

80000

U
sa

ge
(K

B
/s

)

2DFS/Docker ENv2L

2DFS/Docker RN50

Figure 11: Download band-
width for partitioned images.

1 2 3 4 5
CPU Usage During Pull (%)

0

0.2

0.4

0.6

0.8

1

C
D

F Partition Size
25

50

75

100

Docker

2DFS

Figure 12: Registry resource
utilization during image pull.

25 50 75 100
% of Layers/Allotments Updates (Top)

0

20

40

60

80

T
im

e
(s

)

1.
85

2.
58

5

3.
98 5.
31

5

27.215

47.415

56.105

83.76

1.
08

1.
18

1.
34

1.
526.

33 9.
95 14

.6
9

19
.9

2DFS/Docker ENv2L

2DFS/Docker RN50

Layer/Allotment Creation

Compression Time

(a) Top-down update strategy.

25 50 75 100
% of Layers/Allotments Updates (Bottom)

0

20

40

60

80

100

120

T
im

e
(s

)

1.
58

7

2.
56

2

4.
17

8

4.
82

119.186

107.545

93.412
88.115

1.
10

4

1.
00

4

1.
37

8

1.
36

4

16
.8

58

18
.2

34

19
.8

20
.0

02

(b) Bottom-Up Update Strategy.
Figure 13: Build time after model updates with image caching.

2DFS images. With these measurements, we try to quantify
the computational overhead of the on-demand partitioning
operation compared to the download of pre-computed images.
The results show that the registry CPU usage is comparable
across the two approaches, with a slight increase for the 2DFS
images of 1% after the 50-th percentile. This gap represents
the CPU overhead of the on-demand partitioning operation
and the serialization of the field’s allotments into OCI layers.
We also measure the memory overhead at the registry, but we
omit the results as we do not observe any significant difference
between the two approaches.

4.4 Model Updates
As mentioned in §2.2, some parts (i.e., splits) of a model,

particularly in smaller models, may receive frequent updates
to comply with the accuracy demands as they experience dis-
tribution drift. In this section, we evaluate the effect of model

updates on the image rebuild. For each image in the model
zoo, we build a baseline version where each split is placed
on a different layer. Then, we update increasingly 25%, 50%,
75%, and 100% of the model splits with newer versions and
re-perform the build of the images. This operation commonly
happens after model re-training. This experiment measures
the caching efficiency of each builder. Better caching strate-
gies lead to lower build times. In 2DFS, the position of the
allotment that needs to be updated does not affect the build
time due to the independence property. Each allotment that
has not been updated will skip the cache hierarchy as de-
scribed in §3.3. On the other hand, in Docker, the position of
the layer that needs to be replaced affects the cache invalida-
tion and drastically increases the build time. Therefore, we
compare two different configurations, one where the updated
layers are placed at the top of the image and one where they
replace the bottom layers of the image.

Figure 13 shows the results of the experiment. On the left
side, we have the results obtained by starting the updates from
the top layers, while on the right, the results while updating
the layers from the bottom. As expected, Docker build time
is relatively more efficient when updating the layers from the
top, as Docker is able to cache the bottom layers successfully.
However, the build time is, on average, 25× slower than 2DFS.
The worst case scenario for Docker is when the layers are
updated from the bottom, resulting in a 75× slower build
time compared to 2DFS. Interestingly, in this latter scenario,

1 2 3 4 5 6 7 8 9 10
Splits

0

10

20

30

40

D
ur

at
io

n
(s

ec
on

ds
)

0.
78

21
.3

32.2
0.

60
17

.0

27.5
0.

61
15

.6
26.1

0.
61

15
.0

25.5

0.
62

14
.6

25.1

0.
68

14
.3

24.9

0.
62

14
.1

24.6

0.
65

14
.0

24.5

0.
63

13
.8

24.3

0.
61

13
.7

24.2

Container Preemption

Application Initialization

Container Creation

(a) Deployment time.

1 2 3 4 5 6 7 8 9 10
Container Images

0

5

10

15

20

25

30

T
im

e
(s

)

2DFS Docker

(b) Build time.

1 2 3 4 5 6 7 8 9 10
Devices

0

200

400

600

800

1000

A
ve

ra
ge

E
nd

-t
o-

E
nd

R
es

p
on

se
T

im
e

(m
s)

RPi 1

RPi 2

RPi 3

RPi 4

RPi 5

RPi 6

RPi 7

RPi 8

RPi 9

RPi 10

E2E RT

2

4

6

T
hr

ou
gh

pu
t

(r
eq

ue
st

s/
s)

Throughput

(c) Response time & throughput.
Figure 14: Performance of distributed MNv2L over increasing
number of devices and model splits.

the more layers we update, the faster the build gets. This is
related to the way Docker invalidates the cache for the layers
above and re-computes one layer after the other. We observe
that for the bottom-up update scenario, the compression time
increases with the number of updated layers while the layering
time decreases. The layering time includes all the operations
prior to the layer compression, such as cache invalidation,
content copy, and changeset computation. We conclude that
in the current Docker implementation, it is faster to rebuild
the image from scratch than to perform a bottom-up update.
When updating the image layers from the top, the compression
and layering time grows linearly as expected. The 2DFS build
time is growing linearly with the number of updated layers
but at a slower pace, showing a better caching efficiency.

4.5 Split Computing Performance
Another scenario of interest besides continuous model up-

dates is the split computing phenomenon §2.2, where due to
different reasons such as privacy and/or scalability, a model is
split into multiple parts, and each device serves only a subset
of the model. This inherently provides an opportunity for
pipeline parallelism as we enable it by default. In this sec-
tion, we evaluate the performance of the MNv2L model in a
distributed Edge Computing testbed. We deploy the model on
a set of Raspberry Pi devices, ranging from 1 to 10, each run-
ning a different split of the model. Every time a device joins
the experiment, the image splits are re-computed uniformly to
fit the new number of devices. For each new device, a new im-
age split must be computed for traditional OCI images, while
for OCI+2DFS images, we can simply request the new parti-
tion from the registry. We measure (i) E2E RT, which refers
to the average end-to-end response time, (ii) throughput of the

deployed system, which is the number of requests per second
that it is able to fulfill, (iii) deployment time and (iv) build
time of the images for the different splits.

Figure 14c shows the inference performance results. RPi
x refers to the average time a particular Raspberry Pi device
takes to process its split, including the communication and
queuing delay. Observe how the end-to-end response time
increases linearly with the number of devices. The model
fragmentation and the additional networking overhead are
the main contributing factors. On the other hand, the total
throughput of the system increases steeply from less than 1.3
to 7.6 requests/s. Model fragmentation allows constrained
devices to compute their splits, avoiding CPU throttling and
memory exhaustion issues. Moreover, model splitting can
improve the overall system scalability.

Figure 14a is showing the overall deployment time break-
down for the MNv2L model. This experiment does not include
the download and partitioning time as it assumes that Docker
images were pre-computed. The results show a logarithmic
decrease in build time, mainly caused by the application ini-
tialization and the container creation. Smaller model sizes
are faster to decompress, especially on constrained hardware,
resulting in an overall speed-up of the deployment process.

Figure 14b shows the time to build the new image split for
each device joining the experiment. Build time for 2DFS is
constant as only one image is generated at the beginning, and
the new splits are requested on-demand. On the other hand,
the build time for the Docker use case increases based on the
number of images that need to be generated every time we
need a new split. On some occasions, such as when generating
images for 2 and 6 devices, the build time results are lower
than expected, probably related to a discrepancy in the split
sizes, which can lead to faster build times. The relative build
time difference between the two approaches shows that 2DFS
build is 55.9× faster. We omit the total build time because it
is not comparable across the two approaches; in fact, for this
simple example, we had to build 55 OCI images but only a
single image for 2DFS.

5 Discussion and Future Directions
While our primary focus is on providing an efficient and

standard packaging framework for the mainstream distributed
ML, there are additional application scenarios for 2DFS that
are available straight out of the box. Conducting separate
evaluation experiments of these applications is unlikely to
provide new insights beyond those already presented in the
previous section; thus, we discuss them here and refer to
relevant evaluations when applicable.
Other ML Architectures. 2DFS is not limited to the models
provided in the Model Zoo. Indeed, it is a general solution, and
one can use any model or set of models together with 2DFS to
streamline data propagation and parallel executions in a stan-
dard containerized way. This includes autoencoders, recurrent
neural networks, and generative AI such as diffusion models

and large language models (LLMs). For instance, LLMs heav-
ily rely on distributed inference infrastructure across several
machines [4, 35, 83, 84, 107], a practice essential for scalabil-
ity and for supporting massive models like Llama 3.1 with
up to 405 billion parameters [38]. Integration of 2DFS and
LLM libraries like vLLM [53], DeepSpeed [4, 86, 93] and the
Kubernetes-native llm-d [62] comes with foreseeable advan-
tages such as facilitating LLM distributed serving pipelines
by leveraging (i) OCI+2DFS images for efficient packaging of
inference code and model parameters, and (ii) on-demand par-
titioning for distributing model shards. This combines LLM
serving with the simplicity and scalability of self-contained
microservice applications.
Additional ML Usecases. In the context of ML applications,
several scenarios emerge where 2DFS is advantageous. For in-
stance, in ML serving systems, dynamic application demands
(e.g., varying latency and accuracy requirements), different
backends, and numerous model sizes lead to thousands of
variants of the same base model and corresponding Docker
images [88]. This calls for a more efficient packaging frame-
work that can decouple these different models; this is where
2DFS excels. In fact, each variant can be treated as a separate
set of allotments, and significant gains can be achieved as
demonstrated in §4.4.

Along similar lines, the concept of bloated vs. debloated
ML containers [105] highlights the issue of oversized Docker
containers with potential vulnerabilities due to the inclusion
of various packages and toolchains during different stages
(design, training, serving) of an ML application’s lifecycle.
2DFS offers a straightforward solution by facilitating the sep-
aration of these stages into distinct partitions. Appendix A
illustrates ML packaging in more detail.

Further, another line of work [7, 85, 97] aims to reduce the
communication overhead in tensor parallelism by construct-
ing sparsely distributed sub-models. These works along with
multi-model pipelines where an application is constructed of
multiple ML tasks present another compelling use case for
2DFS. Instead of relying on several docker images, or worse, a
bulky image with redundant blobs, it packages everything into
a single image. Each device only pulls the needed parts, result-
ing in reduced build, download, and deployment times §4.3.
Frequent ML Model Updates. One of the most critical as-
pects of containerized ML is the container build time, hin-
dering the propagation of ML model updates. Often, plat-
forms prefer to rely on object stores [36], just to avoid fre-
quent container re-builds, which are slower. However, this
practice requires customized release pipelines and has se-
vere limitations in edge environments, as discussed in §2.
Khani et al. [51] show how real-world continuous re-training
for object-detection models such as MobileNetV2(MNv2) and
ResNet50(RN50) can lead to model updates arriving every 30
seconds or even faster. For RN50, a relatively small model,
in fig. 13, we show how traditional container updates on
production-grade hardware can span between 6 and 20 sec-

onds, depending on where the layer update happens, slowing
the effectiveness of continuous re-training manyfold. On the
other hand, 2DFS, is able to build such images in 1 to 1.5 sec-
onds, up to 13x faster. For larger models such as EfficientNet-
V2L(ENv2L), the gap increases further up to 75x faster re-
build. These results highlight how 2DFS opens an unprece-
dented opportunity to utilize containers for model packaging
and caching even in highly dynamic environments with fre-
quent model re-train.
Broader Applications. By design, 2DFS is a general-purpose
solution applicable to diverse scenarios that require flexible
and efficient packaging. An interesting use case is the man-
agement of fat images [2], where containers are built with ex-
tensive binaries, libraries and other application requirements,
e.g. analytics utilities to full-blown networking libraries like
ServiceRouter [90]. In traditional systems, any update to a
single binary requires rebuilding the entire container, which is
not only a resource-intensive process but can also take several
hours to complete. With 2DFS, separate allotments can con-
tain different binaries and libraries, allowing teams to update
specific components independently, while improving deploy-
ment efficiency. This capability significantly accelerates the
DevOps workflows, enabling continuous integration and de-
ployment practices to operate at a much finer granularity.
Future Directions. In addition to the above-mentioned sce-
narios, 2DFS has potential operational benefits in microservice
packaging/deployment in edge computing environments [12]
and for federated learning workloads [13]. However, 2DFS
also has several limitations to be considered. 2DFS is cur-
rently limited to supporting only OCI images, which, despite
being an established standard, restricts its compatibility with
other formats such as the conventional vnd.docker. While
the number of 2DFS allotments is potentially unlimited, leav-
ing developers total freedom in how to architect the field,
traditional OCI runtimes can only handle a maximum of 127
container layers. Therefore, to maintain compatibility with
runtimes like Docker, the 2dfs.json descriptor must be de-
signed in a way that limits 2DFS partitions to a maximum
of 127 allotments per partition. This still allows fine-grained
parameter caching but can be a limitation for developers deal-
ing with extremely large models. In the future, we plan to
address these limitations and extend the system by (i) ex-
ploring alternative field form factors and layouts to optimize
both performance and usability, (ii) developing a 2DFS storage
driver to overcome the layer limitations imposed by current
file systems, and (iii) designing a system-specific runtime that
dynamically retrieves model partitions based on file system
access patterns. For instance, a future direction can aim at
extending container runtimes to better support use cases re-
quiring more than 127 layers and optimize how allotments
are handled within the container runtime storage driver [29].

6 Related Work
Distributed ML serving needs model partitioning. Related
work on distributed ML serving can be categorized into two
main avenues. One focuses on splitting models between edge
devices and cloud servers to reduce data transmission latency
and improve privacy [3, 32, 39–41, 43, 50, 54–56, 63, 66, 95].
Techniques vary in their partitioning strategies, often driven
by specific objectives such as energy efficiency [50, 59],
bandwidth, latency, or privacy [47, 79]. Some works employ
early-exit mechanisms for generating predictions on edge de-
vices [63,92,95]. Others propose creating multiple versions of
partitions to adapt to changing network conditions [22, 43] or
utilize idle machines over the Internet for large language mod-
els [16]. The second line of research targets deploying small
models on distributed edge computing devices, often con-
sidering scenarios like self-driving cars [14, 51] or multiple
audio and video analytics applications [22, 92]. These works
address the capacity gap between smaller and larger models
through model adaptation. Some proposals involve deploying
models or splits on various devices and aggregating results
to achieve desired accuracy [6, 7, 97, 100, 103], while others
focus on efficient model update strategies, such as training
only the final layers of models [51], freezing 70-90% of layers
during retraining [14, 22], or dynamically selecting a portion
of model partitions to process and applying early-exit to main-
tain Service-Level Objectives (SLO) requirements [92].
ML Serving meets containers. Containers have become
ubiquitous as they offer isolated runtime environments, en-
suring consistent behavior across different dependencies and
platforms [14, 21, 40, 51, 88, 108]. However, most MLOps
frameworks overlook the unique challenges of Distributed
ML [8,9,11,13,19,31,33,37,57,71,75,78,106]. These frame-
works assume that packaging is a solved problem, neglecting
the complexities of dividing ML models into multiple parts
for efficient adaptation and distribution across devices.

Our work highlights the need for a more comprehensive
and efficient approach to packaging in Distributed ML. While
there are numerous proposals addressing various aspects of
Distributed ML, we found no existing packaging tool that
natively supports its requirements. This gap underscores the
importance of our solution.

7 Conclusion
In this paper, we introduced 2DFS, a two-dimensional

filesystem build and distribution framework designed to ad-
dress the inefficiencies of existing container-based systems
for distributed ML. Our design enables independent updates
of model partitions by decoupling them from the traditional
layered structure, offering substantial improvements in both
build and deployment efficiency. Through our comprehensive
evaluation, we demonstrated that 2DFS provides significant
performance gains – achieving on average 56× faster build
times and 25× better caching efficiency compared to Docker
and regular OCI images.

Acknowledgments
We would like to thank the anonymous ATC reviewers and
the shepherd for their helpful comments and insights during
the review process of this paper. We would also like to thank
the ATC Artifact Evaluation Committee for their meticulous
examination and efforts to reproduce our results. This work is
supported by the Federal Ministry of Education and Research
of Germany (BMBF) project 6G-Life (16KISK002) and by
the National Growth Fund through the Dutch 6G flagship
project “Future Network Services".

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eu-

gene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

[2] Dimitri Aivaliotis. Tupperware: Container deployment
at scale. 2015.

[3] Mario Almeida, Stefanos Laskaridis, Stylianos I Ve-
nieris, Ilias Leontiadis, and Nicholas D Lane. Dyno:
Dynamic onloading of deep neural networks from
cloud to device. ACM Transactions on Embedded
Computing Systems, 21(6):1–24, 2022.

[4] Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, et al. Deepspeed-inference: enabling efficient
inference of transformer models at unprecedented scale.
In SC22: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1–15. IEEE, 2022.

[5] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox,
Alex Crown, Shadi Nogbahi, and Yuanchao Shu. Video
analytics-killer app for edge computing. In Proceed-
ings of the 17th annual international conference on
mobile systems, applications, and services, pages 695–
696, 2019.

[6] Navidreza Asadi and Maziar Goudarzi. An ensem-
ble mobile-cloud computing method for affordable
and accurate glucometer readout. arXiv preprint
arXiv:2301.01758, 2023.

[7] Navidreza Asadi and Maziar Goudarzi. Variant par-
allelism: Lightweight deep convolutional models for
distributed inference on iot devices. IEEE Internet of
Things Journal, 11(1):345–352, 2024.

[8] AWS. Deep Learning Container. https:
//github.com/aws/deep-learning-containers.
[Online; accessed 26-Jan-2024].

https://github.com/aws/deep-learning-containers
https://github.com/aws/deep-learning-containers

[9] Mariam Barry, Albert Bifet, and Jean-Luc Billy. Strea-
mai: Dealing with challenges of continual learning sys-
tems for serving ai in production. In 2023 IEEE/ACM
45th International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP),
pages 134–137. IEEE, 2023.

[10] Giovanni Bartolomeo, Navidreza Asadi, Wolfgang
Kellerer, Jörg Ott, and Nitinder Mohan. 2dfs. https:
//github.com/2DFS, 2025. Accessed: 22 May 2025.

[11] Giovanni Bartolomeo, Jacky Cao, Xiang Su, and Nitin-
der Mohan. Characterizing distributed mobile aug-
mented reality applications at the edge. In Companion
of the 19th International Conference on emerging Net-
working EXperiments and Technologies, pages 9–18,
2023.

[12] Giovanni Bartolomeo, Mehdi Yosofie, Simon Bäurle,
Oliver Haluszczynski, Nitinder Mohan, and Jörg Ott.
Oakestra: A lightweight hierarchical orchestration
framework for edge computing. In 2023 USENIX An-
nual Technical Conference (USENIX ATC 23), pages
215–231, Boston, MA, July 2023. USENIX Associa-
tion.

[13] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi
Qiu, Javier Fernandez-Marques, Yan Gao, Lorenzo
Sani, Kwing Hei Li, Titouan Parcollet, Pedro
Porto Buarque de Gusmão, et al. Flower: A friendly
federated learning research framework. arXiv preprint
arXiv:2007.14390, 2020.

[14] Romil Bhardwaj, Zhengxu Xia, Ganesh Anantha-
narayanan, Junchen Jiang, Yuanchao Shu, Nikolaos
Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion Sto-
ica. Ekya: Continuous learning of video analytics
models on edge compute servers. In 19th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 22), pages 119–135, 2022.

[15] Alexander Borzunov, Dmitry Baranchuk, Tim
Dettmers, Max Ryabinin, Younes Belkada, Artem
Chumachenko, Pavel Samygin, and Colin Raffel.
Petals: Collaborative inference and fine-tuning of large
models. arXiv preprint arXiv:2209.01188, 2022.

[16] Alexander Borzunov, Max Ryabinin, Artem Chu-
machenko, Dmitry Baranchuk, Tim Dettmers, Younes
Belkada, Pavel Samygin, and Colin A Raffel. Dis-
tributed inference and fine-tuning of large language
models over the internet. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

[17] Ryan Chard, Zhuozhao Li, Kyle Chard, Logan Ward,
Yadu Babuji, Anna Woodard, Steven Tuecke, Ben
Blaiszik, Michael J Franklin, and Ian Foster. Dlhub:

Model and data serving for science. In 2019 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS), pages 283–292. IEEE, 2019.

[18] Sarah Chasins, Alvin Cheung, Natacha Crooks, Ali
Ghodsi, Ken Goldberg, Joseph E Gonzalez, Joseph M
Hellerstein, Michael I Jordan, Anthony D Joseph,
Michael W Mahoney, et al. The sky above the clouds.
arXiv preprint arXiv:2205.07147, 2022.

[19] Zhenpeng Chen, Yanbin Cao, Yuanqiang Liu, Haoyu
Wang, Tao Xie, and Xuanzhe Liu. A comprehensive
study on challenges in deploying deep learning based
software. In Proceedings of the 28th ACM Joint Meet-
ing on European Software Engineering Conference
and Symposium on the Foundations of Software Engi-
neering, ESEC/FSE 2020, page 750–762, New York,
NY, USA, 2020. Association for Computing Machin-
ery.

[20] Will Constable. Pytorch distributed overview.
https://pytorch.org/tutorials/beginner/
dist_overview.html, 2024. Accessed: 2024-10-23.

[21] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J
Franklin, Joseph E Gonzalez, and Ion Stoica. Clipper:
A {Low-Latency} online prediction serving system.
In 14th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 17), pages 613–627,
2017.

[22] Harshit Daga, Yiwen Chen, Aastha Agrawal, and Ada
Gavrilovska. Clue: Systems support for knowledge
transfer in collaborative learning with neural nets.
IEEE Transactions on Cloud Computing, 2023.

[23] Yingnong Dang, Qingwei Lin, and Peng Huang. Aiops:
real-world challenges and research innovations. In
2019 IEEE/ACM 41st International Conference on
Software Engineering: Companion Proceedings (ICSE-
Companion), pages 4–5. IEEE, 2019.

[24] Jim Davis, Philbert Shih, and Alex Marcham. State of
the edge: A market and ecosystem report for edge com-
puting. https://www.stateoftheedge.com, 2023.

[25] distribution. distribution/distribution reposi-
tory. https://github.com/distribution/
distribution, 2024. [Online; accessed 15-Oct-
2024].

[26] Docker. Dockefile best practices. https:
//docs.docker.com/build/building/best-
practices/, 2024. Accessed: 22 October 2024.

[27] Docker. Dockefile reference. https:
//docs.docker.com/reference/dockerfile/,
2024. Accessed: 21 October 2024.

https://github.com/2DFS
https://github.com/2DFS
https://pytorch.org/tutorials/beginner/dist_overview.html
https://pytorch.org/tutorials/beginner/dist_overview.html
https://www.stateoftheedge.com
https://github.com/distribution/distribution
https://github.com/distribution/distribution
https://docs.docker.com/build/building/best-practices/
https://docs.docker.com/build/building/best-practices/
https://docs.docker.com/build/building/best-practices/
https://docs.docker.com/reference/dockerfile/
https://docs.docker.com/reference/dockerfile/

[28] Docker. Most-used developer tool. https:
//www.docker.com/blog/docker-stack-
overflow-survey-thank-you-2023/, 2024.
Accessed: 22 October 2024.

[29] Docker. Storage driver. https://docs.docker.com/
engine/storage/drivers/, 2024. Accessed: 22
May 2025.

[30] Docker Docs. Use the overlayfs storage
driver. https://docs.docker.com/storage/
storagedriver/overlayfs-driver/, 2020.

[31] Domino. Role of Containers. https:
//domino.ai/blog/role-of-containers-on-
mlops-and-model-production. [Online; accessed
26-Jan-2024].

[32] Xin Dong, Barbara De Salvo, Meng Li, Chiao Liu,
Zhongnan Qu, Hsiang-Tsung Kung, and Ziyun Li.
Splitnets: Designing neural architectures for efficient
distributed computing on head-mounted systems. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12559–
12569, 2022.

[33] DVC. Model Registry. https://dvc.ai/model-
registry. [Online; accessed 26-Jan-2024].

[34] Ali Farhadi and Joseph Redmon. Yolov3: An incre-
mental improvement. In Computer vision and pat-
tern recognition, volume 1804, pages 1–6. Springer
Berlin/Heidelberg, Germany, 2018.

[35] Yao Fu, Leyang Xue, Yeqi Huang, Andrei-Octavian
Brabete, Dmitrii Ustiugov, Yuvraj Patel, and Luo
Mai. {ServerlessLLM}:{Low-Latency} serverless in-
ference for large language models. In 18th USENIX
Symposium on Operating Systems Design and Imple-
mentation (OSDI 24), pages 135–153, 2024.

[36] Saeid Ghafouri, Kamran Razavi, Mehran Salmani,
Alireza Sanaee, Tania Lorido Botran, Lin Wang, Joseph
Doyle, and Pooyan Jamshidi. Ipa: Inference pipeline
adaptation to achieve high accuracy and cost-efficiency.
In Companion of the 16th ACM/SPEC International
Conference on Performance Engineering, pages 2–3,
2025.

[37] Noah Gift and Alfredo Deza. Practical MLOps. "
O’Reilly Media, Inc.", 2021.

[38] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

[39] Yitian Hao, Wenqing Wu, Ziyi Zhang, Yuyang Huang,
Chen Wang, Jun Duan, and Junchen Jiang. Deft: Slo-
driven preemptive scheduling for containerized dnn
serving. In Symposium on Networked Systems Design
and Implementation, 2023.

[40] Ke-Jou Hsu, Ketan Bhardwaj, and Ada Gavrilovska.
Couper: Dnn model slicing for visual analytics contain-
ers at the edge. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, pages 179–194, 2019.

[41] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu.
Dynamic adaptive dnn surgery for inference accelera-
tion on the edge. In IEEE INFOCOM 2019-IEEE Con-
ference on Computer Communications, pages 1423–
1431. IEEE, 2019.

[42] Yitao Hu, Rajrup Ghosh, and Ramesh Govindan.
Scrooge: A cost-effective deep learning inference sys-
tem. In Proceedings of the ACM Symposium on Cloud
Computing, pages 624–638, 2021.

[43] Jin Huang, Colin Samplawski, Deepak Ganesan, Ben-
jamin Marlin, and Heesung Kwon. Clio: Enabling au-
tomatic compilation of deep learning pipelines across
iot and cloud. In Proceedings of the 26th Annual In-
ternational Conference on Mobile Computing and Net-
working, pages 1–12, 2020.

[44] Hugging Face. The model hub. https://
huggingface.co/docs/hub/en/models-the-hub,
2024. Accessed: October 23, 2024.

[45] Open Containers Initiative. Oci specifi-
cation: Distribution specification. https:
//github.com/opencontainers/distribution-
spec/blob/main/spec.md, 2024. Accessed: 20
October 2024.

[46] Open Containers Initiative. Oci specification:
Image specification. https://github.com/
opencontainers/image-spec/blob/main/
spec.md, 2024. Accessed: 20 October 2024.

[47] Hyuk-Jin Jeong, InChang Jeong, Hyeon-Jae Lee, and
Soo-Mook Moon. Computation offloading for ma-
chine learning web apps in the edge server environ-
ment. In 2018 IEEE 38th International Conference
on Distributed Computing Systems (ICDCS), pages
1492–1499. IEEE, 2018.

[48] Junchen Jiang, Ganesh Ananthanarayanan, Peter
Bodik, Siddhartha Sen, and Ion Stoica. Chameleon:
scalable adaptation of video analytics. In Proceedings
of the 2018 conference of the ACM special interest
group on data communication, pages 253–266, 2018.

https://www.docker.com/blog/docker-stack-overflow-survey-thank-you-2023/
https://www.docker.com/blog/docker-stack-overflow-survey-thank-you-2023/
https://www.docker.com/blog/docker-stack-overflow-survey-thank-you-2023/
https://docs.docker.com/engine/storage/drivers/
https://docs.docker.com/engine/storage/drivers/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://domino.ai/blog/role-of-containers-on-mlops-and-model-production
https://domino.ai/blog/role-of-containers-on-mlops-and-model-production
https://domino.ai/blog/role-of-containers-on-mlops-and-model-production
https://dvc.ai/model-registry
https://dvc.ai/model-registry
https://huggingface.co/docs/hub/en/models-the-hub
https://huggingface.co/docs/hub/en/models-the-hub
https://github.com/opencontainers/distribution-spec/blob/main/spec.md
https://github.com/opencontainers/distribution-spec/blob/main/spec.md
https://github.com/opencontainers/distribution-spec/blob/main/spec.md
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/image-spec/blob/main/spec.md
https://github.com/opencontainers/image-spec/blob/main/spec.md

[49] Wenxin Jiang, Nicholas Synovic, Matt Hyatt, Taylor R
Schorlemmer, Rohan Sethi, Yung-Hsiang Lu, George K
Thiruvathukal, and James C Davis. An empirical study
of pre-trained model reuse in the hugging face deep
learning model registry. In 2023 IEEE/ACM 45th Inter-
national Conference on Software Engineering (ICSE),
pages 2463–2475. IEEE, 2023.

[50] Yiping Kang, Johann Hauswald, Cao Gao, Austin
Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Computer
Architecture News, 45(1):615–629, 2017.

[51] Mehrdad Khani, Ganesh Ananthanarayanan, Kevin
Hsieh, Junchen Jiang, Ravi Netravali, Yuanchao Shu,
Mohammad Alizadeh, and Victor Bahl. {RECL}: Re-
sponsive {Resource-Efficient} continuous learning for
video analytics. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
23), pages 917–932, 2023.

[52] Kubeflow. Kubeflow: The machine learning toolkit for
kubernetes, 2021. Accessed: 2024-10-23.

[53] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory
management for large language model serving with
pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles,
2023.

[54] Stefanos Laskaridis, Stylianos I Venieris, Mario
Almeida, Ilias Leontiadis, and Nicholas D Lane. Spinn:
synergistic progressive inference of neural networks
over device and cloud. In Proceedings of the 26th
annual international conference on mobile computing
and networking, pages 1–15, 2020.

[55] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. Edge ai:
On-demand accelerating deep neural network inference
via edge computing. IEEE Transactions on Wireless
Communications, 19(1):447–457, 2019.

[56] He Li, Kaoru Ota, and Mianxiong Dong. Learning iot
in edge: Deep learning for the internet of things with
edge computing. IEEE network, 32(1):96–101, 2018.

[57] KeDi Li and Ning Gui. Cms: A continuous machine-
learning and serving platform for industrial big data.
Future Internet, 12(6):102, 2020.

[58] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang.
Ease. ml: Towards multi-tenant resource sharing for
machine learning workloads. Proceedings of the VLDB
Endowment, 11(5):607–620, 2018.

[59] Xiangjie Li, Chenfei Lou, Yuchi Chen, Zhengping Zhu,
Yingtao Shen, Yehan Ma, and An Zou. Predictive exit:
Prediction of fine-grained early exits for computation-
and energy-efficient inference. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pages 8657–8665, 2023.

[60] Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joey Gonzalez. Train big, then
compress: Rethinking model size for efficient training
and inference of transformers. In International Confer-
ence on machine learning, pages 5958–5968. PMLR,
2020.

[61] Qianlin Liang, Walid A Hanafy, Noman Bashir, Ahmed
Ali-Eldin, David Irwin, and Prashant Shenoy. Dělen:
enabling flexible and adaptive model-serving for multi-
tenant edge ai. In Proceedings of the 8th ACM/IEEE
Conference on Internet of Things Design and Imple-
mentation, pages 209–221, 2023.

[62] llm d. Kubernetes-native distributed inference at scale.
https://llm-d.ai, 2025. Accessed: 22 May 2025.

[63] Jiachen Mao, Xiang Chen, Kent W Nixon, Christopher
Krieger, and Yiran Chen. Modnn: Local distributed
mobile computing system for deep neural network. In
Design, Automation & Test in Europe Conference & Ex-
hibition (DATE), 2017, pages 1396–1401. IEEE, 2017.

[64] Markets and Markets to 2023. Intelligent video analyt-
ics market, 2024. Accessed: 2024-10-23.

[65] MarketsandMarkets. Intelligent video analytics market
- global forecast to 2028, 2024. Accessed: 2024-10-23.

[66] Yoshitomo Matsubara, Marco Levorato, and Francesco
Restuccia. Split computing and early exiting for deep
learning applications: Survey and research challenges.
ACM Computing Surveys, 55(5):1–30, 2022.

[67] Peter Mattson, Vijay Janapa Reddi, Christine Cheng,
Cody Coleman, Greg Diamos, David Kanter, Paulius
Micikevicius, David Patterson, Guenther Schmuelling,
Hanlin Tang, et al. Mlperf: An industry standard bench-
mark suite for machine learning performance. IEEE
Micro, 40(2):8–16, 2020.

[68] Ruben Mayer and Hans-Arno Jacobsen. Scalable
deep learning on distributed infrastructures: Chal-
lenges, techniques, and tools. ACM Computing Surveys
(CSUR), 53(1):1–37, 2020.

[69] ETSI Industry Specification Group (ISG) MEC.
Mobile-edge computing (mec) - introductory technical
white paper. Technical report, European Telecommu-
nications Standards Institute (ETSI), September 2014.
Version 1.

https://llm-d.ai

[70] Hui Miao, Ang Li, Larry S Davis, and Amol Desh-
pande. Modelhub: Deep learning lifecycle manage-
ment. In 2017 IEEE 33rd International Conference on
Data Engineering (ICDE), pages 1393–1394. IEEE,
2017.

[71] MlFlow. Deep Learning Container. https://
mlflow.org/docs/latest/model-registry.html.
[Online; accessed 26-Jan-2024].

[72] Moby. Buildkit. https://github.com/moby/
buildkit, 2024. Accessed: 21 October 2024.

[73] ModelHub Contributors. Modelhub: Empowering ai
researchers to share fully reproducible and portable
model implementations. http://modelhub.ai, 2024.
Accessed: October 23, 2024.

[74] Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang, Melih Eli-
bol, Zongheng Yang, William Paul, Michael I Jordan,
et al. Ray: A distributed framework for emerging {AI}
applications. In 13th USENIX symposium on operating
systems design and implementation (OSDI 18), pages
561–577, 2018.

[75] Neptune. Deep Learning Container. https://
neptune.ai/blog/ml-model-registry. [Online;
accessed 26-Jan-2024].

[76] Neptune.ai. Ml model registry: What it is, why it mat-
ters, and how to implement it. https://neptune.ai/
blog/ml-model-registry, 2024. Accessed: Octo-
ber 23, 2024.

[77] Chanh Nguyen, Amardeep Mehta, Cristian Klein, and
Erik Elmroth. Why cloud applications are not ready for
the edge (yet). In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, pages 250–263, 2019.

[78] David Nigenda, Zohar Karnin, Muhammad Bilal Za-
far, Raghu Ramesha, Alan Tan, Michele Donini, and
Krishnaram Kenthapadi. Amazon sagemaker model
monitor: A system for real-time insights into deployed
machine learning models. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 3671–3681, 2022.

[79] Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajad-
manesh, Ali Taheri, Kleomenis Katevas, Hamid R Ra-
biee, Nicholas D Lane, and Hamed Haddadi. A hy-
brid deep learning architecture for privacy-preserving
mobile analytics. IEEE Internet of Things Journal,
7(5):4505–4518, 2020.

[80] Arthi Padmanabhan, Neil Agarwal, Anand Iyer,
Ganesh Ananthanarayanan, Yuanchao Shu, Nikolaos
Karianakis, Guoqing Harry Xu, and Ravi Netravali.

Gemel: Model merging for {Memory-Efficient},{Real-
Time} video analytics at the edge. In 20th USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI 23), pages 973–994, 2023.

[81] Andrei Paleyes, Raoul-Gabriel Urma, and Neil D
Lawrence. Challenges in deploying machine learn-
ing: a survey of case studies. ACM computing surveys,
55(6):1–29, 2022.

[82] Misun Park, Ketan Bhardwaj, and Ada Gavrilovska.
Pocket: ml serving from the edge. In Proceedings
of the Eighteenth European Conference on Computer
Systems, pages 46–62, 2023.

[83] Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka
Shah, Íñigo Goiri, Saeed Maleki, and Ricardo Bian-
chini. Splitwise: Efficient generative llm inference
using phase splitting. In 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture
(ISCA), pages 118–132. IEEE, 2024.

[84] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery,
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan
Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scal-
ing transformer inference. Proceedings of Machine
Learning and Systems, 5:606–624, 2023.

[85] Minghai Qin, Chao Sun, Jaco Hofmann, and Dejan
Vucinic. Disco: Distributed inference with sparse com-
munications. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages
2432–2440, 2024.

[86] Samyam Rajbhandari, Conglong Li, Zhewei Yao, Min-
jia Zhang, Reza Yazdani Aminabadi, Ammar Ahmad
Awan, Jeff Rasley, and Yuxiong He. Deepspeed-moe:
Advancing mixture-of-experts inference and training
to power next-generation ai scale. In International
conference on machine learning, pages 18332–18346.
PMLR, 2022.

[87] Mohammad Rastegari, Vicente Ordonez, Joseph Red-
mon, and Ali Farhadi. Enabling ai at the edge
with xnor-networks. Communications of the ACM,
63(12):83–90, 2020.

[88] Francisco Romero, Qian Li, Neeraja J Yadwadkar, and
Christos Kozyrakis. {INFaaS}: Automated model-less
inference serving. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21), pages 397–411, 2021.

[89] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition, pages 4510–4520, 2018.

https://mlflow.org/docs/latest/model-registry.html
https://mlflow.org/docs/latest/model-registry.html
https://github.com/moby/buildkit
https://github.com/moby/buildkit
http://modelhub.ai
https://neptune.ai/blog/ml-model-registry
https://neptune.ai/blog/ml-model-registry
https://neptune.ai/blog/ml-model-registry
https://neptune.ai/blog/ml-model-registry

[90] Harshit Saokar, Soteris Demetriou, Nick Magerko,
Max Kontorovich, Josh Kirstein, Margot Leibold, Dim-
itrios Skarlatos, Hitesh Khandelwal, and Chunqiang
Tang. {ServiceRouter}: Hyperscale and minimal cost
service mesh at meta. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
23), pages 969–985, 2023.

[91] Mahadev Satyanarayanan, Wei Gao, and Brandon Lu-
cia. The computing landscape of the 21st century. In
Proceedings of the 20th International Workshop on
Mobile Computing Systems and Applications, pages
45–50, 2019.

[92] Sudipta Saha Shubha and Haiying Shen. Adainf:
Data drift adaptive scheduling for accurate and slo-
guaranteed multiple-model inference serving at edge
servers. In Proceedings of the ACM SIGCOMM 2023
Conference, pages 473–485, 2023.

[93] DeepSpeed Team. Deepspeed: Accelerating deep learn-
ing training. https://github.com/deepspeedai/
DeepSpeed, 2025. Accessed: 2025-05-24.

[94] TensorFlow Team. Tensorflow serving with docker,
2024. Accessed: 2024-10-23.

[95] Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. Branchynet: Fast inference via early
exiting from deep neural networks. In 2016 23rd in-
ternational conference on pattern recognition (ICPR),
pages 2464–2469. IEEE, 2016.

[96] Surat Teerapittayanon, Bradley McDanel, and Hsiang-
Tsung Kung. Distributed deep neural networks over
the cloud, the edge and end devices. In 2017 IEEE
37th international conference on distributed computing
systems (ICDCS), pages 328–339. IEEE, 2017.

[97] Guanhua Wang, Zhuang Liu, Brandon Hsieh, Siyuan
Zhuang, Joseph Gonzalez, Trevor Darrell, and Ion Sto-
ica. sensai: Convnets decomposition via class paral-
lelism for fast inference on live data. Proceedings of
Machine Learning and Systems, 3:664–679, 2021.

[98] Xiaofang Wang, Dan Kondratyuk, Eric Christiansen,
Kris M Kitani, Yair Alon, and Elad Eban. Wis-
dom of committees: An overlooked approach to
faster and more accurate models. arXiv preprint
arXiv:2012.01988, 2020.

[99] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas
Chen, Sy Choudhury, Marat Dukhan, Kim Hazelwood,
Eldad Isaac, Yangqing Jia, Bill Jia, et al. Machine learn-
ing at facebook: Understanding inference at the edge.
In 2019 IEEE international symposium on high perfor-
mance computer architecture (HPCA), pages 331–344.
IEEE, 2019.

[100] Guoxuan Xia and Christos-Savvas Bouganis. Window-
based early-exit cascades for uncertainty estimation:
When deep ensembles are more efficient than single
models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 17368–17380,
2023.

[101] Zongheng Yang, Zhanghao Wu, Michael Luo, Wei-
Lin Chiang, Romil Bhardwaj, Woosuk Kwon, Siyuan
Zhuang, Frank Sifei Luan, Gautam Mittal, Scott
Shenker, et al. {SkyPilot}: An intercloud broker for
sky computing. In 20th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI
23), pages 437–455, 2023.

[102] Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani
Parkhe, et al. Accelerating the machine learning life-
cycle with mlflow. IEEE Data Eng. Bull., 41(4):39–45,
2018.

[103] Liekang Zeng, Xu Chen, Zhi Zhou, Lei Yang, and Jun-
shan Zhang. Coedge: Cooperative dnn inference with
adaptive workload partitioning over heterogeneous
edge devices. IEEE/ACM Transactions on Networking,
29(2):595–608, 2020.

[104] Hong Zhang, Yupeng Tang, Anurag Khandelwal, and
Ion Stoica. {SHEPHERD}: Serving {DNNs} in the
wild. In 20th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 23), pages
787–808, 2023.

[105] Huaifeng Zhang, Mohannad Alhanahnah, Fahmi Ab-
dulqadir Ahmed, Dyako Fatih, Philipp Leitner, and
Ahmed Ali-Eldin. Machine learning systems are
bloated and vulnerable. Proceedings of the ACM
on Measurement and Analysis of Computing Systems,
8(1):1–30, 2024.

[106] Yizhen Zhao. Machine learning in production: A liter-
ature. Technical report, Tech. Rep, 2021.

[107] Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.
{DistServe}: Disaggregating prefill and decoding for
goodput-optimized large language model serving. In
18th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 24), pages 193–210,
2024.

[108] Li Zhou, Hao Wen, Radu Teodorescu, and David HC
Du. Distributing deep neural networks with container-
ized partitions at the edge. In 2nd USENIX Workshop
on Hot Topics in Edge Computing (HotEdge 19), 2019.

https://github.com/deepspeedai/DeepSpeed
https://github.com/deepspeedai/DeepSpeed

Appendix A Packaging ML Models

OCI+2DFS
Image

Figure 15: ML Model Packag-
ing Example.

Networking
Binaries

GPU
Drivers

Inference
Libs

Weights

Figure 16: High Level Space
Partitions.

As for traditional containers, also in 2DFS the build and
caching efficiency depends on the best practices on how to
design the 2D space. When building a traditional Docker
image the user uses a Dockerfile to define the operations com-
posing the layers of the image. The order of the instruction
heavily impacts the performance of the build as well as the
wasted space in the final image. Docker provides a set of
best practices to follow when designing a Dockerfile [26].
2DFS performance heavily on the allotment sizes. The smaller
the alltoments, the better the parallelization at build time and
caching efficiency. For large models, we suggest splitting the
model layers into separate files even if the model does not
support partitions. This way, selective model updates invali-
date only part of the 2D field, speeding up the build process.
Figure 15 shows an example of a very simple model split tech-
nique that can significantly improve the 2DFS performance.
By simply splitting the fully connected layers into separate
files, we can package these files as independent allotments.

In more advanced usecases, the 2D space can be organized
into scope-based partitions. E.g., in fig. 16, we place the model
weights in the top-left corner, the networking binaries in the
middle, the inference libs in the bottom left, and the GPU
drivers in the bottom-right corner. Suppose the model is exe-
cuted on a device without GPU; the bottom right corner can
be left out of the partition. Alternatively, during training, we
can remove the inference libs and networking binaries.

Appendix B Additional Results

Split Capacity %

Model Format 0 25 50 75 100

ENv2L
Docker 451.84 451.88 451.92 451.97 452.00
2DFS 451.68 451.69 451.70 451.72 451.73

RN50
Docker 124.87 124.88 124.89 124.89 124.90
2DFS 124.64 124.64 124.65 124.65 124.65

Table 3: Exported Image Sizes Comparison with Different
Split Capacities.

Figure 18 shows the parameter count and size distribution
of different splits, showcasing the variability among the mod-
els of the zoo (Table 2). Note that although the splits closer to
the end of a model comprise more parameters, this does not

1 2 3 4 5 6 7 8 9 10
Splits

0

10

20

30

40

D
ur

at
io

n
(s

ec
on

ds
)

0.
67

31
.8

42.3

0.
61

22
.3

32.8

0.
93

19
.5

30.0

0.
62

17
.7

28.2

0.
86

17
.2

28.3

0.
73

16
.2

26.7

0.
61

15
.6

26.1

0.
86

15
.6

26.2

0.
67

15
.1

25.6

0.
65

14
.9

25.4

Container Preemption

Application Initialization

Container Creation

(a) RN50

1 2 3 4 5 6 7 8 9 10
Splits

0

20

40

60

80

100

120

D
ur

at
io

n
(s

ec
on

ds
)

3.
19

106

117.1

1.
67

58

68.8

1.
49

43

53.7

1.
31

35

46.3

1.
19

31

41.7

1.
04

28

38.6

1.
05

26

36.7

1.
07

24

35.1

0.
90

23

33.6

0.
79

21

32.5

Container Preemption

Application Initialization

Container Creation

(b) ENv2L

1 2 3 4 5 6 7 8 9 10
Splits

0

10

20

30

40

D
ur

at
io

n
(s

ec
on

ds
)

0.
85

26

37.4

0.
64

19

30.2

0.
85

17

28.2

0.
68

16

26.9

0.
70

15

26.3

0.
68

15

25.8

0.
77

14

25.6

0.
65

14

25.1

0.
66

14

24.9

0.
67

14

24.8

Container Preemption

Application Initialization

Container Creation

(c) ENv2B1

1 2 3 4 5 6 7 8 9 10
Splits

0

10

20

30

40

50

D
ur

at
io

n
(s

ec
on

ds
)

0.
63

40

50.8

0.
61

25

36.4

0.
62

21

32.0

0.
71

19

30.0

0.
60

18

28.8

0.
68

17

27.8

0.
68

16

27.2

0.
66

16

26.7

0.
70

15

26.4

0.
73

15

26.1

Container Preemption

Application Initialization

Container Creation

(d) DLv3

Figure 17: Deployment time breakdown for different numbers
of splits / available devices for two small (RN50 and DLv3),
one medium (ENv2B1) and one large (ENv2L) models.

translate 1:1 to additional computation.
Figure 17 complements the experiments in §4.5 and it’s

showing the deployment time of RN50, ENv2L, ENv2B1 and
DLv3for different numbers of devices. The number of splits
equals the number of devices, and the image layers are ho-
mogeneously distributed across the splits. The deployment
time is broken down into the time required to download the
image, the time required to unpack the image, and the time
required to start the application. The deployment time de-
creases logarithmic with the number of splits as shown also
in fig. 14a. ENv2Lis showing a steeper performance improve-
ment because, on the constrained Edge devices, the initial-
ization phase is much slower when too many parameters are
handled in a single node. With ten splits, we observe a 3.5×
faster deployment time.

Figure 19 complements the results from fig. 7 with the
models omitted for brevity. The results show the same Docker
trends, with the small models showing little variation, the
medium-sized models showing a build time decrease with a
higher number of splits, the large model showing their best
build performance at around 50% split capacity, and then
higher build times towards 75% and 100%. As explained in
§4.2, for Docker, the is a tradeoff between the number of
layers and the size. 2DFS performance improves consistently
with the number of allotments, plateauing at around 50%,
hitting the I/O disk capacity.

Figure 20 complements the results from fig. 8 with the
models omitted for brevity. The results show the same Docker
trends, with build time consistently increasing when more

0 10
Split Index

0

5

#
P

ar
am

et
er

s
(M

)

RN50

0 10
Split Index

0.0

0.5
MNv2

0 10
Split Index

0.0

0.5

MNv2L

0 10
Split Index

0

10

DLv3

0 20
Split Index

0.0

0.5

ENB0

0 25
Split Index

0.0

0.5

ENB1

0 25
Split Index

0.0

0.5

ENB2

0 25
Split Index

0.0

0.5

#
P

ar
am

et
er

s
(M

)

ENB3

0 25
Split Index

0

5

RN101

0 25
Split Index

0

10
YOLOv3

0 25
Split Index

0

1
ENv2S

0 50
Split Index

0

5

RN152

0 50
Split Index

0.0

2.5

ENv2M

0 50
Split Index

0

5

ENv2L

0

20

0

1

0

2

0

50

0

2

0

2

0

2

S
pl

it
S

iz
e

in
M

B

0

2

0

20

0

25

0.0

2.5

0

20

0

10

0

20

S
pl

it
S

iz
e

in
M

B

Parameter Count Split Size

Figure 18: Per-Split Parameter Count and Byte Size.

0 25 50 75 100
Model Split Capacity (%)

0

10

20

30

T
im

e
(s

)

model = ENv2B0

0 25 50 75 100
0

10

20

30

model = ENv2B2

0 25 50 75 100
0

10

20

30

40
model = ENv2B3

0 25 50 75 100
0

10
20
30
40
50

model = ENv2S

0 25 50 75 100
0

10
20
30
40
50
60
70
80

model = ENv2M

0 25 50 75 100
0

10
20
30
40
50

model = RN101

0 25 50 75 100
0

10
20
30
40
50
60
70

model = RN152

0 25 50 75 100
0

10

20
model = MNv2

2DFS Docker

Figure 19: Build Time of 1 Image with Different Amount of Splits per Layer

25 50 75 100
Model Split Capacity (%)

0
10
20
30
40
50
60
70

T
im

e
(s

)

model = ENv2B0

25 50 75 100
0

20
40
60
80

model = ENv2B2

25 50 75 100
0

20
40
60
80

100
model = ENv2B3

25 50 75 100
0

30
60
90

120
model = ENv2S

25 50 75 100
0

40
80

120
160

model = ENv2M

25 50 75 100
0

20
40
60
80

100
model = RN101

25 50 75 100
0

40
80

120
160

model = RN152

25 50 75 100
0

10
20
30
40
50
60

model = MNv2

2DFS Docker

Figure 20: Images Build Time for different Split Partitions - 1 Image per Partition with Uniform Partitions.

images are generated. 2DFS shows almost constant build time
because it always generates the same OCI+2DFS image.

In §B compare the size of the exported OCI+2DFS image
and the traditional OCI images to measure the space overhead
of the new additional 2dfs.field layer. We build the images
for the ENv2Land RN50 models with different split capacities,
the same as previously done in fig. 7. For each split capacity,
we build and export in tar.gz format one OCI image using
Docker and one OCI+2DFS. The images show comparable
sizes, with no additional space overhead for the 2dfs.field
layer. This happens because the two-dimensional data struc-
ture introduced is serialized as an array of hash-pointers +
metadata, efficiently replacing the traditional OCI layers.

	Introduction
	Background and Motivation
	Container Dissection and Lifecycle
	The Rise of Distributed ML
	Containers for Distributed ML?
	Why 2DFS?

	2DFS System Design
	2dfs.field layer
	2DFS Builder
	Cache Hierarchy
	Image Partitioning
	2DFS Registry

	Evaluation
	Experimental Setup
	Generating Model Splits

	Image Build
	Image Download and Partitioning
	Model Updates
	Split Computing Performance

	Discussion and Future Directions
	Related Work
	Conclusion
	Packaging ML Models
	Additional Results

