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ABSTRACT
Emerging Remote Piloting (RP) operations of electrified Unmanned
Aerial Vehicles (UAVs) demand low-latency and high-quality video
delivery to conduct safe operations in the low-altitude airspace.
Although cellular networks are one of the prominent candidates
to provide connectivity for such operations, their ground-centric
nature limits their capabilities in achieving seamless and reliable
aerial connectivity. In this paper, we study the feasibility of sup-
porting RP operations with low latency and high-quality video
delivery over commercial cellular networks. By setting up an adap-
tive bitrate video transmission pipeline with the Google Congestion
Control (GCC) and Self-Clocked Rate Adaptation for Multimedia
(SCReAM) Congestion Control (CC) algorithms, we analyze the
video delivery performance for the RP application requirements
and compare the performance of GCC and SCReAM against con-
stant bitrate video delivery. Our results show that low-latency video
delivery with < 300 ms playback latency between full-HD and 4K
resolution can be maintained up to about 95% of the time in the air.
While static bitrate video delivery outperforms adaptive streaming
in urban location with abundant link capacity, the latter becomes
advantageous in rural locations, where the link capacity is affected
by fluctuations. Although the study’s findings highlight the capa-
bilities of cellular networks in delivering low-latency video for a
safety-critical aerial service, we also discuss the potential improve-
ments and future research challenges for enabling safe operations
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and meeting the service requirements using cellular networks. We
release our collected traces and the video transmission pipeline as
open-source to facilitate research in this field.
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1 INTRODUCTION
The aviation industry is on the verge of a new era of environmental
sustainability with emission-free operations. Novel Aerial Vehicle
(AV) concepts, electric Vertical Take-off and Landing (eVTOL) and
Unmanned Aerial Vehicles (UAVs), will occupy the low-altitude
airspace with use cases such as passenger transportation, aerial
package delivery, medical aid and remote surveillance. The major-
ity of these AVs are planned to be operated remotely, relying on
network connectivity to transmit live video streams from on-board
cameras and receive control commands from a remote operator (see
Figure 1). The airspace regulators, therefore, face new challenges
in ensuring safe and reliable operations in the sky [12]. The AVs
demand reliable and robust connectivity to safely perform Remote
Piloting (RP) operations, obtain flight paths, dynamically update
no-fly zones, and obtain other flight-relevant information from the
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Figure 1: The Remote Piloting (RP) over cellular connectivity
scenario considered in this study. The remote pilot connects
to the Unmanned Aerial Vehicle (UAV) via a cellular network.
Only the link between the UAV and the Base Station (BS) is
wireless, while the rest is over the WAN.

unmanned traffic management systems. Simultaneously, the AVs
also need to continuously broadcast their location to other AVs for
avoiding conflicts in flight paths [42].

Recently, both industry and academia have started exploring the
potential of utilizing cellular networks to provide wireless connec-
tivity for aerial use cases, primarily due to already-existing network
infrastructure and low-cost communications [52]. Although the
current cellular standards and implementations are intrinsically
designed to support connectivity on the ground, the 3𝑟𝑑 Generation
Partnership Project (3GPP) intends to incorporate non-terrestrial
networks as part of the future 5G releases [3]. The evolution of the
cellular networks takes the challenging connectivity requirements
and low latency video delivery demands of RP applications into
account to ensure reliable aerial coverage [2].

However, the 3D mobility patterns combined with the fast speeds
of AVs introduce unprecedented challenges for seamless connectiv-
ity over cellular links. Although several studies have investigated
the performance of cellular networks in the air in the past [25, 27,
29, 55], their focus has remained primarily on understanding the
changes in the wireless medium, while their impact on the perfor-
mance of AV applications has remained largely unexplored. Not
only does this research lapse impair understanding of the potential
limitations of current state-of-the-art cellular infrastructure in sup-
porting aerial applications, but it also limits research in designing
solutions specifically for supporting the operational requirements
of such applications, e.g. using multipath transport [7].

In this paper, we plug this gap in research by evaluating the
performance of low-latency, high-quality video transmission in the
air (which is integral to RP operations) in cellular networks. We aim
to assess the feasibility of already-existing cellular infrastructure
for supporting high-quality video transmission for RP AVs (as illus-
trated in Figure 1) and uncover the arising networking challenges
for future cellular generations. Specifically, the objective of our
study is to answer the following research questions: (i) How do the
network conditions in the air differ from on the ground? Can we
characterize the differences between the two in terms of cellular

Quality of Service (QoS) metrics, such as Handover (HO) frequency,
Handover Execution Time (HET), throughput, end-to-end latency,
and Packet Error Rate (PER)? (ii) Can the currently available cellular
networks support the low-latency, high-quality video transmission
requirements of RP operations in aviation? What is the achiev-
able video streaming performance, and what are the bottlenecks in
supporting low-latency video transmission? We investigate these
questions through the following contributions.
(1) We conduct an extensive measurement campaign in Munich,
Germany, by flying an UAV in urban (Munich city center) and ru-
ral (Munich outskirts) environments. The UAV carried a payload
of Raspberry Pi 4s (RPis) and Intel NUC PCs that continuously
transferred high-quality Real-time Transport Protocol (RTP) video
over an LTE network to a remote server hosted within the AWS
cloud. In this study, we focused our attention on LTE’s aerial per-
formance since 5G roll-out is in its nascent stages over the majority
of the globe, and the current 5G (non-standalone) infrastructure
predominantly relies on existing LTE base stations for last-mile
connectivity [41]. In addition to the video streaming performance,
we also record the low-layer LTE access information (e.g. signal
strength and base station ID). This allows us to correlate the fre-
quency of HOs in the air and on the ground to the application
performance.
(2) We measure the performance of both non-adaptive and adap-
tive RTP video streaming workloads in our experiments to achieve
low-latency, high-quality video transmission requirements that are
integral to remote UAV operations. For adaptive streaming, we
utilize two novel Congestion Control (CC) mechanisms with RTP,
namely Google Congestion Control (GCC) and Self-Clocked Rate
Adaptation for Multimedia (SCReAM) [24], primarily since these CCs
are designed to support mobile applications over cellular networks
[35] and real-time video traffic [14]. We record several video per-
formance metrics such as the achievable bitrate, Frames Per Second
(FPS), playback latency and received frame quality to analyze the
video performance to the RP application requirements. Using static
bitrate video delivery as a baseline, we also discuss the performance
trade-off between GCC and SCReAM in the air.
(3) We find that the majority of the connectivity requirements
desired by RP can be satisfied by the current LTE infrastructure,
albeit with some limitations. Firstly, we observe that high-quality
streaming between full-HD and 4K resolution was achievable in the
air up to an altitude of 120 m with less than 300 ms playback latency.
However, performance reliability was largely missing within LTE
networks as low latency and high-quality video streaming could not
always be maintained during flights. The performance largely varies
depending on the geographical location and the Mobile Network
Operator (MNO). The achieved video delivery performance is highly
dependent on the density and availability of nearby base stations.
(4) We discuss the implications of our findings relevant to the devel-
opment of future cellular standards and open research challenges
that must be overcome if RP over cellular networks is to become
a reality. We further discuss potential improvements in the video
delivery pipeline to ensure smooth and low-latency video delivery
for RP.

To foster reproducibility and motivate future research in this
field, we publish our collected dataset, the video streaming pipeline
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used as the workload for this study, and the parsing and visualiza-
tion scripts at [11] and [10].

2 BACKGROUND AND RELATED WORK
In this section, we describe the RP use case in detail and its challeng-
ing connectivity requirements for ensuring safe aerial operations.
We also provide more information about related studies and outline
the novelty of our work.

2.1 Remote Piloting Scenario and its
Connectivity Requirements

Remote piloting (RP) is one of the promising approaches to real-
ize the next-generation aerial platforms in the sky, namely UAVs
and eVTOLs [12]. The goal of RP is to allow pilots to remotely
control a fleet of aerial vehicles from the ground operation center
or elsewhere. The pilots send command packets to the UAVs and
receive video and telemetry streams in return. The RP concept can
be realized with different aerial vehicles types such as fixed-wing
aircrafts, rotary-wing aircrafts, airship, and others [32]. We focus
on rotary-wing aircrafts in this study.

Wireless links are one of the building blocks in the remote pilot-
ing architecture defined by ICAO [32]. They are used to establish
bidirectional communication between the aircrafts and remote pi-
lots. Video is a major part of the data stream from the aircraft to the
ground station [54] as it enables the remote pilot to sense the envi-
ronment in real-time to maneuver the aircraft and avoid conflicts in
the airspace. As a result, low latency and high-quality video trans-
missions are essential for safe vehicle operation from the ground.
Hence, wireless networks (mostly cellular due to their dense avail-
ability and reach) play a vital role in RP operations by providing
reliable and robust connectivity between remote pilots and the air-
craft to ensure safe aerial operations. Thus, RP operations impose
challenging connectivity requirements on the end-to-end network.
Specifically, the use case demands between 10–100 Mbps for ac-
ceptable video streaming, end-to-end latency within 150–300 ms,
and 99.999% communication reliability [12]. Regarding the specifi-
cations of the video application and streams, aviation regulations
are still at an early stage in defining the minimum requirements.
Nevertheless, similar demands to those in the automotive industry
can be expected, where the 5G Automative Association (5GAA)
specifies high-quality streaming for teleoperated driving [5].

We believe that mapping the connectivity requirements from the
network to the video application layer requires extensive study. Nev-
ertheless, our derivation of the video application requirements will
help in evaluating the potential of supporting RP applications with
cellular networks and uncover the outstanding research challenges.
Recent works have shown that LTE can support the minimum spec-
ified latency and bandwidth requirements imposed by RP in almost
all developed regions across the globe [17, 19]. In regions with
less dense availability of cellular infrastructure, utilizing multiple
cellular connections simultaneously through multipath transport
shows promise. However, multipath transmissions are more sus-
ceptible to fluctuations caused by obstructions and handovers in
last-mile [40], hence understanding the performance of RP over
LTE offered by multiple operators is the first step to realizing the
use case in practice.

2.2 Related Work
Several studies have looked into video streaming from UAVs in the
past. We highlight the works best fitting the explorations relevant
to this study, such as bidirectional video and control data exchange,
real-time video delivery, and various video-streaming algorithms.
Bi-directional video and control data transmission. Jin et
al. [34] utilized commercial off-the-shelf hardware with H.265 en-
coding for video and the MAVlink protocol for the control traffic.
The measurements reveal that the latency of video traffic is up to
1.2 s in 5G and 3 s in 4G, while the minimum control signal latency
is 30 ms. In [51, 61], the authors studied the end-to-end latency
of cellular networks while transmitting control and video traffic
for UAV operations. The authors show that the video latency is
worse than control traffic, up to 8 s in real-world measurements,
due to high mobility. Furthermore, study [9] sets up a multipath
communication scenario using link diversity and forward error cor-
rection mechanisms to enable real-time video transmission beyond
visual line-of-sight operations of UAVs. The measurement results
highlight that using uncorrelated links improves the video quality
by up to 33%. Lastly, Yu et al. [60] present a channel co-allocation
algorithm to enable a multi-UAV full-duplex connectivity scheme.
By enabling channel reuse within multiple UAVs, they aim to reduce
the co-channel interference with low transmitter complexity and
higher spectrum efficiency.
UAV-based real-time streaming. In [46], the authors implement
a WebRTC system on a UAV that consists of a camera, a media
gateway, a backend, and a website. Streaming two different cameras
over RTP, their emulation study shows that it is possible to achieve
30 FPS with ≤ 1 s latency [46]. However, the authors perform their
measurements over a wired medium, which does not have the
fluctuating properties of wireless channels and cellular networks.
In [53], the authors describe their ARM-based 5G hardware chain
for real-time video transmission. The 5G module handles the data
processing, and they transmit uncompressed 480p video at 30 FPS.
Without providing statistical insights, they claim a transmission
rate between 19 and 112 Mbps and a playback latency between 49
and 266 ms, depending on the cellular standard used.
Improving video transmission quality of UAVs. In [6], the au-
thors implement an automatic repeat request mechanism at the
application layer to minimize the video packet losses in ad-hoc
UAV scenarios. Through a measurement campaign with a flying
UAV transmitting H.264 compressed full-HD video over an 802.11n
link, the proposed scheme was able to reduce the packet losses by
almost two orders of magnitude. The authors of [16] take a differ-
ent approach and introduce Machine Learning-based scheduling
to improve the video quality for omnidirectional 360◦ video trans-
missions. At each transmission interval, the scheduler prioritizes a
traffic class in the time domain and a scheduling rule for that traffic
in the frequency domain based on various parameters such as RF
channel, traffic profile, and application requirements. Their simu-
lations show that the novel algorithm outperforms other baseline
scheduling methods in packet loss, latency, and throughput.

Xiao et al. [58] show correlations of flight altitude / speed and
RF channel conditions during UAV flights in 802.11n networks and
propose a new adaptive bitrate algorithm to utilize the sensor data
with network observations. Due to unclear correlations, the authors
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further utilize neural networks to accurately estimate the varying
channel conditions from flight states. They find that the proposed
scheme improves the average Quality of Experience (QoE) by 21.4%
and the average bitrate by 10.8% compared to state-of-the-art adap-
tive bitrate algorithms. As we show below, we did not observe
similar correlations between flight parameters and RF channels in
cellular networks (except altitude). In [48], the authors set up a
user study to assess the QoE of a cloud-based UAV simulator. With
16 participants, they measured the impact of the video encoding
parameters on the experienced video quality. The study concludes
that while resolution strongly affects the perceived graphics qual-
ity, participants did not observe a major difference between 30 FPS
and 60 FPS. However, poor graphics quality could cause simulator
sickness symptoms. The results of this study are quite relevant to
us since the authors dictate the acceptable video quality metrics
for operating UAVs. However, their focus was only on measuring
the influence of the video encoding parameters on the video QoE
in a controlled environment. On the other hand, our study comple-
ments their work by investigating the achievable video delivery
performance over cellular links in the air.

Mobile HOs in the air. The authors of [25–27, 29, 50] experi-
mentally evaluate the HO count at various altitudes. According to
[25, 29], increasing altitude positively correlates with the HO count
in suburban areas – increasing up to 5 × compared to ground users.
In contrast, the authors of [27] report a negative correlation in
their measurements in a rural environment, and the studies [26, 50]
observe no connection between the HO count and altitude in both
urban and rural areas. Thus, the studies do not converge to common
findings and demand further investigation. Additionally, higher
UAV speeds can increase the HO count [50] and degrade the net-
work performance [27].

Overall, our study differs from previous research in this field
in the following aspects. (1) We design and implement a realistic
low-latency adaptive video transmission setup using two different
CC variants specifically for wireless and mobile scenarios. (2) We
assess the achievable video delivery performance over cellular net-
works in the air in two largely complementary environments with
a safety-critical RP use case in mind. (3) Our extensive in-the-wild
measurements allow us to investigate and contrast the performance
of cellular connectivity experimentally (e.g., frequency of HOs, du-
ration of HETs, etc.) along with its impact on video streaming in
both air and ground.

3 MEASUREMENT METHODOLOGY
3.1 Setup Configuration
Our study aims to analyze the performance of high-quality video
delivery for remotely piloting UAVs in outdoor environments over
a cellular network. Hence, we design our measurement setup to
mimic the requirements and operations of remote piloting applica-
tions closely – specifically focusing on the environment, altitude,
data traffic and network. Furthermore, we perform our measure-
ments in two distinct environments involving different complex-
ities for RP applications – urban offering many handover oppor-
tunities thanks to the dense availability of base stations and ob-
stacles/reflections due to tall buildings, and rural with limited BS

coverage but large open areas with the possibility of direct line-of-
sight connectivity throughout flight duration. We base our analysis
on ≈ 7 GB of collected video transmission data, including ≈ 60M
packets recorded from 130 measurement runs over a total of ≈ 90
flights in rural and urban environments.

Hardware Setup. Our measurement setup is illustrated in Figure 2.
We used a DJI-M600 UAV, which can carry a payload (our measure-
ment setup) of up to ≈ 5 kg in the air. The payload consists of two
Intel NUCs, each equipped with i7-7567U CPUs and two RPis, both
running Linux operating system. We duplicate our measurements
across the RPi and NUC to (i) remain hardware independent and
(ii) collect more data per measurement run to increase our confi-
dence level in the resulting analysis. All four measurement nodes
were connected to an LTE network via CAT4 LTE USB modems.
We attached GPS antennas to the two RPis which enables them to
listen to the PPS signal and maintain an accurate system clock. We
further set up the RPis as NTP servers and attached them to each
NUC via Ethernet – making all four nodes time-synchronized. We
used two large 20 Ah batteries to power our setup.

Our remote pilot is a compute-optimized Amazon Web Services
(AWS) EC2 instance equipped with 8 CPU cores (c5a.2xlarge in-
stance) hosted in the UK region (≈ 1,000 km from the measurement
locations around Munich, Germany). The server uses the Amazon
Time Sync Service for timekeeping, which claims to be highly accu-
rate through satellite and atomic clock sources [8]. We use the LTE
connection from two major MNOs, which are known to have the
best coverage in the test region. In this work, we chose not to utilize
5G for our measurements due to the following reasons. Firstly, like
the majority of the globe, 5G roll-out in Munich is still severely
restricted to a few locations (mainly around the city center) hence
limiting the generality of our analysis. Furthermore, most of the
current 5G deployment is still non-standalone, i.e., it relies on exist-
ing LTE radio access networks for last-mile connectivity instead of
the mmWave links [41]. On the other hand, LTE connectivity across
the globe is fully mature, and the latency and bandwidth promised
by the standard should suffice for RP operations [5, 17, 19]. Note
that we design our methodology and experimental configuration to
be independent of the underlying cellular standard, meaning that
it will be easy to undertake a similar measurement campaign over
5G once the standard is more mature and widely available.

Our LTE data plan allowed us to perform unlimited download
and upload transfers, but our downlink and uplink speeds were
capped at 300 Mbps and 50 Mbps, respectively. The lowest recorded
Round Trip Time (RTT) between the AWS server and our mea-
surement node over LTE is ≈ 35 ms. We also highlight the impact
of different MNO infrastructure on RP performance in the same
region in Section 5 and Appendix A.2.

Flight Configurations. Throughout this study, we performed a
total of ≈ 90 flights in an urban and a rural location on different
days and at different times. Our urban flying zone is in the uni-
versity campus located at the center of Munich, Germany (≈ 1,5M
inhabitants), surrounded by moderately high buildings (≥ 25 m).
We conduct rural flights in more than 20 km of open space in
the outskirts of Munich’s metropolitan area (≈ 3,700 inhabitants).
Figure 3 shows the terrain view and the locations of the BSs in
close vicinity to our flight regions. The most notable differences
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Figure 2: Our measurement setup. The UAV is equipped with two Intel NUCs, two Raspberry Pis (RPis), two GPS antennas, and
four LTE dongles, all of which are powered by two power banks. The RPis receive accurate time readings from the GPS signal
and serve as a Network Time Protocol (NTP) time server for the NUCs. Each Intel NUC sends a full-HD video over LTE to our
cloud server and receives acknowledgments in return. The bottom left shows a frame of the transmitted video. Each frame
contains a QR code with the current frame number and a barcode with the encoding time. These data points allow us to assess
the video delivery performance.

between the two locations are the obstructions (density and size
of surrounding buildings) and the number of BSs. Our two mea-
surement locations provide a complementary-yet-complete view of
different environments within which RP applications would have
to operate.

We followed a pre-designed trajectory for all our flights, allowing
us to perform repeatable measurements across both test locations
throughout our measurement campaign. Since cellular operators do
not disclose their cell coverage data, we maximized our horizontal
and vertical movements within the allowed flight area to ensure
HOs between different cells. We managed to observe multiple HOs
during each flight. Our trajectory represents basic movements in-
volved in typical RP flights, i.e., take-off, cruise, ascending and
landing. We flew up to a height of 120 m above ground (maximum
allowed height as per European regulations [22]) at a median and
maximum recorded speed of 13 kmph and 60 kmph, respectively.
Readers should refer to Appendix A.2 for further details on our
flight trajectory.

3.2 Data Collection
The primary requirement of RP is to support a high-quality video
stream from the onboard camera of a UAV to the remote pilot over
the Internet. To closely mimic such an operation, we utilize a 30 FPS
and Full-HD (1920 × 1080 pixels) resolution video stream encoded
at bitrates between 2 and 25 Mbps using H.264 as our workload. We
set our highest rate to 25 Mbps to evaluate whether a higher quality
stream, e.g., 4K [30], could also be supported. Moreover, it allows
us to test the maximum achievable bitrate while maintaining real-
time video delivery. We transmit video in real-time using RTP over
UDP and utilize two purpose-built CC algorithms for adaptively
switching bitrates depending on the network conditions: GCC [14]
and SCReAM [35]. GCC estimates the queuing delay gradient with a
Kalman filter to detect congestion. A loss-based controller comple-
ments that algorithm. The sender sets the target bitrate based on

reports provided by the two controllers [14]. On the other hand,
SCReAM sets the video target bitrate based on the packet transmis-
sion and acknowledgment rate. It applies packet pacing and limits
the bytes-in-flight to a congestion window that is increased as long
as the RTP queue is shorter than 300 ms. Otherwise, if packet loss
is detected, the window is decreased [35]. Both algorithms rely on
feedback from the receiver but work with different RTP Control
Protocol (RTCP) extensions. In the implementations that we utilize,
GCC relies on the RTCP extension for transport-wide congestion
control [31], while SCReAM works with the extension format speci-
fied in RFC 8888 [47]. Both CCs log the timing information of the
received packets – allowing us to calculate the one-way delay of the
transmission. To estimate a baseline performance, we determine
the maximum bitrate within the 2–25 Mbps range over repeated
trial runs at which the LTE link supports a stable video delivery
in each location. Based on those tests, we send the constant (or
static) bitrate video at 25 Mbps in the urban area and at 8 Mbps
in the rural area. To summarize, we use three different varieties of
video workloads in our measurements in rural and urban environ-
ments: adaptive RTP transmissions using (1) GCC and (2) SCReAM
CCs, and (3) static bitrate RTP transmissions at the maximum
“support-able” bitrate.

Video Streaming Pipeline. Our video pipeline utilizes the multi-
media framework GStreamer [28] and implementations of GCC and
SCReAM [45]. A wrapper application [23] orchestrates the encoding
and streaming of the video on the drone and the decoding and play-
back on the AWS server. To support repeatable and reproducible
measurements, we employ a pre-recorded video (“source video”)
that contains considerable detail and motion as our input instead
of an actual camera. The source video is re-encoded in real-time by
the VideoLAN x264 encoder [56] at a specified bitrate. For static
video, we set the bitrate to 25 Mbps and 8 Mbps for urban and
rural environments, respectively, based on findings from our trial
measurements. For adaptive video, the bitrate is dictated by the
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Figure 3: The measurement areas along with the BSs in their vicinity. The left-hand side depicts our urban flight zone that is
densely surrounded by buildings and BSs. The right-hand side shows the open space and low BS density in our rural flight
environment. We use data from [13] to plot the approximate locations of the BSs. During our measurements, we were connected
to 32 and 18 different cells in the urban and rural locations, respectively.

employed CC algorithm. To allow calculation of the video delivery
performance (detailed below), we embed additional information
into each frame (see the example in the bottom-right corner of Fig-
ure 2). The pre-encoded video contains a QR code corresponding to
a uniquely increasing number. Additionally, we built a GStreamer
element that dynamically embeds the current time into each frame
during encoding. The encoded video is written to a file and in
parallel split into UDP-enclosed RTP packets that are sent to our
server and placed in an instance of GStreamer’s RTP jitter buffer.
We buffer packets for 150 ms to cushion the variable packet arrival
rate and handle out-of-order packets. The player at the AWS server
also writes the received video to a file, allowing us to calculate the
per-frame performance of the stream. Our video delivery pipeline
is available as open source at [10].

Data Logging. We collect the packet-level data with tcpdump, the
sent and received video streams, and data logs generated by GCC
and SCReAM. We also use QCSuper [37] to record the LTE Radio
Resource Control (RRC) messages which allows us to accurately
detect the start and end of HO events. We utilize these to calcu-
late cellular performance metrics such as HO frequency, i.e., the
number of HO events encountered in a time interval, and Handover
Execution Time (HET), i.e., the time between the reception of the
RRCConnectionReconfiguration packet from the source BS to the
transmission of the RRCConnectionReconfigurationComplete packet
at the target BS [1]. We draw our resulting analysis from our col-
lected dataset that spans upwards of 7 GB and includes ≈ 60M data
packets from over 130 measurement runs, which we publish at [11].

Video Delivery Performance Metrics. In addition to the network-
level performance metrics, such as RTT, packet loss, HO, etc. we
also estimate the quality of video transmission (and later correlate
it to the requirements imposed by the RP use case) by calculating
the following metrics.
(1) Frame Rate (FPS). The frame rate of the video is directly logged
by a GStreamer element at the receiver, which can be compared to
the original video frame rate of 30 FPS. We additionally compute
the FPS in post-processing from the received video.
(2) Playback Latency. The playback latency is the duration between
the start of the encoding of a frame at the sender and the playback of
the decoded frame by the receiver. We calculate the playback latency
by correlating the encoding timestamp that is stored as a barcode

in each frame and the decoding timestamp that is logged by the
receiver. Note that FPS and playback latency are directly correlated,
i.e., a lower frame rate results in an increase in playback latency
and vice-versa. The playback latency can, however, suddenly drop
without an FPS increase if frames are skipped, and it can stay at
an elevated level even though the playback frame rate matches the
source video frame rate.
(3) Structural SIMilarity (SSIM). The SSIM index assesses the re-
ceived frame quality by measuring the degradation of the lumi-
nance, contrast, and structure information [57]. We calculate SSIM
by comparing the source and received frames.
(4) Video Stall. A video stall event occurs when the inter-frame
time exceeds the latency requirement of the RP use case, which we
estimate to be ≈ 300 ms [12].

4 MEASUREMENT RESULTS
In this section, we first elaborate on the networking performance
and compare how the network conditions in the air differ from those
on the ground. Next, we analyze the video delivery performance in
Subsection 4.2 by analyzing the achieved video throughput. We also
evaluate the playback performance of the adaptive video delivery
methods w.r.t. the achieved frame rate, playback latency, and video
quality calculated with the Structural SIMilarity (SSIM) method.
These metrics allow us to pinpoint video stalls as well as frame
drops and to evaluate whether the playback latency necessary for
RP is achievable. We conclude with a discussion of our results.

4.1 Networking in the Air
To highlight the aerial networking challenges that affect the video
delivery application, we compare the networking performance in
the air to the ground in terms of HO frequency, HET, end-to-end
latency, goodput, and PER. We collected the aerial data with the help
of a UAV that flew both horizontally and vertically (see Section 3).
We used a motorbike, at speeds similar to the average flight speed,
to mimic the horizontal movements of the UAV on the ground.

Figure 4 compares the HO occurrences on the ground and in
the air in terms of HO frequency and HET duration. In Figure 4(a),
we observe that the frequency of HOs during flight is about an
order of magnitude higher than on the ground. Comparing the two
test locations, the average HO frequency is higher in the urban
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Figure 4: Comparison of HO performance in the air and on
the ground. (a) HO frequency, (b) HET in the air and on the
ground. In (a), the HO frequency is an order of magnitude
higher in the air than on the ground. In (b), we clearly ob-
serve HET outliers above 100 ms, which cause long service
interruptions in the air. The purple triangle marks the aver-
age of each boxplot.

area both on the ground and during flight. We see two factors
that can cause the increased HO frequency in the air. Firstly, the
number of line-of-sight channels to different BSs increases in the
air, causing increased inter-cell interference levels along with link
fluctuations. Secondly, as the BS antennas are down-tilted to provide
optimal coverage for ground subscribers, the UAV can enter the
side-lobe coverage area of the antennas, which can contribute to the
link fluctuations. We note that the collected ground dataset likely
includes longer durations without horizontal movements than the
air dataset. The results may, therefore, be skewed towards a lower
HO frequency on the ground.

Figure 4(b) shows that the majority of HOs last less than 49.5 ms,
which 3GPP specified as the HET threshold for successful HO
events [1]. An important observation is the number of outliers that
last longer than 50 ms. The majority of excessive outliers above
500 ms occur in the air and range up to 4 s. Such large interrupts can
severely impact the video delivery and the experience of the remote
pilot. Possible explanations for the increased density of outliers
in the air could be fluctuating Radio Signal Strength Information
(RSSI) levels as well as a higher noise floor, as noted by previous
works [29, 55]. These factors could have prolonged the link inter-
ruption until the User Equipment (UE) has established a stable link
with the next serving BS.

We compare the one-way latency of the RTP packets from sender
to receiver between ground and air measurements in Figure 5. We
find that for ≈ 99% packets, the latencies lie below 100 ms of the
ground transfers and ≈ 96% of the packets with some outliers that
last more than 1 s in the air. Our analysis shows that these outliers
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Figure 5: Comparison of end-to-end latency on the ground
and in the air in the urban and rural environments. The
dashed lines represent the average latency. The plot shows
the increased end-to-end latency in the air in both environ-
ments and the higher latency in the rural environment com-
pared to the urban test location.

most often happen at altitudes > 100 m (see Figure 13). Multiple
factors are involved in the degraded latency conditions in the air.
The increased HET and the HO frequency in the air can cause briefly
elevated one-way latencies. We discuss this behavior in Section
4.2.2, where we show that latency spikes tend to precede HO events.
Neither flight velocity nor altitude significantly affects the PER
and goodput performance. The PER stays within 0.06–0.07% and
the average goodput is similar in the air and on the ground. Due
to deep network buffers of cellular operators [33], worsened HO
conditions and link fluctuations in the air do not impact PER. Most
of the observed packet drops occurred consecutively.

Overall, our analysis highlights the increased HO frequency in
the air and a higher probability of long HET outliers. Consequently,
the end-to-end latency performance degrades while the PER and
goodput performances are comparable across air and ground. For
RP, these results imply a higher number of link disruptions in the air,
up to 0.7 HOs/second, with longer outage durations. Such events
can trigger undesired service interruptions for the RP use case
with unbearable outage durations. Next, we analyze the achievable
video delivery performance in the air, bearing in mind this section’s
findings and the derived RP video requirements from Section 2.1.
Takeaway — More frequent HOs and excessive HET outliers in
the air can degrade the end-to-end latency while throughput and
PER are not impacted.

4.2 Video Streaming Performance
In this section, we analyze the video delivery performance in terms
of bitrate, FPS, playback latency and SSIM. We first evaluate the
achievable video delivery performance with the requirements of the
RP use case in mind and then compare the performance of GCC and
SCReAM with the static bitrate video delivery baseline. Afterward,
we dig deeper into the collected dataset to further understand the
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Figure 6: The baseline performance of video delivery was
set with a constant bitrate stream of 8 Mbps in the rural
and 25 Mbps in the urban area. The selected bitrates were
adapted to the link capacities in each area. With abundant
link capacity in the urban area, the constant bitrate (static)
stream managed to maximize the bitrate. With limited link
capacity in the rural area, SCReAM is best at maximizing the
bitrate, especially during link fluctuations.

influence of the network layer on the video performance and look
closely at the impact of HO events. In the rest of the paper, high
bitrate and low bitrate refer to the video transmission at 25 Mbps
and 8 Mbps (see Subsection 3.2). Also, the term low-latency refers
to latencies below the threshold of 300 ms and high-quality video is
a video with a minimum of HD resolution.

4.2.1 Bitrate and FPS Analysis. The goodput metric is an indicator
of the achievable video quality, and the FPS describes the smooth-
ness and stability of the video transmission. Figure 6 shows the
achieved bitrate performance in the urban and rural test environ-
ments, respectively. In the urban location, the achieved goodput
varies between 20–25 Mbps depending on the bitrate adaptation
method while the goodput in the rural area is limited to 8–10 Mbps.

The goodput analysis of the different bitrate adaption methods
in the urban environment shows that SCReAM comes closest to the
hand-picked static bitrate of 25 Mbps with 21 Mbps on average
while GCC achieved 19 Mbps. In the urban environment, the MNO
provides an uplink capacity of up to 40 Mbps which allows the static
transmission to maintain the high bitrate (see P1 in Figure 10). The
CCs increase the target bitrate conservatively and lower it if signs
of congestion are detected to optimize for stable and low-latency
video delivery. The bitrate ramp-up phase of GCC and SCReAM at the
beginning of video transmission takes ≈ 12 and 25 s until they can
reach the target of 25 Mbps, respectively. This contributes to the
lower tail of CC goodput. One reason that causes a bitrate decrease
is packet loss that occurs at altitudes above 80 m in the urban
environment. In the rural environment under limited bandwidth,
SCReAM is better at utilizing the available link capacity than GCC.
SCReAM achieves an average bitrate of ≈ 10.5 Mbps compared to
GCC’s ≈ 8.5 Mbps. However, both numbers are higher than the
static transmission at 8 Mbps – highlighting the high variability
of the available link capacity in the rural area.

In our analysis, we found cases in which SCReAM wrongly de-
tected packet losses which caused it to lower the target bitrate
needlessly. This behavior stems from the implementation of the

RFC8888 acknowledgment feedback generation in the SCReAM li-
brary from Ericsson Research that we used [45]. Every 10 ms, an
RTCP packet is generated that carries information about the status
of the RTP packet with the currently highest received sequence
number and, by default, the 63 preceding packets. At rates higher
than ≈ 7 Mbps, more than 64 RTP packets arrive between two con-
secutive RTCP packets, which causes some RTP packets to remain
unacknowledged. We increased the number of acknowledged RTP
packets per RTCP packet from 64 to 256 to lower the probabil-
ity of these events. SCReAM does, however, discard its RTP send
queue whenever it exceeds the length of 100 ms, which causes in-
stantaneous and unpredictably large jumps of the highest received
RTP sequence number. A more intelligent acknowledgment gen-
eration scheme is necessary to handle those events correctly and
not leave received packets unacknowledged. Our measurements,
therefore, include cases where SCReAM receives misleading feed-
back that causes it to lower its bitrate needlessly. The performance
issues in the current implementation of SCReAM are already known
to its developers. The design and implementation of an adequate
acknowledgment scheme remains outstanding for future work.

We find that the FPS performance is primarily influenced by
congestion events and packet losses. Figure 7(a) shows the FPS
distributions. Both adaptive bitrate transmission methods can main-
tain 30 FPS ≈ 90% of the time in the urban area, but the video is
played with less than 10 FPS ≈ 1.5% and 3% of the time with SCReAM
and GCC, respectively. Both performance levels are worse than that
of the static transmission, which manages to maintain a mini-
mum of 8 FPS. On one hand, the static transmission performance
highlights the reliability of the cellular network that supports a
high bitrate stream in the face of link capacity fluctuations. On the
other hand, this result is surprising since the CCs are designed to
maintain a reliable video stream. Counterintuitively, we find that
the low FPS outliers most often occur when the CC significantly
decreases the target bitrate. In this case, already queued frames
need to be sent with the decreased target bitrate before frames that
are encoded to match the updated target bitrate are at the front of
the send queue. The temporary mismatch of video and send bitrate
starves the player’s buffer, which proactively lowers the playback
rate to avoid running out of video data. The lower overall bitrate in
the rural area alleviates the just discussed problem and, e.g., allows
GCC to completely avoid 0 FPS situations.

Lastly, we use the FPS data to compute how frequently the video
stalled (defined as an inter-frame time > 300 ms), which is very rel-
evant for the RP use case. SCReAM and GCC produced 0.89 stalls/min
and 1.37 stalls/min, respectively, while the video that was transmit-
ted at a static bitrate experienced 0.11 stalls/min. These results are
aligned with the analysis of FPS deviations and together highlight
the negative effect of the adaptive bitrate adjustment.

Overall, our analysis highlights that video can be transmitted at
a bitrate of up to 25 Mbps if the MNO provides sufficient resources.
Nevertheless, even 8 Mbps fulfills the bitrate requirements of a
full-HD video, while 25 Mbps can even enable 4K streaming [30].
The occurrence of FPS deviations that can be classified as video
stalls indicates problems that must be solved to ensure a smooth and
reliable video stream for the safe operation of remote vehicles. Next,
we elaborate on the achievable playback latency while delivering
video in the air.
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Figure 7: Adaptive video delivery performance in the urban and rural environments. GCC and SCReAM deviate from 30 FPS more
often than static delivery due to sudden target bitrate decreases. While SCReAM manages to minimize SSIM drops below the
quality threshold in both environments, its playback latency performance is unacceptable in the well-provisioned urban
environment. GCC on the other hand fails to achieve a low playback latency in the rural area.

Takeaway — The aerial bitrates enable the delivery of high-quality
video for RP operations and the static transmission method
demonstrates stable playback rates. The performance of the CCs,
however, shows room for improvement with more severe FPS
deviations and more frequent video stalls.

4.2.2 Video Playback Latency Analysis. Figure 7(c) shows the play-
back latency during measurements, which remains less than 200 ms
under stable conditions. The main latency contributors are the one-
way network latency (≈ 50 ms) and the RTP jitter buffer (≈ 150 ms).
Depending on the bitrate control method, the playback latency
threshold of 300 ms could be achieved 30–90% and 55–85% of the
time in the urban and rural locations, respectively.

In the urban location, GCC is able to maintain the playback latency
threshold of 300 ms for ≈ 90% of the time and performs similar
to the static bitrate transmission. The link capacity in the urban
area provides sufficient headroom to maintain a static 25 Mbps
video transmission with low playback latency. SCReAM, however,
performs significantly worse when compared to the other methods
in the urban location; the playback latency threshold is only met
≈ 38% of the time. We find that the playback latency during SCReAM
transmissions exhibits high fluctuations and occasionally remains
at a plateau of around 1 s for a longer period. We suspect the culprit
of those plateaus to lie within the player pipeline as the CC and
network metrics do not show unusual values: the sending rate and
network latency remain relatively constant while no losses occur.
The RTP jitter buffer in the player pipeline that controls the video
buffer timing is most likely at fault. We cannot pinpoint the issue
more precisely and do not have a convincing explanation of why
the other transmission methods do not trigger this behavior. On the
other hand, we observe that SCReAM is effective at quickly reducing
the playback latency by discarding the queued RTP packets.

We observe that the two CCs perform differently, depending
on the available link capacity. While SCReAM remains below the

latency threshold only ≈ 30% of the time in the urban area where
25 Mbps transmissions are supported, this rate increases to ≈ 85%
in the bandwidth-constrained rural area. The playback latency of
GCC, however, has the opposite relationship with the transmission
bitrate. In its current state, GCC is therefore more suitable for RP
scenarios that require high bitrates, e.g., 4K video at 20–25 Mbps,
whereas SCReAM could rather support lower video qualities.

We find that the playback latency is mainly determined by the
network latency and present a section of a video transmission
that demonstrates this influence in Figure 8(b). An increase of the
network latency above the RTP jitter buffer size of 150 ms causes the
playback rate to decrease and the playback latency to increase. The
decrease of the network latency is accompanied by a normalization
of the playback latency. Another cause of playback latency spikes
are packet losses which only rarely occur in cellular networks due
to mechanisms like Hybrid Automatic Repeat Request (HARQ) and
deep buffers [33] but multiple consecutive packets drop if they fail.

We observe that network latency spikes often occur just before
an HO. This correlation can be observed in Figure 8(a), which
shows one of the HO events from Figure 8(b) on a narrow x-scale.
In our measurements, some HO events cause the playback latency
to increase to 900 ms. The spikes usually occur ≈ 0.5 s before HOs
and last ≈ 1 s until the network latency is again stable around
50 ms, as shown in Figure 8(a). Other studies [43, 44] find similar
correlations between HO events and spikes in the network latency.

To determine the impact of the HO events on the network la-
tency, we analyze the ratio of the maximum-to-minimum latency
in the 1-second time window before and after HOs, as visualized
in Figure 8(a). The resulting maximum-to-minimum latency ratio
in these time windows from all HO occurrences during flights is
shown in Figure 9. Before an HO occurs, the maximum latency on
average becomes 8 times higher than the minimum latency in the
same time window. After an HO, the ratio is ≈ 5 on average. Some
spikes can increase the before-HO ratio to more than 15 and even
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Figure 8: (b) Correlation between the playback latency, network latency, packet losses and handovers during one of the flights
with GCC. Network latency experiences spikes during HO events and consequently, playback latency also increases when
network latency goes above 200 ms. (a) Before and After Handover time windows around a handover instance from (b). By
computing the maximum-to-minimum network latency ratio in these time windows during every HO events from all flights,
the magnitude of the spikes on the network latency is quantified in Figure 9.
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Figure 9: Maximum-to-minimum latency ratio before and
after aerial HOs. The latency ratios are computed in 1-second
time windows (see Figure 8(a)). The plot shows that the la-
tency spikes that occur before HOs increase the latency on
average 8 times, whereas this ratio is≈ 5 on average after HOs.
Some outliers increase the before-HO ratio up to 37 times.

up to 37. The increased aerial HO frequency exacerbates the issue
of temporarily degraded playback latencies due to network latency
increases prior to HOs.

In summary, the playback latency is kept below 300 ms for as
much as 90% and 85% of the time during our measurements in the
urban and rural areas, respectively. These video playback latencies
are among the lowest when compared to other papers that worked
with cellular links, even though we transmit at up to 25 Mbps.

Takeaway — The playback latency can be kept < 300 ms under
stable conditions which is promising for the RP use case. This
threshold is however not always met and CCs and video pipeline
improvements are required. The network latency spikes that HOs
cause are challenging for stable low-latency video delivery.

4.2.3 SSIM Analysis. We calculate the SSIM index to evaluate the
quality of the received frames at the player by comparing them
frame-by-frame in post-processing with the source video frames.
The SSIM score ranges from 0 to 1, where 1 is reached if the source
and received frames are identical and 0 if the frame was not played.
The SSIM is closely correlated with the bitrate at which the encoder
operates; a higher bitrate target allows the encoder to keep more
detail in each frame. However, the SSIM is also sensitive to packet

losses, which cause visual artifacts in the output of the video de-
coder. We consider frames with an SSIM score of 0.5 or higher to
meet the video quality requirements of RP. This threshold only
applies to the video that we use in our tests and is based on our
subjective measure of the quality of the received video.

Figure 7(b) shows the overall SSIM performance from our mea-
surements. In our urban tests, SSIM stays above ≈ 0.9 for 90% of
the time while this measure reduces to ≈ 0.8 during our rural tests.
In both environments, the SSIM threshold of 0.5 cannot be met
for ≈ 0.37–19.09% of the time depending on the video delivery
method. In practice, this result indicates the percentage of the time
during which the remote pilot does not receive video with sufficient
quality to maneuver the UAV safely. Hence, the selection of the
video transmission method plays a significant role in minimizing
the video interruptions caused by insufficient video quality.

In our urban measurements, we observe a benefit of the adaptive
bitrate transmission methods in minimizing video quality inter-
ruptions (SSIM score < 0.5). SCReAM is able to minimize the video
interruptions to 1.63% while those occur 16.93% of the time with
static bitrate transmissions. GCC has more video quality inter-
ruptions but less playback stalls in the bandwidth-limited rural
test area compared to the urban environment. The video quality is
impaired by artifacts that are caused by packet losses.

Overall, the findings highlight that sufficient quality to properly
perform RP could be achieved up to 98.27% and 99.63% in urban and
rural locations, respectively. In our comparison, SCReAM is overall
most successful in reducing the SSIM outliers in both environments.
The low aerial video interruption rates are already promising but
need to be avoided entirely to support safe RP operations. Next, we
discuss our findings and elaborate on their practical implications
for the real-life implementation of high-quality video delivery for
RP operations.

Takeaway — High-quality video delivery can be maintained up
to 99% of the time. The selection of the video delivery method
has a significant impact on minimizing the disruptions due to
insufficient video frame qualities.
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Analysis Overview. Our measurement analysis suggests that up to
25 Mbps stable video delivery at altitudes up to 120 m is achievable
if the MNO provides sufficient resources. Such achievable bitrates
can support full-HD streaming and provide high-quality video for
RP operations. However, the observed FPS stalls and fluctuations
during measurements indicate disruptions in video transmission,
which can severely degrade the pilot’s capabilities to control a UAV.
Furthermore, our SSIM analysis reveals that there is still an open
room for improvement to maintain sufficient quality on the received
frames to ensure high-quality video > 99.999% of the time. The RTP
jitter buffer size can be adjusted to reduce playback latency further.

5 DISCUSSION
Analyzing cellular performance without visibility into low-
level RAN operation. Measurement studies utilizing cellular net-
works as an access technology in the wild are tasked with accurately
correlating changes in the underlying cellular last-mile link to ap-
plication performance impact [36]. The problem, however, is not
straightforward since network subscribers only have limited in-
sight into the cellular network’s configuration, usage, and behavior.
While we record and utilize the LTE RRC messages in our analysis,
we lack information about the network’s internal configuration
parameters, cross-traffic, and communication channel resources.
The impairment in visibility limits our analysis, specifically to ac-
curately correlate between network characteristics and the drone
location, height, speed, and, more importantly, the performance of
the video streaming pipeline. Future research can consider cross-
traffic and how the variance in LTE performance arising from peak
hours might influence video delivery performance. Furthermore,
due to the weight and power restrictions, we could not include a
channel sounder in our payload to accurately measure the signal
and interference levels. Moreover, the Long Term Evolution (LTE)
dongles that we use only report the signal strength in one-second
intervals, which we find too coarse to correlate with application
performance and draw meaningful conclusions.
Generality of measurements and analysis. Our measurement
methodology included an urban metropolitan and a rural location
to be as generic and geographically independent as possible. Our
urban and rural measurements demonstrate the LTE performance
in locations with contrasting properties in RF environment and
the density of base station deployment. In this sense, our urban
location represents an ideal cellular deployment for RP operation
with dense base station deployment and abundant coverage. On
the other hand, our rural measurements act as an extreme case
for RP with limited base station availability. Furthermore, we also
used LTE connections from two different MNOs in our measure-
ments to avoid operator-dependency (see Appendix A.3 on the
performance comparison of different MNOs). Hence, we aimed
to generalize our findings by presenting the performance under
best and worst-case scenarios in terms of locations, and provide
an operator-independent analysis. Nevertheless, cellular coverage
and configuration may vary in other geographical locations, result-
ing in different operational experience [19]. Further research can
evaluate scenarios with different operators in different locations
and countries to obtain more generalized findings. Furthermore,
replicating the RP application on a controlled testbed that allows

granular simulation/emulation of cellular networks would enable
researchers to (i) investigate the impact of different configurations
on application performance and (ii) surpass the many challenges
of conducting aerial measurements in real-world. In the future,
we would also like to evaluate the RP performance with increased
traffic in the airspace sharing the same cellular link.
SWaP requirements of UAVs. The small-scale UAV platforms
have challenging Size, Weight and Power (SWaP) requirements that
affect the video delivery setup. An early version of our measure-
ment setup used small-scale and power-efficient RPis to stream
video and relied on the hardware video encoding capabilities. How-
ever, the hardware encoder could not maintain a constant frame
rate, which forced us to migrate to considerably larger Intel NUCs
with laptop-grade CPUs. The Intel hardware encoder—accessible
through the Video Acceleration API (VA-API)—outputs frames reli-
ably but at a relatively high and unstable encoding latency. After
multiple trials, we used an H.264 software encoder with the NUCs,
which could consistently output video at low latency. However,
the encoding performance comes at the cost of significantly higher
energy consumption than a hardware-accelerated solution, which
limited the number of consecutive flights we could perform. We
hope our findings serve as helpful inputs for researchers planning
to conduct measurements using UAVs in the future.
Mitigating influence of HOs on RP. We observe that network
latency frequently spikes before HOs – affecting the end-to-end
playback latency. Several methods could lessen the impact of HOs
on video transmission performance. Firstly, the hysteresis margin
for the change in link quality and the time-to-trigger parameters
for time intervals are basic configuration options that control the
trigger time of HO events. These parameters can be optimized for
aerial scenarios to (1) minimize the frequency of HOs in the air
and (2) avoid unnecessary ping-pong HOs (as shown by [59]) that
we also observed in our rural measurements. Secondly, the novel
HO mechanism Dual Active Protocol Stack Solution [4] introduces
a make-before-break link establishment architecture. In contrast
to break-before-make methods, they avoid link disruptions in the
air and could hence remove the observed latency spikes. Finally,
other studies that also observed latency spikes around HOs in LTE
(e.g. [43, 44, 49]) report that such spikes are largely missing in 5G
stand-alone deployments. These findings suggest that relying on
5G instead of LTE might improve video delivery. We aim to explore
these findings in future iterations of this work.
Impact of infrastructure operator. To understand the impact
of different cellular infrastructure operators on performance, we
performed several experiments using an LTE connection from a
competing operator (P2) in the rural region and the default opera-
tor used throughout our study (P1). While the BS density of both
operators is quite similar in our urban test area, P1 has significantly
less density in the rural region. Consequently, P2 experiences more
frequent HOs and offers us a higher bandwidth capacity in the
rural region compared to P1, as shown in Figure 10. Therefore, the
available infrastructure of the operators in the region of interest
can significantly impact the achievable video delivery performance.
Readers should refer to Appendix A.3 which elaborates further on
the performance comparison between the video delivery over both
network operators.
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Figure 10: (a) Comparison of the achievable throughput and
(b) HO frequency from two competing operators in the rural
region.

Supporting low-latency video delivery for RP. Our results show
that many requirements of the RP use case, especially concerning
low-latency video delivery (target playback latency), can already be
supported by LTE (and shows promise in 5G). However, several chal-
lenges remain to be tackled. Firstly, safety-critical RP applications
can demand dedicated network resources and very high network
availability (99.999% [12]), where network slicing can be the en-
abler. Additionally, optimizing deep network queues for video traffic
transmission can mitigate the late arrivals that cause large latencies
over short periods and result in significant performance gains [20].
Significant research in improving bufferbloating within cellular
networks through smart queue management schemes already ex-
ists [15], which might prove beneficial for RP. Utilizing in-network
computation to perform pre-processing of video and control stream
within cellular infrastructure also shows promise [18, 21, 38, 39].
Moreover, utilizing multiple access links towards the ground sta-
tion, e.g. multiple cellular operators or satellites, through multipath
transport (such as MPTCP or MP-QUIC) can help improve the re-
liability of transmissions when one of the underlying networks
is experiencing deteriorations [7, 40, 49]. Furthermore, the adap-
tive video CC algorithms can be further improved to reduce their
sensitivity towards fluctuations over the last-mile wireless, and
the ramp-up phase could be shortened to ensure seamless video
playback. We explore extension possibilities in Appendix A.4.

6 CONCLUSION
Due to the technological advancements in automation and emission-
free operations within the aviation industry, several use cases incor-
porating Unmanned Aerial Vehicles (UAVs) have gained popularity
in recent years. The most prominent amongst them is Remote Pilot-
ing (RP) UAVs over a network, which is a cornerstone of applications
within the medical, military, and logistics sectors. In this work, we
conducted an extensive measurement study investigating the state

of current cellular standards for supporting the stringent opera-
tional requirements imposed by RP. Specifically, we performed ≈ 90
UAV flights, at altitudes up to 120 m, in an urban and rural area in
and around a large metropolitan European city (Munich, Germany)
and measured the performance of a video stream from the drone to
a remote server over LTE. We used two different Congestion Con-
trol (CC) algorithms for adaptive streaming, namely Self-Clocked
Rate Adaptation for Multimedia (SCReAM) and Google Congestion
Control (GCC), and correlated the results of their performance to a
constant bitrate stream and changes in the underlying network con-
ditions as the UAV performed common RP maneuvers. Our results
show that the cellular network becomes increasingly unpredictable
in the air, experiencing more frequent Handovers (HOs) and exces-
sive Handover Execution Times (HETs). However, the performance
is significantly dependent on the Base Station (BS) coverage, as
we found negligible impact on video stream performance in urban
areas compared to rural. We also found that low-latency video de-
livery between full-HD and 4K resolution can be maintained up
to about 95% of the time in the air over LTE, and sufficient video
quality for RP can be maintained up to 99.63%. In this case, it might
be beneficial to utilize adaptive streaming in rural environments
where link capacity is usually a bottleneck due to lack of available
BSs. Our findings showcase that already-existing cellular infrastruc-
ture (read LTE) can be utilized for RP operations without needing to
deploy dedicated infrastructure to provide connectivity (up to 120
m altitude), provided abundant cellular coverage exists. However,
HO parameters and the core networks must be optimized for RP
traffic to meet the stringent Quality of Service (QoS) requirements
with sufficient network resources. In this case, utilizing techniques
such as network slicing show promise and might have a crucial
role in widespread support of the use case in the future. Our results
also indicate a potential for multipath networking (utilizing parallel
links to multiple BSs simultaneously), motivating further research
in this direction.
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A APPENDICES
A.1 Ethics
We conducted the UAV flights following the relevant laws and
regulations. We also ensured a safe distance between the flying
UAV and bystanders. We conducted our experiments with unaltered

and commercial modems over the cellular network of two public
mobile network operators. Furthermore, we contacted the network
providers and got permission to access their network in-flight. This
work does not raise any ethical issues to the best of our knowledge.

A.2 Flight Trajectory during Measurements
Figure 11 shows our flight trajectory. We designed this trajectory
to represent the basic movements of UAV during takeoff, landing,
and cruise. In each flight, we lift off and fly vertically up to 40 m,
complete a horizontal leap of ≈ 200 m and repeat this procedure at
80 m and 120 m. After the last leap at 120 m, we descent straight
down to the takeoff location. Overall, our air time per flight is ≈ 6
minutes.

A.3 MNO Performance
Figure 12 shows the diversity in available link capacity from differ-
ent MNOs and its influence on the achievable video delivery perfor-
mance. Note that operator P1 is the default MNO used throughout
our study while operator P2 is a competing provider in the re-
gion. However, P2 connection offered us a larger bandwidth cap
(500 Mbps downlink + 50 Mbps uplink) compared to P1 (300 Mbps
downlink + 50 Mbps uplink). Also note that while P1 and P2 had
similar deployment density in urban region, the density of P1 is
significantly less compared to P1 in rural region.

As the operator P2 provided more link capacity than that of
P1, achieved goodput rates over both operators significantly differ
in Figure 12(a). Consequently, the quality of the received frames
could improve as can be seen in the Structural SIMilarity (SSIM)
analysis in Figure 12(d). However, larger capacity did not neces-
sarily improve the playback latency and Frames Per Second (FPS)
performance since SCReAM performed significantly poorer with the
operator P2 at higher bitrates. This is mainly due to the limitation
on the acknowledgement mechanism of SCReAM at high bitrates as
we discuss in Section 4.2.1.

~200 m
40 m

80 m

120 m

Figure 11: The flight trajectory of our experiments.
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Figure 12: The video delivery performance with respect to Mobile Network Operators (MNOs) in the rural environment. This
analysis highlights the influence of available link capacity of the MNOs on the achievable video delivery performance.
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Figure 13: The RTT measured by ICMP pings at different altitudes in the (a) urban and (b) rural environments without cross
traffic. No clear trend is discernible below 100 m. Above that, the proportion of high RTT outliers increases.

A.4 Potential Video Pipeline Improvement for
Future Studies

The GStreamer components that constitute our video pipeline op-
timize for a pleasant viewing experience under link congestion.
The playback speed reduces proactively when the video buffer runs
low to avoid freezes and sudden playback speed changes. Once the
delayed packets arrive, the playback speed increases to cut down
on the elevated playback latency until the baseline is reached again.

For RP operations, a different strategy might be better suited. In-
stead of manipulating the playback speed, the pilot could always see
the most recently recorded frame as it contains the most relevant
information. Such an operation could be possible by setting the
“drop-on-latency” property on the rtpjittbuffer element in our
GStreamer pipeline that drops all frames older than a threshold
from the buffer. This property might decrease the time it takes the
playback latency to come down to the baseline after a playback
latency spike. The decision over how to buffer and play frames
should be based on evaluating the pilots’ needs.
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