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A B S T R A C T

Human mobility shapes our daily lives, our urban environment and even the trajectory of a global pandemic.
While various aspects of human mobility and inter-personal contact duration have already been studied
separately, little is known about how these two key aspects of our daily lives are fundamentally connected.
Better understanding of such interconnected human behaviors is crucial for studying infectious diseases, as well
as opportunistic content forwarding. To address these deficiencies, we conducted a study on a mobile social
network of human mobility and contact duration, using data from 71 persons based on GPS and Bluetooth logs
for 2 months in 2018. We augment these data with location APIs, enabling a finer granular characterization of
the users’ mobility in addition to contact patterns. We model stops durations to reveal how time-unbounded-
stops (e.g., bars or restaurants) follow a log-normal distribution while time-bounded-stops (e.g., offices, hotels)
follow a power-law distribution. Furthermore, our analysis reveals contact duration adheres to a log-normal
distribution, which we use to model the duration of contacts as a function of the duration of stays. We further
extend our understanding of contact duration during trips by modeling these times as a Weibull distribution
whose parameters are a function of trip length. These results could better inform models for information or
epidemic spreading, helping guide the future design of network protocols as well as policy decisions.
. Introduction

The SARS-COV-2 outbreak in 2020 showed us, once again, the
mportance of understanding human mobility, also reflected in the vast
iterature that exists and continues to increase (e.g., [1–5]).

SARS-CoV2’s spread is hard to control, as asymptomatic patients
ontribute to transmission. Most current epidemiological models are
imited in how they assume uniformity in contacts between individu-
ls [6,7], thereby overestimating the efficacy of lockdown measures [3,
,8]. It still remains a challenge, however, to refine these models with more
ccurate information on individuals contact with one another in various
ocations as well as while on the move, which we address in this paper.

To help curb the spread of the virus, various forms of contact trac-
ng have been implemented, with varying degrees of success. Contact
racing efforts have been carried out in various countries in either
anual (with the use of contact tracers which do not scale [9]) or

utomated ways (which only work if the majority of the population
dopts and have a series of issues with privacy and trust [10]). From
arious automated contact tracing approaches, Bluetooth-based are the
ost popular [9]. Among others, the digital tracing based on Bluetooth

ensing has been widely adopted by multiple countries, especially
iven the pervasiveness of this technology in today’s smart-devices
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(e.g., phones, watches, tablets) and its shown efficacy in aggregating
users in close proximity [11].

In this work, we capture and analyze data from a mobile social
network of individuals, including multiple sensors from their mobile
phones. This approach allows us to accurately sense physical encoun-
ters between persons through the ephemeral virtual network formed
by their devices in close proximity [12]. We study the daily mobility
from location traces of 71 subjects, containing GPS and Bluetooth data,
for 2 months in 2018. Furthermore, we quantify different properties
of contacts between these subjects as well as with nearby individuals
through Bluetooth encounters.

As a result of our analysis, we show how overall stays are well
modeled by a power-law. However, when breaking down the stops
into time-unbounded-stops (typically do not follow a schedule, e.g., bars,
restaurants, etc.) follow a log-normal distribution, while time-bounded-
stops (i.e., typically follow a schedule, such as office) follow a power-
law. Previous studies report similar observations in web-content view-
ing time [13], where users spend time differently according to the
content being viewed. Power-law distributions describe the duration of
interactions with time-free content (e.g., text, photos) while log-normal
distribution best describe interactions with time-correlated content
468-6964/© 2022 The Authors. Published by Elsevier B.V. This is an open access a
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(e.g., videos). Human brain perception of information was used to
explain these differences [14].

Inter-personal contact duration, however, shows a log-normal distri-
bution. With this observation, we propose a model to estimate such
values from the overall duration of stays (power-law). When character-
izing trips, we observe trip length as well as trip time duration follow
a log-normal, while contact duration during trips follows a Weibull
distribution, in which its parameters are best described as a function
of the distance traveled. Taken together, these results suggest how
contacts happen in various modes of transportation, and could be used
to guide planning of future urban environments and in coping with
pandemic outbreaks.

2. Related work

The growing pervasiveness of smartphones and their sensors en-
abled researchers to study various aspects of human mobility in recent
years. Random models for movements were replaced by Lévy-flight
(power-law based) models [15,16]. Using data sets with higher reso-
lution, these observations have been more recently revisited, and the
distribution of displacements has been shown to follow a log-normal
distribution [17,18] in urban scenarios while exponential in intra-urban
trips [19].

Human mobility has also been modeled around social interac-
tions [20,21], natural disasters [22], and income [23].

Another fundamental aspect of mobility that has been largely stud-
ied is information dissemination, either for opportunistic data forward-
ing [24] or contagious disease spread [5,8]. The seminal work by
Hui et al. [25] revealed long-tailed distributions in inter-contact time
(time interval between consecutive contacts of any pair of devices)
instead of exponential distribution and its implications on opportunistic
forwarding systems using a data set collected during a scientific confer-
ence. Furthermore, the complementary study by Chaintreau et al. [26]
includes 8 different data sets, however all do not include either accurate
measurements for location or contact duration and often include mea-
surements done in a limited set of locations (e.g., conference venues and
niversity). Other similar studies include fine grained measurements
lso limited to certain locations, such as schools [6], conferences and
useums [27]. The work by Sun et al. [12] studies contacts using a
etropolitan scale data, but limited to public transport. In our study,
e analyze mobility and contacts data by observing their daily lives.

While short inter-contact times are associated with lower latency
n opportunistic networks, large contact duration can be seen as high
hroughput [28]. Regardless of their importance, most recent studies
ave focused on the former, mainly as recent advancements in wireless
etwork technologies brought a nearly infinite bandwidth to mobile
evices, even though data exchange capacity grows as contact duration
ets longer. When modeling the spread of infectious diseases, however,
ontact duration is a key aspect [6,29].
Contact duration allows the study of how epidemics spread through a

emporal network, in which edges between nodes evolve over time [30].
hile such studies often better describe the dynamics of diseases

utbreaks and their prevention, little is still known about how mobility
nd contacts are related. Therefore, to help bridge this gap, our study
haracterizes inter-personal contacts through a series of analysis of GPS
nd Bluetooth data. Our results while elementary also reveal intricate
elationships between contacts and human mobility.

It is assumed in this study, that the well documented short range
f Bluetooth is a good proxy for human contacts, and therefore a
roxy for the possible transmissibility of an infectious disease, such as
ARS-CoV2 [9]. In other words, our observations are shaped by the
echnology used in our measurements.

. Background

In this section we define the notion of contact, stop and trip used in
his paper, and describe the distribution functions observed, as well as
2

he method for estimating their parameters.
Basic definitions

Contacts: We model a contact between two individuals through mea-
surements of Bluetooth signals. Given the short range of this radio
technology it can emulate well interactions between persons, especially
in the context of airborne infectious diseases [9,31].

Stop: We define a stop (or a stay) as a prolonged visit to a well defined
point of interest, e.g., home, a shop or a transit station, but not a short
break at a traffic light (Section 5).

Trip: Given the detection of stops, a trip is defined as the sequence
of geographical coordinates between two identified locations where a
subject spent enough time. We also define the total length of a trip
as the sum of all distances between all consecutive points of a that
trajectory, that is 𝓁 =

∑

𝑡 ‖𝐱𝐭 − 𝐱𝐭−𝟏‖, where 𝐱𝐭 is the location at time
𝑡 (Section 6).

Empirical distribution functions

While limited when compared to highly parameterized models (e.g.,
neural-networks), well-known distributions are highly interpretable (i.e.,
changes in the distribution can often be explained by variations in
parameters), comparable (i.e., different parameter values or different
distributions have intrinsic properties that can be contrasted), and
portable while preserving the privacy of the subjects involved in the
study (i.e., models or data sets can be compared without any personal
identifiable information being shared).

In this work, we observe three long-tailed distributions for stops
(Section 5) and trips (Section 6), which we describe next, along with
the implication of observing each one of them.

Log-normal: The probability density function (PDF) of this function,
for a given random variable 𝑋 for all 𝑥 > 0, is defined by Eq. (1),
with parameters 𝜇 (mean or location) and 𝜎 (standard deviation or
shape). Intuitively, this distribution describes a Normal distribution
for the logarithm of a random variable. This distribution has been
used to describe trip length from GPS data [17,18,32] and for stop
duration [18], for describing the length of textual internet content [13],
and time users spend on individual internet content without a time
component [14] (e.g., images, text).

𝑝(𝑥) = 1

𝑥𝜎
√

2𝜋
exp

(

−
(ln 𝑥 − 𝜇)2

2𝜎2

)

(1)

Weibull: The PDF of this distribution function, for a given random
variable 𝑋 for all 𝑥 > 0, is defined by Eq. (2), with parameters 𝜆 (scale)
and 𝛽 (shape). While 𝜆 describes how spread-out the distribution is, 𝛽
efines whether the tail of the distribution will be exponential (when
> 1) or long-tailed (when 𝛽 < 1). This distribution has been used to

escribe trip length from Twitter data [33] and from taxi data [34], as
ell as users behavior on online social networks [35].

(𝑥) =
𝛽
𝜆

(𝑥
𝜆

)𝛽−1
𝑒−

(

𝑥
𝜆

)𝛽

(2)

Power-Law: The PDF of this distribution function, for a given ran-
dom variable 𝑋, is defined by Eq. (3), with parameters 𝛼 (scale)
and 𝑥min where 𝛼 > 0 and 𝑥min > 0. This distribution has been
extensively used to model various naturally occurring phenomena [36]
and is often explained by preferential-attachment in a time-evolving net-
work [37]. Power-law models have been extensively used to describe
trip length [16,38], friendship on online social networks [21], and the
organization of the Web [39].

𝑝(𝑥) = 𝛼 − 1
𝑥min

(

𝑥
𝑥min

)−𝛼
(3)

Parameters Estimation and Distribution Comparisons: To fit the pa-
rameters of these distributions we use the maximum-likelihood method
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proposed by Clauset et al., which provably gives accurate parameter
estimates in the limit of large sample sizes [40]. Once the best parame-
ters are found for a distribution, a likelihood value is derived, which in
turn, is used to compare the log-likelihood of which distribution best
describes the data. Finally, following the method by Clauset et al. [40]
we produce a p-value which allows us to infer the significance of this
omparison (i.e., that it was not due to chance). For this work, we

adopt the common convention that a p-value < 0.05 is significant. That
is, when comparing how well two distributions describe a set of data,
a p-value < 0.05 indicates that there is a probability lower than 5%
that the best distribution was chosen due to randomness. Therefore,
whenever reporting a distribution fit, we provide the p-value to the
comparison between the two best options.

4. Data collection

Our data collection had 71 registered subjects who agreed to par-
ticipate in our study. Sensors data were collected using the Aware
App [41], for a total of 2 months starting in April/2018. Subjects
were mostly between 20 and 30 years old, living in Munich, Germany.
Location data as well as Bluetooth scans had a median sampling rate of
3 minutes−1 (95th-% 9 minutes−1), ensuring a high density and reliable
ource of data for our analysis.

ohort Biases: The cohort of this study consists of young adults,
iving in a large metropolitan city, in Europe. Therefore, all of our
bservations do not represent how the totality of the human population
ehaves. For example, elderly age groups are likely to have their overall
obility far more constrained [42]. Populations in other regions of the
orld, where public transport is less developed will also show different
atterns [23]. To support how well our data set captures different
spects of human mobility, we present some observations using both
ur data as well as the Geolife set (Section 4.3).

.1. Location data

These were provided by the GPS sensor as well as the operating
ystem as geographical coordinates together with an estimated accu-
acy [41]. The 85th-percentile of this uncertainty was 10 m, allowing
s to accurately extract the stops (Section 5) and trips (Section 6) of
ach subject. These data include urban mobility as well as long distance
ommutes and international travels to 17 countries.

.2. Bluetooth contact data

We study real-world contacts through the ephemeral social network
uilt from the proximity between mobile devices. For that, we classified
bserved nearby devices into human-held and static, modeling human

contacts using Bluetooth readings as our microscope. This classification
was done in two phases, that we explain below.

In phase 1, we use the name broadcast by nearby devices, commonly
used for discoverability. To these names, we cleared and tokenized their
strings in order to filter out non-English/German words. Finally, we
manually classify them in either human-held or stationary. These steps
ensured any personally identifiable information was removed, while
maximizing the coverage of possible human-held devices. Examples of
this group include battery_pack, camera, smart_watch and cigarette, while
examples of stationary devices include light, home-theater, and printer.
n this step, we were able to classify nearly 6000 unique devices, which
orrespond to 5% of the total MAC addresses recorded.

In phase 2, we used a method by Alipour et al. [43] to classify Wi-
i devices based on their MAC address. More specifically, it assumes
endors assign similar prefixes of the MAC address for similar devices.
ith this approach, we could classify an extra 16920 devices (15.5%

f the total). A random 1% sample from this phase revealed names
hich attribute the type of devices as human-held, such as cameras and
3

ortables speakers (e.g., Canon, Bose), validating this classification.
Table 1
Summary of the data set used.

Users Stops Encounters Trips

71 19317 12432 18438

Note that we could only classify 20% of the recorded nearby Blue-
tooth devices. All unclassified devices were discarded to eliminate
possible biases and uncertainties. After these preparation steps, we
identified a total of over 6500 human-held devices. We then assumed
each of these devices to represent the person they belong to. Although
this strong assumption held inexorable biases, the similarity with pre-
vious studies on the distribution of contact duration (discussed next)
suggests that distortions do not invalidate our results.

In this study, we consider contacts which happened in either a stop
or a trip, and not encounters which last for multiple events. Out of a
total of 12,423 contacts studied from our collected data, 389 lasted for
consecutive stops or trips. This was done in order to distinctively classify
each encounter into a mobility modality as well as discard multiple
devices a single subject could be carrying.

The distribution of all contacts duration, regardless of while moving
or static, was best described by a log-normal distribution, with pa-
rameters 𝜇 = 6.67 and 𝜎 = 1.65 (p-value = 0.002 to a power-law). As
expected, compared to contacts during stops (Section 5), the biggest
difference is observed in a significantly larger shape parameter (𝜎),
supporting previous observations of short-tailed distributions for con-
tacts [44]. A summary of the main features of our data set are sum-
marized in Table 1. To extend our understanding on contact duration,
we will focus on a clear separation between stops and trips, as will be
presented in the next sections.

4.3. Supporting set - Geolife

We validate some of our observations with the Geolife data set [45].
It contains GPS trajectories from 182 subjects for 4.5 years, and sam-
pling rates of 5 seconds−1 or 10 meters−1, which we process using the
same methods used in our data.

5. Stops

In this section, we characterize our stops (or stays) as well as
construct a model of contacts observed at these locations.

5.1. Detection of stops

To ensure a robust and reproducible detection of stops, we apply
the extensively used stop detection method for GPS traces proposed
by Zheng et al. [46]. It defines two main parameters: max_dist, as
the maximum distance allowed between any two geo-location points
within an area, or location cluster; min_stop_time, as the minimum
duration spent within a location cluster for it to be considered a stop.

To detect stops, we first cluster consecutive location records using
max_dist, and continue adding new points to the cluster as long
as its distance 𝛿 to any other point in the cluster is smaller than the
threshold (i.e., 𝛿 < 𝚖𝚊𝚡_𝚍𝚒𝚜𝚝). Once a new candidate point no longer
fulfills this criterion the cluster is evaluated as a stop. This evaluation
is done by comparing the total time spent at the cluster (𝜏) with
min_stop_time, i.e., if 𝜏 > 𝚖𝚒𝚗_𝚜𝚝𝚘𝚙_𝚝𝚒𝚖𝚎 then the cluster is a stop,
otherwise it is discarded. Once a stop is identified, its location is saved
as the centroid of the cluster.

Given the high accuracy of the location points in our collected
data (Section 4), we chose 𝚖𝚊𝚡_𝚍𝚒𝚜𝚝 = 10 meters. Furthermore, we
evaluated possible values for min_stop_time between 5 min (loca-
tion sampling rate, Section 4) and 50 min, at intervals of 1 min. The
graph min_stop_time vs. total number of stops showed an inflection
point between 10 and 15 min, leading us to select 𝚖𝚒𝚗_𝚜𝚝𝚘𝚙_𝚝𝚒𝚖𝚎 =
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15 minutes for a more conservative choice, also inline with previous
research. A stop of at least 15 min would also allow us to identify
potential close contacts in the context of COVID-19, as defined by the
CDC [29].

5.2. Stops enrichment

In order to characterize sojourn times in the various places visited,
we further classified the observed stops in our collected data. First, the
‘‘home" locations of the subjects were identified, then all remaining
stops were classified with a combination of multiple publicly available
location API.

The detection of ‘‘home" is of key importance given its central role
in a person’s mobility [16,47]. Therefore, as a first step in classifying
stops, we assign ‘‘home" to the stop location a subject had the highest
frequency of visits between 7pm and 7am [47]. These places are then
removed from all subsequent analyses as we are interested in how
contacts happen outside people’s homes, where they might have little
control over whom they might encounter.

For the remaining stops, we searched 4 different location API:
oogle Places,1 Tomtom Places,2 Foursquare Places,3 Here Geocoding

and Search.4 In all cases, these services provide a list of points of
interest (POI) that are nearest to a given geographical coordinate. From
this list of possible POI, we pick the one closest to a requested stop,
within a maximum distance of 10 m. This variety of services ensured
maximal coverage of the places visited by our subjects, allowing us to
identify 57% of all stops.

The categories of POI identified were: apartment/residence, bank,
bar, company/office, entertainment (e.g., museum, art gallery), gas
station, gym/sports facility, health facility (e.g., hospital, clinic), hotel,
library, religious center, restaurant, salon, shop, supermarket, theater
(including cinemas), transport station (e.g., train, bus), and university.
When studying sojourn times, we use these categories to examine how
the distributions of such times varies across different places.

5.3. Stops duration

Here we present the observations we have for stop (or stay) dura-
tion, often referred to as sojourn time. When taken without discrimina-
tion by category, the distribution of stops duration is well described
by a power-law (𝛼 = 2.13, p-value < 0.001 to a log-normal), which
as a probability density function defined by Eq. (3) (Section 3), in
hich 𝑥min is the minimal value chosen when fitting the parameter 𝛼
f the distribution. For our analysis, as explained in Section 5.1, the
inimum time we use was 15 min (i.e., 𝑥min = 900). Fig. 1 depicts

his distribution for our collected data, in accordance with the same
nalysis using the Geolife data set (𝛼 = 1.98, p-value < 0.001 to
log-normal). Further supporting these observations, from a much

arger data set based on call detail records, Song et al. also fitted a
ower-law with similar parameters values (𝛼 = 1.8) to the distribution
f stops duration [38]. This long-tailed distribution is often explained
y preferential attachment, in which a person will tend to have few
referred locations to visit. In this way, various places will be visited
arely and for a shorter duration while few places are likely to see much
onger stays.

Interestingly, when looking at these distributions based on the cate-
ory of place visited (Section 5.1), some categories present a power-law
istribution in their stops, while others present a log-normal distri-
ution. The probability density function of a log-normal is defined

1 https://developers.google.com/places
2 https://developer.tomtom.com/products/places-api
3 https://developer.foursquare.com/docs/places-api/
4

4

https://developer.here.com/documentation/geocoding-search-api
by Eq. (1), in which 𝜇 defines the center and 𝜎 the scale (or log-
variance) of the distribution. Unlike a power-law, a log-normal distribu-
tion has an exponential tail. This indicates that the underlying process
described by this distribution is bounded by something, like resources.
Furthermore, existing work by Kai et al. on human mobility has shown
how the combination of log-normal processes can lead to a power-law
distribution [17].

One common characteristic of stops described by a log-normal is
that the distribution emerges in places where the user has no time
constraints in either starting or ending a visit (time-unbounded-stop),
such as bars, restaurants and gyms (which accounted for 55% of the
total identified stops). On the contrary, stops where a user would
typically follow a schedule to either start or stop a visit (time-bounded-
stop) are better described by a power-law distribution, places such as
offices, hotels, and transport stations (accounting for the remaining
45% of the total identified stops).

In the work by Gros et al. [14], the authors made a similar obser-
vation to file sizes from internet content. In their results, they observe
power-law distributions to files without a time component (e.g., text),
and log-normal for objects for which the time is defining qualia (e.g.,
videos). Finally, these findings were explained by maximum informa-
tion entropy [48], in which the time component, when present, worked
as an additional constraints to file sizes in the form of an exponential
tail. For stop duration, we conjecture that a similar phenomenon ap-
pears whether or not the visit follows a schedule. Therefore, the end of
the pre-allocated time for a visit would work as an added constraint to
the total time spent at a place, yielding an exponential tail, characteris-
tic of a log-normal distribution. Complementary, time-unbounded-stops
not having this temporal constraint, yield a power-law distribution for
visits, in line with our results.

These results highlight the importance of studying mobility with
higher resolution sensors data, such as the one used presently, which
allows us to further classify stops, revealing intrinsic properties of
these stay durations which would not emerge in coarser measurements.
Furthermore, for a given random variable 𝑇 of stay durations, with a
defined mean 𝜇 and standard deviation 𝜎, a log-normal distribution
produces the largest possible entropy, supporting the characterization
of time-unbounded-stops as least predictable [49].

5.4. Contacts characterization at stops

The distribution of contacts is well described by a log-normal dis-
tribution (Eq. (1)). The data collected as well as the distribution fit
to these data are presented in Fig. 2. Interestingly, the distribution of
contacts remained constant (i.e., with similar parameters) at different
distances from each user’s home. We grouped stops: (i) up to 1 km
from home, (ii) between 1 km and 100 km, and (iii) above 100 km
from home, and found similar parameters describing their contacts
distribution.

Using the stops characterization discussed previously (see
Section 5.3), we observe a similar distribution for contacts as for stop
duration. In time-bounded-stops, contact duration was better described
by a power-law (𝛼 = 2.21, p-value = 0.03 to a log-normal), while in
time-unbounded-stops, contacts were best described by a log-normal
distribution (𝜇 = 7.6, 𝜎 = 0.99, p-value = 0.04 to a power-law).

As all individuals would tend to stay fixed amounts of time to fulfill
a schedule at time-bounded-stops, they are more likely to produce
long-tailed contacts when compared to time-unbounded-stops. As in
the latter visits might be driven by a goal (e.g., eat something at a
restaurant), contacts show an exponential decay with a small shape

parameter (𝜎).

https://developers.google.com/places
https://developer.tomtom.com/products/places-api
https://developer.foursquare.com/docs/places-api/
https://developer.here.com/documentation/geocoding-search-api
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Fig. 1. Overall stop duration follows a power-law distribution.
Fig. 2. Contact duration at stops follows a log-normal distribution.
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5.5. Model of contacts during stops

Given the scarcity of data on inter-personal contact, we now propose
a model capable of inferring a distribution of contact duration from a
distribution of stay duration. Given the more common availability of
location traces from which stop duration can be inferred, this model en-
ables a simplified estimation of how long contacts will last. In turn, this
can be used to better model the spread of information opportunistically
as well as the spread of infectious diseases.

We first define the probability of a stay duration 𝑦 as a power-
law of the form 𝑃𝑟(𝑦) = 𝐶𝑦−𝛼 , where 𝐶 = (𝛼 − 1)𝑥(𝛼−1)min , and 𝛼 is the
efining coefficient of the distribution. Then, as previously discussed,
e know contact duration 𝑥 follows a log-normal distribution, therefore
e can write 𝑒𝑥 ∝ 𝑁(𝜇, 𝜎), where 𝑁(𝜇, 𝜎) is a normal distribution
efined by 𝜇 and 𝜎. To avoid the non-trivial estimation of 𝑁(𝜇, 𝜎)
e can approximate its probability density function with a uniform
istribution.

This non-parametric estimation produces a constant loss-function
n the interval of a stay duration (i.e., from 0 to 𝑦). This observation
merges from the KL-Divergence between any target distribution P
eing approximated by a Uniform distribution U, in the interval ((𝑎, 𝑏) =
) as in Eq. (4), where the final divergence is defined only by the
esired interval 𝑛 and the entropy of the target function 𝐻(𝑃 ).

(𝑃 ∥ 𝑈 ) =
𝑛
∑

𝑃 (𝑋𝑖) log2

(

𝑃 (𝑋𝑖)
)
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𝑖 𝑈 o
=
𝑛
∑

𝑖
𝑝𝑖 log2

(

𝑝𝑖
1∕𝑛

)

= log2(𝑛) +
∑

𝑖
𝑝𝑖 log2(𝑝𝑖)

= log2(𝑛) −𝐻(𝑃 ) (4)

We therefore can re-write the definition of 𝑥 as 𝑒𝑥 ∝ 1∕𝑦. To find a
relationship between 𝑥 and 𝑦 we can write 𝑃𝑟(𝑥) 𝑑𝑥 = 𝑃𝑟(𝑦) 𝑑𝑦, as well
as 𝑑𝑥 ∝ 𝑒𝑥 𝑑𝑦. Substituting, we get 𝑃𝑟(𝑥) ∝ 𝐶 𝑒𝛼−1.

By definition, a given random variable 𝑍, it is said to be described
by a log-normal if it has the form 𝑍 ∼ 𝑒𝜇+𝜎𝑥 and if 𝑥 is normally
istributed. By comparing this equation with the inferred 𝑃𝑟(𝑥), we can
ompute 𝜇 ≈ ln (𝛼 − 1)𝑥𝛼−1min and 𝜎 ≈ 𝛼 − 1.

From our data, using 𝛼 = 2.13 (Section 5.3), we estimate �̂� = 7.80
nd �̂� = 1.13, which are close to the actual values (Section 5.4) 𝜇 = 7.37
nd 𝜎 = 1.21.

With this model, we vary 𝛼 and plot the resulting distributions
n Fig. 3. Interestingly, this model shows how overall shorter stays
ctually leads to a decrease in the probability of seeing users of shorter
tay while increasing the probability of longer contacts. Numerically,
n increase in 𝛼 as a result of shorter stays increases both �̂� (i.e., the
istribution shifts to the right) and �̂� (i.e., the standard deviation, or
pread, of the distribution increases).

Note that this does not mean that the frequency of longer contacts
s going to be higher, but rather among the remaining contacts, those

f longer duration will have a higher likelihood of being encountered.
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Fig. 3. Distribution of modeled contact duration for different values of the stay duration parameter (alpha). Larger values of alpha for stay duration indicate higher probability for
shorter stays, leading to an increase in the probability of long-term contacts as short-term meets become less often.
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Takeaway: As individuals in a population follow a similar mo-
bility model in their visits, a pattern for contacts emerges. A
shortening in stay duration leads to fewer contacts, where the
remaining ones are inevitably longer. However, these changes in
stay duration may not be possible across all locations as people
tend to follow a schedule in some of them (time-bounded-stops).

6. Trips

In this section, we present the results for trips. To complement the
characterization of contact duration at stops, we show how contact
duration during trips actually follows a Weibull distribution. We discuss
the implications of such distribution as well as its parameterization
being a function of the distance traveled, along with its interpretation.

6.1. Detection of trips

To ensure the quality and validity of the inferred trips, we validated
these in three steps. First, we only consider trajectories that start and
end at an identified stop. This ensures the integrity of trips. Second, we
impose a temporal constraint by eliminating any trajectory that contains
a pair of coordinates recorded within a time interval greater than 1 h.
This was done in order to avoid large fractions of trips to go untraced
while allowing some discontinuity that could be caused by poor GPS
reception indoors [50] or when a subject might have switched off their
phone. Third and lastly, we impose a spatial constraint by eliminating
any trajectory containing a distance between any pair of consecutive
points (𝑑 = ‖𝐱𝐭 − 𝐱𝐭−𝟏‖) which was greater than 50% of the total trip
length (𝓁). That is, for any 𝑑 between two points in a trajectory, if
𝓁∕2 < 𝑑 that trajectory is discarded from further analysis. This ensures
the continuity of the traces as well as the reliability when characterizing
contacts during trips.

After the aforementioned steps, we identified a total of 2512 trips
hich will be further analyzed next.

.2. Trip duration and total length

In contrast to stop duration (Section 5.3), the time spent traveling,
n our collected data, was best modeled by a log-normal distribution
p-value = 0.02), depicted in the left panel of Fig. 4. A similar obser-
ation was made in the Geolife set (p-value < 0.001), presented in the

inset of that same panel. As the majority of trips in our collected data
were in urban environments (Section 4), the exponentiation instead
of a long-tail could be explained by a decrease in average population
density in urban areas along lengthy trips [19]. Taken together, these
observations reinforce the validity or our data collection as well as
methods for stop and trip detection, while providing insights into how
6

ontacts happen during trips (Section 6.3).
In agreement with previous work by Alessandretti et al. [18]
(N=850, GPS points at high temporal granularity) and our observations
in the Geolife data set, trip length in our data is best modeled by a
log-normal distribution, depicted in the right panel of Fig. 4. A fit with
a power-law yielded 𝛼 = 1.22 (shown in dotted gray), however with
a much lower log-likelihood than the log-normal (p-value = 0.009), in
contrast to part of the previous literature [16,38]. The differences found
in our work could be explained by measurements done with much finer
granularity in all aforementioned data sets (i.e., fine grained GPS vs.
course grained cell tower records).

6.3. Model of contacts during trips

When taken as a whole, contact duration during trips did not have a
good fit with either of the distribution functions discussed in Section 3
(i.e., 𝑝-value > 0.05 when comparing some of these alternatives). The
best fit was revealed when segmenting the trips based on distance
traveled. This analysis revealed an intricate relationship between dis-
tance traveled and the characteristics of the contact duration, which
are shown in Fig. 5.

Interpreting the changes of these parameters as a function of dis-
tance, reveals a set of interesting characteristics. As the trip distance
increases, 𝜆 displays a bi-modal behavior. This parameter, often re-
ferred to as the scale of the distribution is directly proportional to the
verage (and median) of the Weibull (Section 3). Its bi-modal shape
s likely capturing the tendency for people to take (crowded) public
ransport (bus,train,airplanes) with similar probability as a function of
he distance traveled. Alternatively, people would either walk or drive
nd have less contact (or shorter contacts) with other people.

The parameter 𝛽, often referred to as the shape of the Weibull,
ecreases from ∼1.2 to ∼0.5 as the trip distance increases. When 𝛽 > 1,
t decays faster than an exponential, or in other words, the longer a
erson is seen nearby, the shorter they are likely to remain close by.
hen 𝛽 < 1, it demonstrates a long-tail behavior, or in other words, the

onger a person is nearby, the longer they are likely to stay. Once again,
his is likely caused by the choice of means of transport, where walking
s likely predominant for shorter distances, and vehicles for longer ones.
urthermore, in the latter such behavior is (probably) explained by
eople typically traveling together, and again, the longer someone stays
ext to you in the metro/train/bus, the longer they are to continue with
ou (e.g., a commuter train has only spaced-out limited stops).

Different from stop duration, simulations of changes to trips requires
broader understanding of the intrinsic purposes people travel [47].

or example, trips are often taken from home to work (which cannot be
asily changed), or to a shop or restaurant given someone’s intentions,
hich are not captured in our data. Therefore, in order to fully grasp

he changes introduced in trips distribution and consequent contact
uration by lockdown measures, a recent data set with similar high
ensity is required.
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Fig. 4. Both trip time duration and length are best modeled by a log-normal.
Fig. 5. Variation of the Weibull parameters as a function of distance traveled.
Takeaway: Restricting trips to only short distances may not nec-
essarily lead to less (or shorter) contacts. As distances increase,
people may choose other modes of transport (e.g., driving) which
do not expose them as much.

7. SIR model and implications

A commonly used model for information spreading, such as infec-
tious diseases, is the SIR model. From a set of assumptions, the contact
atio (𝑞) is a key parameter defining how fast an epidemic spreads,
he maximum number of infective individuals, and the total number of
ndividuals that will ever get infected (see [51]). Essentially, the contact
atio is defined by how often individuals from a population are in close
ontact for a sufficient amount of time, which is, in turn, defined by
he information being transmitted (e.g., a virus or a computer file).

mplications: With enough data about how the aforementioned as-
ects of human mobility changed in the COVID-19 pandemic, a more
ccurate modeling of the epidemic would be possible. The results of
uch models could better inform policy makers about new restrictive
easures on movements, which, in turn, could include visits of limited
uration. As shown in Section 5, shorter stops will lead to less contacts,
hile shorter trips might not necessarily lead to the same outcome

Section 6). Recent studies have demonstrated strong associations be-
ween non-pharmaceutical interventions and changes in the spread of
ARS-COV-2, even though it remains challenging to study measures in
solation [3,7,8,52]. A large study including 11 European countries re-
ealed that total lockdown measures were responsible for the reduction
n 81% in the reproduction rate (𝑅) in those countries [8], while in
he US, for similar measures, the observed reduction in contacts was
ver 90% (10.86 → 0.89 interactions per day). Furthermore, contact
estriction measures in China were associated with a 2.6 fold reduction
n infections [52] when compared with an unrestricted scenario. Using
large data set, with over 98 million individuals for 6 months, Chang

t al. [3] demonstrated, with temporal networks and a modified SIR
odel, that a reduction in the capacity of visits of places to 20% could

ead to a reduction in the number of infections of up to 80%. Such
7

ut in capacity could, for example, be achieved through a reduction
in the overall stay duration, as shown in this work. Taken together,
these results demonstrate the importance of a combined, timely and
well informed set of changes to curb the spread of an infectious disease.

8. Limitations and discussions

Mode of Transport: Previous research on mobility [17] has shown
the importance of studying distances traveled for each transportation
mode. However, we did not perform any mode of transport inference,
which might have limited our study. This was, in part, due to a lack of
ground-truth to validate any model we may ever want to use. Future
iterations of such study should include a reliable inference.

Models generalization: The unique combination of mobility and con-
tact information in our traces, allowed us to apply well-established
statistical models (see Section 2) to better understand how these two
properties are related. Our robust results, supported by statistically
significant measures, reveal the solid numerical relationship between
mobility and contact duration. Furthermore, our approach could be
applied to similar sets, yielding interpretable and comparable results.

Contact Opportunities: Fig. 6 shows how longer stays expectedly
bring users in contact with more people. However, the link between
these two is only a weak one, with a Spearman correlation of 0.3.
This way, curfew measures, which would bring down contact dura-
tion (e.g., take-away instead of dine-in), could bring down the overall
number of contacts a person will have. In an opportunistic communica-
tion scenario, current curfew measures would significantly impact the
performance of such systems. Furthermore on epidemics, as most re-
maining contacts will be long ones, such as with workers in a restaurant
or a shop, these individuals should be isolated as much as possible from
the general public, in order to reduce the probability of transmission.

Current Data Sets: Even though for the current COVID-19 pandemic
there exist aggregate data on mobility changes from Google and Apple,
those refer only to the number of visits to places but not to how
long people stayed (i.e., were potentially in contact) [53]. New mea-
surements or another source of data would be needed to allow us to
assess the impact of those changes in contact duration. Other non-
pharmaceutical interventions with significant effect on the spread of
COVID-19 as well as in the characterization of human contacts, that
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Fig. 6. Number of contacts increases with longer stays (Spearman correlation = 0.3, 𝑝-value <0.01). (Red) Lines inside boxes represent median values.
were not part of our study, include face-masks, hand-washing and
prohibition of large events [8,52].

Other Applications: Other areas which could benefit from these re-
sults include smart urban planning as well as the design of mobile
network protocols. The planning of public spaces as well as smart
transportation could benefit from our insights in how changes in their
utilization would lead to modified contacts. Mobile network protocols,
especially in opportunistic scenarios, could utilize our models to better
understand how information dissemination would occur under different
circumstances or types of location, such as in disaster-stuck regions.

9. Conclusion

In this work we analyzed high resolution data from a mobile social
network, including mobility and contacts, from a series of mobile phone
users. We reveal a strong relationship between the distribution of stop
duration and location types, where time-bounded-stops (i.e., where there
is a typical schedule) follow a power-law and time-unbounded-stops
follow a log-normal. We further model the relationship between stop
duration and contact duration, which could be further used in studies
where contacts are not available. Furthermore, our analysis of trips
reveals an intricate relationship between the distribution of contact
duration and trip lengths, where the distribution of the former is best
described by a stretched exponential for which both parameters are a
function of the latter. These findings can be further used by researchers
to develop more accurate models to better understand and deal with the
current (and future) pandemic, as well as support the creation of better
mobile network protocols.

10. Ethical considerations

For this study, all participating subjects voluntarily agreed to be
tracked and have their data used for this study under a privacy agree-
ment. The pre-processing steps described in Section 4 were designed
and executed to ensure no personal identifiable information was ever
disclosed, be it from the participant’s device or those devices sensed
nearby. No individual subject was ever studied in isolation, but only
aggregates.
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