
DICer: Distributed Coordination for In-Network Computations
Uthra Ambalavanan

uthra.ambalavanan@de.bosch.com

Robert Bosch GmbH, Bosch Research

Germany

Dennis Grewe

dennis.grewe@de.bosch.com

Robert Bosch GmbH, Bosch Research

Germany

Naresh Nayak

naresh.nayak@de.bosch.com

Bosch Research, Robert Bosch GmbH

Germany

Liming Liu

fixed-term.liming.liu@de.bosch.com

Robert Bosch GmbH, Bosch Research

Germany

Nitinder Mohan

mohan@in.tum.de

Technical University of Munich

Germany

Jörg Ott

ott@in.tum.de

Technical University of Munich

Germany

ABSTRACT
Application domains such as automotive and the Internet of Things

may benefit from in-network computing to reduce the distance

data travels through the network and the response time. Informa-

tion Centric Networking (ICN) based compute frameworks such as

Named Function Networking (NFN) are promising options due to

their location independence and loosely-coupled communication

model. However, unlike current operations, such solutions may ben-

efit from orchestration across the compute nodes to use the available

resources in the network better. In this paper, we adopt the State

Vector Synchronization (SVS), an application dataset synchroniza-

tion protocol in ICN, to enhance the neighborhood knowledge of

in-network compute nodes in a distributed fashion. As such, we de-

sign distributed coordination for in-network computation (DICer)
that assists the service deployments by improving the resolution of

compute requests. We evaluate the performance of DICer against
NFN and observe an increase in the resource utilization at the edge

and a reduction in the request completion time.

CCS CONCEPTS
•Networks→ In-networkprocessing;Networkmanagement;
Network control algorithms; Network design and planning
algorithms;

KEYWORDS
Distributed Coordination, Named FunctionNetworking, In-Network

Compute, Synchronization Protocols

ACM Reference Format:
Uthra Ambalavanan, Dennis Grewe, Naresh Nayak, Liming Liu, Nitinder

Mohan, and Jörg Ott. 2022. DICer: Distributed Coordination for In-Network

Computations. In 9th ACM Conference on Information-Centric Networking
(ICN ’22), September 19–21, 2022, Osaka, Japan. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3517212.3558084

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICN ’22, September 19–21, 2022, Osaka, Japan
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9257-0/22/09. . . $15.00

https://doi.org/10.1145/3517212.3558084

1 INTRODUCTION
Next-generation networked applications, such as autonomous vehi-

cles, Augmented Reality and Virtual Reality (AR/VR), the Internet

of Things (IoT), etc. are characterized by their demand for transmis-

sion of huge volumes of generated data that need to be processed

within strict latency bounds [18]. Such demands are further chal-

lenging in mobile scenarios where the underlying network and

user location can be dynamic and unpredictable. Take, for example,

Electronic Horizon [7] – an autonomous vehicle application realized

today as a cloud-based virtual sensor that aggregates information

from several sources such as road topography, and traffic conditions,

or weather forecasts, etc. The benefits of centralization using cloud-

based infrastructures, such as elastic scalability and low resource

maintenance overhead, come at the cost of significant transmission

times to send sensor data and receive the computed environmental

model from cloud backends [4, 6].

Edge computing is a potential solution that aims to reduce trans-

mission times and conserve network bandwidth by reducing data

transfer volume towards cloud backends [5, 18]. For example, the

ETSI Multi-access Edge Computing [12] standard introduces com-

pute resources at the edge of the communication infrastructure

enabling the execution of applications/services at the edge, closer

to the consumers. However, provisioning the right application at

the right edge server is a non-trivial problem that challenges ser-

vice deployment and network management – especially in mobile

scenarios where the end-users frequently (dis-)connect to the com-

munication infrastructure [10].

Popular orchestration frameworks, such as Kubernetes [3], al-

ready support the distributed service deployment and management

of cloud-native applications. With the advent of edge computing,

such existing frameworks are being increasingly adopted for or-

chestrating services within edge infrastructures (e.g., KubeEdge

[9], KubeFed [1], etc.). However, their inherent dependency on cen-

tralized state management (e.g. in Kubernetes off-shoots – etcd)
challenges the placement of the cluster controller at the resource-

constrained network edge [13]. Furthermore, such infrastructures

make strong assumptions regarding the heterogeneity, geographi-

cal distribution and availability of underlying infrastructure, which

further challenges the effective utilization of resources [19, 28].

An alternative to the centralized architecture may be explor-

ing fully distributed in-network computing solutions based on

data-oriented networking, such as Information-Centric Network-

ing (ICN). ICN is inherently beneficial for service computations

45

https://doi.org/10.1145/3517212.3558084
https://doi.org/10.1145/3517212.3558084

ICN ’22, September 19–21, 2022, Osaka, Japan Ambalavanan et al.

at the edge since it supports location-independent addressing, a

loosely coupled communication model and in-network caching

[29]. Systems such as Named Function Networking (NFN) [25],

Named Function as a Service (NFaaS) [14] enhance ICN by pro-

viding direct access to computations and dynamically generated

compute results in the network. The compute request queries are

expressed with name-based addressing such as λ-expressions in
NFN and QoE-specific application classes in NFaaS, which are re-

solved by the resolution engine at the forwarding nodes. While

the decentralized resolution of the suitable compute node helps to

dispatch requests quickly, the local decision-making at every ICN

node in the network may result in sub-optimal resource utilization

due to a lack of broader network knowledge [24]. We argue that

the decision-making of resolution engines can be significantly im-

proved by augmenting the local knowledge to broader scope while

retaining the benefits of using ICN based compute frameworks.

In this paper, we present DICer - a DIstributed Coordinat-ion
mechanism to assist the resolution of in-network computations

using the State Vector Synchronization (SVS) [20] solution in a

distributed architecture. SVS is proposed for application dataset

synchronization for the ICN architecture - Named Data Network-

ing (NDN). DICer strives for improving the service placement at

compute nodes by identifying unresolved yet popular function

requests and instantiating them on off-path nodes with available

compute resources, balancing the load between compute nodes.

This is achieved by the augmented neighborhood knowledge of res-

olution engines. NFN is chosen as a basis for evaluating DICer. Our
implementation and evaluation of DICer via network simulations

also shows improvements in request completion time compared to

the default behavior of NFN.

2 BACKGROUND AND RELATED WORK
In this section, we present the technical background on Named

Function Networking (NFN) and the building blocks of State Vector

Synchronization (SVS) protocol.

2.1 Named Function Networking (NFN)
Named Function Networking [25] extends NDN by providing dy-

namically access to generated compute results. While consumers

in NDN get access to static data using content identifiers such as

naming schemes, NFN provides access to compute results by ex-

pressing a compute workflow using the λ-calculus. An example of

an NFN workflow for fetching the word count of an input file can

be as follows.

func/word_count(data/input_file.txt)

Such λ-expressions are reduced and resolved to suitable compute

nodes using the NFN resolution engine in the forwarding plane of

every NFN node.

The NFN resolution engine performs different decisions based

on the availability of function and data objects [27]. Each node

forwards the compute request upstream if neither the function to

execute nor the data to apply the function over is locally available.

If the function or data is available, the node fetches the missing

object, executes the computation, and responds with the computed

result. If both function and data are available, the execution starts

immediately. Figure 1 illustrates the different steps of the NFN

NFN
node 1

compute
consumer

NFN
node 2

NFN
node 3

I1: f1(d1)
I1: f1(d1) I2: fetch(d1)

D2: content(d1)

D4: code(f2)

D1: f1(d1)

D3: f2(f1(d1))

I4: fetch(f2)

execute

f2

execute

f1

Interest packet

Data packet

I3: f2(f1(d1))

D1:f1(d1)

f1
d1

f2

Figure 1: Named FunctionNetworking: A consumer requests
the network for a compute result, the NFN resolution en-
gine at the compute nodes decide to either forward, fetch
data/function code or execute depending on the local node
knowledge [25].

resolution engine. The presence of data and function objects is

mentioned above each node.

NFN node1 forwards Interest I1 upstream due to lack of function

f1 and Data d1. NFN node2 which has the function f1 fetches the

data d1 (known as data drag). Once the data d1 is available at node2,
it executes and responds with an NDN Data packet R1 containing
the result. Node1, on path to the consumer, stores a replica of R1 for
subsequent requests. In case such request (here I3) reaches node1,
it has already the data and will drag the byte code for function f2.
Finally, NFN node1 executes the computation and responds back

with the result (here: R3). The decisions to fetch content or functions
are performed locally and independently at any forwarding NFN

node within the resolution engine.

Though quick, flexible and scalable in making forwarding deci-

sions, the resolution engine lacks the knowledge of the network

at large, hence taking sub-optimal local decisions that favor the
node instead of the network or consumers. For instance, node 2
decides to fetch the data unaware of its size and lifetime, instantiate

and execute the function. Node 2 is also unaware of the resource
availability at node 3 (which also has an instance of the function

already running), resulting in unnecessary network and compute

resource utilization (refer Scherb et al. [24] for further limitations

of NFN in IoT scenarios).

2.2 State Vector Synchronization in NDN
Several synchronization protocols have been proposed in ICN for

synchronizing content across distributed applications (refer Moll et

al. [21] for a survey on synchronization protocols in ICN). Typically,

the proposed solutions consist of three building blocks: (i) data
representation model – to represent the latest dataset, (ii) protocol
workflow – to exchange the datasets across all relevant parties, and

46

DICer: Distributed Coordination for In-Network Computations ICN ’22, September 19–21, 2022, Osaka, Japan

userA

seq=100

userB

seq = 47

userC

seq = 75

Periodic Sync Interest

Periodic Sync Interest

Update Fetch Interest

Update Fetch Data

/groupABC/<userA:100,userB:47,userC:75>/

/groupABC/<userA:100,userB:48,userC:75>/

userB/groupABC/48/

Data : userB/groupABC/48/

userA userB

 100 47
 99 46

… …

userB userC

 47 75
 46 74

… …

userA userC

 100 75
 99 74

… …

Figure 2: State Vector Synchronization [20].

(iii) naming scheme proposals – to provide access to datasets and to

map the protocol flow.

In this work, we utilize the State Vector Synchronization (SVS)

protocol at the core of our system design. SVS is a simple, light-

weight protocol allowing periodic and event-triggered notifications.

SVS also enables the storage of historical updates for data recovery.

We now present the three building blocks corresponding to the

SVS protocol: the data model, the SVS protocol flow, and naming

schemes.

SVS Data Model. SVS introduces a vector-based data model in-

spired by Vector Clocks [8] to store states between different entities

in the network. The vector contains an identifier for each subscrib-

ing entity (e.g., the application or user) and a sequence counter

indicating the number mapped to the latest published state change

at each entity within the vector. Such a structure allows all par-

ticipants within a group to keep track of changes for every other

participant.

SVS Protocol Flow and Naming Conventions. SVS combines

aspects of the protocol flow and the naming schemes. To share the

vector across participants, SVS describes synchronization groups

comprising of all potential members using a common multicast

group prefix ("groupABC" in Figure 2written in blue). This prefix can
be configured a-priori or negotiated between the group members.

Besides the regular Interest/Data packet for data/compute queries,

SVS introduces a Sync-Interest packet to notify group members

regarding state changes. Sync-Interest packet does not expect

any response in return.

The semantics of Sync-Interest include the multicast group

prefix followed by a vector of entity-specific prefixes and their

corresponding sequence counters denoting the latest changes. Fig-

ure 2 shows an example of Sync-Interest packets periodically

multicasted. The second notification is initiated by userB to up-

date the members of groupABC of the change corresponding to

sequence number 48. Every group member stores the history of

vectors, including the member prefix and its sequence counter in

its datastore. Changes communicated in Sync-Interests are eval-

uated by each member against their locally stored state. In Figure.

2, userB’s changes at the local state of userA and userC is only

until sequence number 47. Hence the members userA and userC
need to fetch and update its local state with the latest change from

userB (i.e., sequence number 48). The node queries the latest data

with the Interest/Data exchange procedure of the underlying NDN

architecture (In Figure 2, userA and userC initiate an Interest to

fetch the latest changes from userB).
Compared to other synchronization solutions in the literature,

SVS offers a simplistic and lightweight approach to sharing data

across network participants. Sequential naming and direct compar-

ison of state vectors with the local state for detecting state change

and retrieval is simple yet effective. SVS allows for simultaneous

state change updates with minimum data dissemination delay (1.5

RTT). However, the use of state vectors in Sync-Interests to rep-

resent the entire dataset state challenges the scalability of SVS –

as more members in a group would result in an explosion of the

Interest names. State vector encoding and compression techniques

can help to a limited extent [20].

3 SYSTEM MODEL
We model the network topology as an undirected graphG ≡ (V ,E).
WhileV represents the nodes (end systems along with the network

elements like NFN forwarders) in the topology, E ⊆ V×V represents

the set of edges between these nodes. The set of functions available

in the system is denoted by the set F = (f1, f2, ... fn). Depending
on their compute capability, the nodes in the topology, V , host the

functions, F , to resolve and respond to the NFN compute requests.

The orchestration map,O , represents functions hosted at nodes and

determines function deployment in NFN systems, i.e., O : V × F →

{0, 1}.O(v, f) = 1, if function f is hosted on node v , else it is 0. We

intend to extend this problem to incorporate the placement of data

objects in future work.

3.1 Problem Formulation
The NFN forwarders determine and adapt the orchestration map,

O , based on the function requests passing through them, i.e., local

knowledge. This knowledge scope for NFN resolution engine is

denoted by the blue circles around nodes A, B and C in Figure 3a.

The queue next to the nodes represents its compute resource con-

sumption. In NFN, a compute request "/func1/data1" is resolved

at node C. Since the node B is unaware of the resource availability
at node C, it forwards the request to C when most of its resources

are already occupied with other existing computations.

With DICer, we augment NFN nodes with additional metrics

on current system properties such as resource utilization, function

availability, etc. (represented as P) across the nodes V . We utilize

these metrics to create an improved orchestration map using an

off-the-shelf SVS synchronization protocol. Deployment of syn-

chronization protocols for distributing control plane information

requires the creation of node groups. The information synchronized

between the members varies based on the group’s scope definition.

We model a synchronization group, дi , as a tuple (Vi , ti , Pi). Here,
Vi ⊆ V is the set of nodes in the group, ti is the synchronization

47

ICN ’22, September 19–21, 2022, Osaka, Japan Ambalavanan et al.

(a) Plain NFN compute request processing.
The local resolution engine evaluates the re-
quest and decides to execute or forward it.

(b) DICer allows to form synchronization
groups to enhance local knowledge for reso-
lution by sharing compute and network state.

(c) The enhanced knowledge allows differ-
ent actions at compute nodes, e.g., taking
over the execution of a function.

Figure 3: The system model of the DICer - distributed coordination concept.

frequency, and Pi ⊆ P is the set of properties being synchronized

across Vi . We represent the collection of all the synchronization

groups in the network as SG.
Participating in bigger synchronization groups enables an NFN

node to obtain a broader perspective of the system for better man-

agement of the orchestration map, O . However, the overhead of

such synchronization traffic is directly proportional to the size of

the group and the amount of data being synchronized. Alternately,

restricting the scope of synchronization could result in a lack of

relevant network knowledge for better placement decisions. Hence,

using multiple synchronization groups is beneficial for conserving

network overhead while flexibly gaining neighborhood knowledge.

In DICer, we integrate SVS and deal with the problem of dis-

covering nodes V – determining the creation and scope of syn-

chronization groups (Vi), the metrics that the corresponding group

members exchange (Pi), and the synchronization frequency (ti).
With the synchronized information, DICer presents a coordination

algorithm to achieve improved system performance (e.g., resource

utilization, completion times, etc.).

3.2 DICer in Action
In Figure 3b, nodes B and C form a synchronization group. The

nodes within the synchronization group exchange their node char-

acteristics such as resource utilization, capability to host functions,

functions instantiated, and function-specific information like the

function’s compute requirements, function to data dependency, etc.

This is done with the aid of the SVS protocol as described in Section

2.

The shared knowledge obtained from synchronization groups is

consolidated for taking certain types of actions to execute compu-

tations or share data applied to computations between the synchro-

nized nodes. In Figure 3c, node B is aware of the compute load at

node C after synchronization. During coordination phase, node B
alleviates the compute load on node C by instantiating func1 and
fetching data data1 from node C. Hence, node B equips itself to

resolve the future requests of func1 over data1 with the help of

DICer.
In the following subsections, we describe in detail the different

stages of DICer namely node discovery (V), synchronization group
formation (SG), information sharing (P) and Coordination (altering

orchestration map O). The node discovery and synchronization

group formation phases function asynchronously to find nodes

entering and exiting the network scope dynamically. The informa-

tion sharing happens periodically using the SVS synchronization,

followed by the coordination phase.

3.3 Discovery of Neighbors
To discover other compute nodes in the system and learn their

computational state, DICer defines an active mechanism inspired

by the NDN Named Link State Routing (NLSR) [11] protocol for

discovering forwarders. Compute nodes frequently broadcast dis-

covery messages using lightweight NDN Interest packets with a

DICer specific namespace and provide a node-specific identifier

(e.g. ’DICer/region/site/ nodeID/hello/’). The hierarchical

naming scheme (based on NLSR), for node identifiers enables and

restricts the discovery of nodes to a specific region/site. To avoid

flooding the network, the discovery messages can also be restricted

to a desired hop limit using the underlying NDN beyond which the

Interest is no longer forwarded. The NDN forwarders prevent Inter-

est loops by detecting duplicate discovery Interests from multiple

paths. Additionally, each node maintains the state of discovered

nodes to avoid redundant responses for already discovered nodes.

We also adopt the mechanisms for detecting failures of remote

nodes/links and their recovery from NLSR to DICer.
Each node receiving a discovery Interest from a new compute

node responds back with the Data packet. The Data payload com-

prises the node-specific identifier along with the static properties

of the node such as its compute configuration like CPU, GPU, mem-

ory, storage specifications and network configuration such as the

hop distance and link status, etc. that needs to be exchanged just

once. The nodes receiving the response can also infer the round

trip time taken between the two nodes to estimate the path latency.

Such static information shared during the discovery phase can be

extended flexibly.

3.4 Formation of Synchronization Groups
As the nodes become aware of their neighbors from the discovery

phase, they initiate synchronization group formation with discov-

ered nodes. In DICer, we detect and group nodes based on hop

48

DICer: Distributed Coordination for In-Network Computations ICN ’22, September 19–21, 2022, Osaka, Japan

N1

N2 N3

N4 N5 N6 N7

N1

(N4,N6,N7,N8)(N5,N6,N7,N8)

(N6,N4,N5)(N7,N4,N5)(N8,N4,N5)

(N4,N1,N3,N5)(N5,N1,N3,N4)

(N2,N6,N7,N8)(N1,N4,N5,N6,N7,N8)

(N3,N4,N5)(N6,N2,N1,N7,N8)

(N7,N6,N1,N2)(N8,N1,N2,N6)

One Hop Groups

Two Hop Groups

ree Hop Groups

(N4,N2)(N5,N2)(N2,N1,N3,N4,N5)

(N1,N2,N3)(N3,N1,N8,N7,N6,N2)

(N6,N3)(N7,N3,N8)(N8,N7,N3)

N8

Figure 4: The knowledge scope at nodes obtained from one,
two and three hop groups for an exemplary mesh network
is listed in the table. Subset groups are striked out in red.

distance; for example, we group a node with its one-hop network

neighbors configured a priori. However, the group formation crite-

ria can be abstract and network operator defined, as several other

ways for determining the synchronization scope exist. For exam-

ple, nodes can form groups based on their compute configuration

(hardware support) or their centrality degree. While a highly capa-

ble node can benefit from the information synchronized and opt

into multiple synchronization groups covering a broader network

area, a less capable node can operate in the network while only

synchronizing with its immediate neighbors to react quickly to

local changes. This structure is not unlike Internet as we see today

as transit Autonomous Systems(AS) providers in the core of the

Internet peer with many other ASes and therefore receive BGP

updates from them. On the other hand, serving ISPs in different

countries (like M-Net in Germany) have a large customer cone but

only peer with 1-2 transit ASes.

While synchronization may improve resolution decisions by the

compute nodes, it comes with additional overhead. DICer uses mul-

tiple synchronization groups that operate at different frequencies

and may share information at different granularity to balance the

network overhead while minimizing information loss. In the follow-

ing section, we illustrate the optimization of such groups to avoid

redundant synchronization between the same nodes belonging to

groups with different synchronization scopes.

3.4.1 Group Optimization. Figure 4 illustrates the different syn-
chronization groups of DICer in an example network. Each node

forms groups with neighboring nodes one, two or three hops away.

The shorter the range of the synchronization group (e.g., one hop

groups), the limited the number of nodes within such synchroniza-

tion groups sharing fine-grained information at higher frequencies.

Hence, the nodes within one hop group react to the needs of their

peers promptly since they are well informed of any state updates.

DICer/Node2/ GFP /Node1/SyncGroup1/

DICer
Namespace

Remote
Node ID

Proposed
Group Prefix

Proposer
signatureOperation

S ign-Node1

Figure 5: Group Formation Proposal sent by Node1 for form-
ing a group "Node1/SyncGroup1" with Node2

DICer/Node1/SyncGroup1 /N1-SG1:1,N2-SG1:0/ Sign-Node1

DICer
Namespace

Node Sync
Group Prefix

Publisher
SignatureState Vector

Figure 6: Sync-Interest for update notification at Node1 for
Data name N1-SG1 within Node1/ SyncGroup.

As the scope for synchronization group widens (two and three

hop groups), the number of nodes that become part of such syn-

chronization groups increases – restricting the synchronization

frequency and reducing the granularity of shared information. This

limits the network overhead rooting from large group synchroniza-

tion while minimizing information loss.

Each group listed in the table in Figure 4 is formed from the

perspective of the node that is in the first position in the group

members list. For example, nodes {N2, N1, N3, N4, N5} are in one-

hop group for node N2. Every node group that is a subset of a larger

group is excluded as a synchronization group ((N4, N2) is a subset

of (N2, N1, N3, N4, N5)). Additionally, every group sharing coarse

information is also excluded if the members already form a group

sharing fine-grained details (for instance, a two-hop group (N3,

N4, N5) is excluded as it is already a part of one-hop group (N2,

N1, N3, N4, N5)). Such group optimizations ensure no redundant

synchronizations between nodes – limiting the number of group

prefixes and the network overhead. Note that the synchronization

groups are not restricted to those based only on distance or exclu-

sive topologies. For instance, we could employ groups comprising

safety-certified compute nodes for synchronizing on safety-critical

function deployments. We envision researchers finding other group

creation rules that best allow them to categorize nodes for optimiz-

ing their metrics of interest.

3.4.2 Group Formation. The node intending to form a group

with a neighbor initiates a Group Formation Proposal (GFP) Interest.

Figure 5 shows the Interest packet structure for GFP for forming

a synchronization group between nodes Node1 and Node2. Node1
initiates an Interest with the DICer namespace, followed by the

node it is willing to address (here Node2) using its identifier obtained
during Node Discovery. The Interest is identified as GFP from its

prefix. It is followed by the synchronization group identifier (here

Node1/ SyncGroup1) and is signed by the node proposing the

group formation, here Node1. This prevents unauthorized nodes

from forming groups and fetching node-specific information.

The remote Node2 uses this identifier to look for any existing

groups under a different prefixwith the same node and scope. Node2
as a response to this Interest returns an acknowledgment and the

name of the data that will be synchronized within the group after

a random wait time on the receipt of GFP. If two nodes propose

a group simultaneously, the node receiving the acknowledgment

during this wait time suppresses its acknowledgment. The group is

49

ICN ’22, September 19–21, 2022, Osaka, Japan Ambalavanan et al.

successfully formed when the acknowledgment from the remote

node is received. Therefore, the nodes in a group are aware of the

group prefix and information synchronized within the group. The

group is frequently updated as new nodes are discovered or lost

within the scope.

3.5 Information Sharing
After group formation, the status changes at a node are updated us-

ing SVS periodic synchronizations (see Figure 6). A Sync-Interest
is sent periodically with incremental sequence numbers in the event

of an update. For instance, if a node becomes busy due to a sudden

request peak, the other nodes of the synchronization group are

notified of this change during the periodic Sync-Interest with

increasing sequence numbers as seen from Section 2.2. The nodes

receiving this Sync-Interest may respond with another Interest

to fetch the changes mapped to the notification. The busy node

responds to this interest with its node status such as, functions

instantiated, functions requested, resource availability, etc. Thus,

every node is aware of the other group members’ status, and this

information is used for performing service placement to assist the

resolution decisions of NFN.

The synchronization overhead in DICer specifically arises from

the information sharing phase, which can be reduced by control-

ling the synchronization periodicity and synchronized information.

Additionally, the nodes can refrain from fetching every update

change notification received from other group members. For in-

stance, information exchange within a synchronization group can

be many-to-one, i.e. every node in the group except the competent

nodes refrains from sending the fetch Interest. At the end of this

phase, every node acquires the necessary state information of its

neighborhood.

3.6 Coordination & Decision Making
Different strategies can be employed during coordination based on

synchronized optimization objectives and information. The coor-

dination phase is invoked at each NFN node and local decisions

are made using the enhanced knowledge. In DICer, we design a

coordination algorithm that aims at balancing the compute resource

utilization across different nodes in the network. A node may be

a member of multiple synchronization groups (sд ⊆ SG), and the

synchronized information is aggregated for decision making.

Algorithm 1 presents the pseudocode of the placement algorithm.

We denote the set of functions instantiated at each node as a list

Finst and the compute resource availability as ResAvailnode . Each
compute node can host a limited number of unique functions de-

pending on its memory capacity, denoted by HostCapnode . The
algorithm identifies functions whose requests are unresolved from

each node (FURnode - FunctionUnresolvedRequest at node) and

was forwarded upstream. An NFN node decides to forward a func-

tion request upstream due to either lack of compute resources while

processing the request, or a lack of the relevant function code and

data at the compute node. The algorithm attempts to discover a

node with the required resources and information (here, the func-

tion code) for resolving such requests within the synchronization

group.

Algorithm 1 Distributed Coordination Algorithm

Require:
SG, Finst ,ResAvailnode ,HostCapnode , FUR
Constants : NodeBusyThresh ,NodeFreeThresh

1: function CoordinationPhaseHandler

2: flru = дetLeastRecentlyUsed(Finst)
3: if ResAvailnode ≤ NodeBusyThresh then
4: Finst .pop(flru)
5: else if ResAvailnode ≥ NodeFreeThresh then
6: for ∀ sд ∈ SG do
7: for ∀ дm ∈ sд do
8: if ResAvailдm ≤ NodeBusyThresh then
9: FURnode .push(FURдm)

10: end if
11: end for
12: end for
13: sortDescending(FURnode)
14: for ∀ f in FURnode do
15: if HostCapnode ! = 0 then
16: Finst .push(f)
17: else
18: Finst .pop(flru)
19: Finst .push(f)
20: end if
21: end for
22: end if
23: end function

The algorithm uses thresholds for node resource availability

(ResAvailnode) to identify the compute nodes as busy or free. A

node is busy if the available resources are less thanNodeBusyThresh
(line 3). On the other hand, the node is free if the available resources

exceed NodeFreeThresh (line 5). Busy nodes look for idling func-

tions (flru , the least recently used function) that can be evicted

to save the compute capacity for other more frequently requested

functions. These nodes forward the Interests of evicted functions

upstream instead of resolving them (lines 3-4).

Free nodes identify unresolved function requests locally and at

the busy group member nodes (дm is the group member of sд). They
further aggregate it to FURnode list (see line 6 - 12). This list is

sorted in descending order (line 13) to act on functions that were

frequently requested but rarely executed. If there is an available

capacity to host new functions, the node instantiates them. If not,

the node tries to evict any idling hosted function using the least

recently used (flru) clearing strategy (lines 14-21). This is similar

to the NDN’s content store cache clearing strategy. On eviction

of a popular function at a node by DICer, the FURnode increases
in the upcoming coordination cycle driving DICer to then place

it on that node or its neighborhood. DICer thus maintains the

resource consumption at every node between the NodeBusyThresh
and NodeFreeThresh levels.

The enforcement of DICer coordination decisions that involve

enabling or disabling functions is reflected in routing with the help

of solutions like automatic prefix propagation in NDN [15] which

enables registering and deregistering the prefixes at the forwarders.

50

DICer: Distributed Coordination for In-Network Computations ICN ’22, September 19–21, 2022, Osaka, Japan

Node
Discovery

Group
Management

Nodes discovered
or lost

Information
Sharing

Decision
Enforcement

Coordination
Decisions

Functions Enable/
Disable

No

NoYes

Yes

Periodic
Timeout

Periodic
Timeout

Figure 7: DICer flow of different stages. The flow on left
is the periodic invokation of Node discovery and manage-
ment. This is asynchronous to the flow described on the
right which involves the periodic synchronization, coordi-
nation and decision making stages.

While replicating functions, the forwarders perform load balancing

by with the help of forwarding strategies that forwards the requests

to alternate faces advertising the prefix.

The flow of the above described DICer phases is illustrated in

Figure 7. The flow on the right is the periodic node discovery phase

that identifies nodes entering or leaving the network scope, fol-

lowed by group management phase that reorganizes the nodes to

their respective groups. This flow is asynchronous to the DICer
information sharing and coordination process shown on the right.

If the DICer coordination phase results in decisions to enable or

disable a function, they are enforced before the periodic synchro-

nization is invoked again.

4 IMPLEMENTATION
In order to evaluate DICer against NFN, we implement the algo-

rithm in ndnSIM [17]. ndnSIM is an NDN protocol stack compatible

with the network simulator ns-3 [23]. incSIM is an extension of

ndnSIM supporting the NFN default resolution strategy FoX (Find-

or-Execute) in the forwarding plane [2]. We choose the best route

forwarding strategy, where the compute nodes determine the "best"

execution node for the compute Interests. To implement DICer,
we integrated the open-source SVS module [16] with incSIM. We

also implement the stages of neighbour discovery, synchronization

group formation and termination workflows to support multiple

group synchronization updates between neighbors.

We implement two types of synchronization groups, long-range

and close-range. The long-range synchronization group is created

at each node with every other node present at three-hop distance.

We chose this three-hop distance based on the hierarchical network

topology used in the model. The close-range group is created with

every node and its one-hop neighbours. Since the nodes two hops

away are subsets of one-hop groups, we remove them during group

optimization. The information synchronized during the close-range

one hop synchronization is the node’s resource availability, func-

tions instantiated, function hosting capacity, the list of functions

requested and executed in the previous synchronization cycle and

the list of function requests forwarded upstream. The information

exchanged during the long-range three hop synchronization is ev-

ery node’s aggregate information obtained during its close range

synchronization, i.e., we share the average resource availability, the

most popular and least popular functions at a node and its one-hop

neighbours. This helps in sharing the crucial state of a zone (node

and its one hop neighbors) across the larger network such that the

neighbour zones are aware and prepared to handle a sudden influx

of load for specific functions.

The close-range synchronizatons are invoked at twice the fre-

quency of long-range synchronizations to handle the network over-

head caused by the latter. At every node, the DICer coordination
phase starts right after the completion of the close-range synchro-

nization process. Based on the information obtained during syn-

chronization, the periodic coordination performs a decision that

alters the choice of execution node by NFN resolution engine.

5 EVALUATION
In this section, we present the evaluation setup used in the incSIM
environment to test the performance of DICer system against NFN.

We further present our results comparing DICer with NFN in the

following subsection.

5.1 Evaluation Setup
We evaluate DICer on a 3-tier hierarchical topology network. It com-

prises consumers that generate data as well as request computed

results. The compute nodes, equipped with the NFN resolution

engine, resolve and execute these requests. We use 10-35 compute

nodes to handle the load from 100-700 unique functions invoked by

consumers. The nodes are interconnected by network links support-

ing a bandwidth range of 250Mbps-10Gbps and a propagation delay

of 3ms-200ms (refer [26] for our motivation on network setup). The

popularity of functions at the consumers follow a Zipfian distribu-

tion and are fetched from a central repository at the cloud. These

functions are stateless and monolithic. The execution duration of

functions range from 2 to 6 seconds in order to simulate both short

running and long running functions while simulating sufficient

load in the network. In order to prevent consumers from sending

redundant compute requests, they are requested at 8 seconds inter-

val to account for function execution duration as well as network

delays before a data packet can reach a consumer including long

running functions. However, the consumers request different func-

tions at different time instances to avoid idle time in the network

without request load. The number of functions that the compute

nodes can execute and host in parallel depends on their compute

configuration. Beyond this limit, new functions can be instantiated

only after an existing function terminates. We choose the function

to be terminated based on the Least Recently Used (LRU) clearing

strategy among the idling functions. If all functions have an ac-

tive instance running, the request for computing a new function

is forwarded upstream. A compilation of the network setup and

simulation parameters is presented in Table 1.

The compute request load is distributed amongst the consumers

connected to the two edge sub-networks. The proportion of load

generated by the two subnetworks is determined by the Imbalance

Factor (IBF) in the range of 0 to 1. When the IBF is 0, the compute

51

ICN ’22, September 19–21, 2022, Osaka, Japan Ambalavanan et al.

Parameter Values

Topology 3-tier hierarchical topology [26]

Network links 250Mbps – 10Gbps

no. compute nodes 10–35

no. consumer nodes 100

no. functions 100–700 unique functions

function execution duration 2s–6s

no. data objects 100

cache size 100000
ob ject
node

Request interval R 8s

Close Range sync. interval 2s–50s

Long Range sync. interval 4s–100s

Coordination Interval 2s–50s

Sim Duration 750 seconds

Total no. runs 2700

Table 1: Table presenting the network and function charac-
teristics of the evaluation set up.

load is generated equally from the two subnetworks (no imbalance),

while IBF = 1.0 implies that 100% of the compute load is generated

from one of the two sub-networks, resulting in an imbalance. There-

fore, with IBF-1.0, some of the compute nodes are extremely loaded

while the other nodes are free. An example of an imbalanced com-

pute load would be a university campus network that experiences

a high compute request load during the day while the dormitory

networks are busy in the evenings.

We incorporate the close-range synchronization between nodes

separated by one-hop distance – synchronized at short intervals

(in the range of 2s-50s) for testing the impact of scaleability. On

the other hand, we establish long-range synchronization between

nodes that are 3-hops away, synchronized at intervals twice of

close-range synchronizations. The coordination decision making

is periodically invoked after every close-range synchronization to

ensure the network can quickly adapt to the changes. Our results

in the next section are obtained from ≈ 2700 unique runs.

5.2 Results
We compare the network behaviour with and without DICer. We

evaluate on the metrics - the generated orchestration map, com-

pletion time, DICer’s stability on function placement changes and

scalability of DICer with increasing network topologies and syn-

chronization frequencies in order to understand the merits and

demerits of DICer.

5.2.1 Orchestration Map. As discussed in the system model, or-

chestration map O , shows the functions deployed at each node. To

evaluate the correctness of DICer’s orchestration map, we compare

it against a heuristical placement solution namely the Next Fit De-

creasing (NFiD) algorithm. This algorithm sorts the functions based

on their popularity in descending order as the function requests

follow a zipfian distribution. The sorted functions are deployed

iteratively onto compute nodes starting from the nodes closest to

consumers, in the hierarchical network as long as the resource

Figure 8: Comparison of the Orchestration Map generated
by NFiD, NFN and DICer . The Y-Axis shows the number
of functions deployed in DICer and NFN matching that ob-
tained using NFiD

constraints at the nodes to host functions are met. The functions

are placed only once and are not replicated.

The orchestration map generated by NFiD is compared against

that generated by DICer and NFN. In an imbalanced network, NFN

is unaware of 50% of the compute nodes leaving themun(der)utilized.

The remaining nodes instantiate functions resulting in a map which

is approximately one third similar to that of NFiD’s function de-

ployements. However, DICer is capable of detecting unused com-

pute resources as well as unresolved functions. Thus the orchestra-

tion map generated by DICer is approximately two thirds similar to

that of NFiD. This is shown in Figure 8 for different network scale.

Additionally, DICer also replicates popular functions if the node at

which it is currently deployed is unable to handle all the requests

for the specific function.

5.2.2 Average completion time. The average completion time

is defined as the round trip time since the consumer initiated a

compute request until the receipt of its response. Completion time

is a crucial metric in several safety critical applications that require

lower completion times. The average completion time with and

without DICer can be seen in Figure 9. DICerreduces in the average

completion time compared to plain NFN. This is due to the increased

utilization of resources at nodes closer to consumers that are idle

in the plain NFN scenario due to its lack of knowledge about the

closer, available, off-path nodes in the network. This is evident in a

completely imbalanced network (ibf = 1.0), where one of the two

edge subnetworks is idle while the other is completely loaded. With

a balanced load, there is hardly any deviation in the behavior of

DICer from that of NFN. Additionally, it can be observed that DICer
is more beneficial in reduction of average completion time when

the compute demand is higher with more unique functions in the

networks raising the request load. DICer, with the added neighbor-

hood knowledge, equips the nodes to take informed instantiation

or termination decisions.

5.2.3 Stability of DICer decisions. In order to visualize the re-

action time of DICer and to ensure DICer does not prevent the

52

DICer: Distributed Coordination for In-Network Computations ICN ’22, September 19–21, 2022, Osaka, Japan

Figure 9: Average completion time with NFN and DICer for
imbalance factors (IBF = 0, 1.0). DICer outperforms at higher
loads in an imbalanced fashion (i.e. IBF=1.0).

load profile 1

load profile 2

load profile 3

Simulation Time (s)

C
on

su
m

er
 R

eq
ue

st
 L

oa
d

mid

low

low

high

high

high

low

Figure 10: Function placement changes for different load
profiles to evaluate the stability of DICer vs NFN.

system from reaching a stable placement state, we compare DICer
and NFN (Figure 10) for three different load profiles for a com-

pletely imbalanced network. Load profile 1 is a static load where

the load is constant for the entire duration of simulation. In Fig-

ure 10, NFN and DICer perform placement decisions during the

start of the simulation. The initial number of placement changes

taken by DICer, although stable, is greater than that of NFN. This

is due to better awareness of the network infrastructure leading to

increased decisions to instantiate or terminate services.

Load profile 2 shows a step increase and decrease in load at the

middle of the simulation. NFN nodes have exhausted their host

capacity after the first step increment and the further changes in

the network load doesn’t change the placement unless there are

any idling hosted functions. Hence, even with increase in load,

NFN placement does not change after gaining stability. However,

with DICer, we notice a lot more placement changes taking effect

during the middle of the simulation. The reason for more placement

changes from DICer is due to the knowledge of the requested load

and its efforts to spread them among the busy and free compute

nodes. DICer takes longer to stabilize due to the delay in detection

of busy/free nodes. Once the load is balanced across all nodes, the

stable placement state is obtained.

Load profile 3 shows a gradually increasing load, followed by

stable load and a gradually decreasing load. The behavior between

DICer and NFN are quite similar except for the scale of placement

changes. The increase in placement decisions at both NFN and

DICer is due to increase in termination of idle functions as the load

gradually decreases.

Figure 11: Scaleability of DICer with increasing network
scale and synchronization intervals.

5.2.4 Scaleability. We also analysed the impact of synchroniza-

tion frequency on the overhead of DICer on the network most of

which comes from Sync-Interest and Sync-Data packets. The

number of Sync-Interests and Sync-Data and the size of each

are related to the number of nodes in each synchronization group

as well as the synchronization frequency. Every cycle of update

notification and retrieval involves transmitting two Interest pack-

ets and one Data packet. Currently, with periodic synchroniza-

tion, excluding the discovery and group management overhead,

six interest-data exchanges occur for every link connecting nodes

for each synchronization update. The shorter the synchronization

interval, more quick DICer is to react to changes in network load

at the cost of increased network overhead. The decreasing syn-

chronization interval shows a linear trend on the network traffic

while the increasing number of compute nodes resulting in bigger

synchronization groups shows a quadratic relation to the network

overhead as seen from Figure 11.

5.2.5 Influence of synchronization interval. In order to evaluate

the influence of synchronization interval on the completion time,

we evaluated by varying the intervals from 2s to 50s on a network

with the number of compute nodes ranging from 10 to 35 nodes.

The lowest interval of 2s is chosen based on the lowest execution

duration of the functions requested by consumers. It is observed

from Figure 12 that with increasing compute nodes in the topology,

the average completion time reduces for both NFN and DICer (from
6.1s with 9 nodes to 5.4s with 33 nodes) as more resources are avail-

able for computing. It is also seen that at higher synchronization

interval (50s), the performance of DICer degrades and the comple-

tion time approaches closer to that of NFN, although never worse

than NFN. At lower sychronization intervals, the completion time

reduces and drops at its lowest at an interval of 5s. Reducing the

synchronization interval below that has a negative impact on the

completion time. At such low intervals, the synchronization over-

head on the network is significant impacting the compute traffic.

With more number of nodes in the topology, gradient of increase

in completion time at 2s is steeper.

53

ICN ’22, September 19–21, 2022, Osaka, Japan Ambalavanan et al.

Figure 12: Performance of DICerwith different synchroniza-
tion intervals and network scale.

6 DISCUSSION AND FUTUREWORK
Coordination Algorithm : The current DICer algorithm only

alters the placement of functions in the network. In the future

iteration, the algorithm could be extended to gain knowledge of

data distribution in the network and perform decisions as per the

size and popularity of both data and functions. This would allow

the nodes to decide whether to push/pull function or data for more

efficient network usage.

Other ICN based in-network compute solutions : The cur-
rent DICer system is currently implemented and evaluated against

NFN. With regards to other ICN based in-network compute solu-

tions like NFaaS, the focus on coordination algorithm as well as the

information synchronized can be extended or modified accordingly.

For instance, NFaaS already enables detecting popular functions

and instantiating them with the help of kernel store. However,

NFaaS is still unaware of its neighbourhood information of nodes

which have not stored or advertised the prefix but have the com-

pute capacity to do so. Thus, using DICer to form synchronization

groups and coordinate among each other in the group could be

beneficial for systems like NFaaS as well. As future work, we intend

to extend DICer for other in-network compute solutions as well as

evaluate DICer using real-world set ups.

SynchronizationOverhead : Further extensions to DICer could
be efficient synchronization overhead management using an ap-

propriate synchronization dataset along with other methods such

as opting for event-triggered instead of periodic synchronizations,

ensuring disjoint group formations to avoid redundant synchroniza-

tion communication between the same set of nodes over different

scopes, use of compression techniques for the information shared,

etc. Gaining neighborhood knowledge can be beneficial for detect-

ing long-running functions instantiated at neighboring nodes and

assisting the node by decomposing such functions into parallel sub-

functions, speeding up the execution. However, such extensions

will likely come at the cost of higher synchronization overhead

within DICer.

DICer in Network Layer : As mentioned, the neighbor dis-

covery in DICer is vastly inspired from NLSR, which also uses

synchronization to gain the adjacency link-state information. As a

result, our design choice raises the question of introducing DICer
directly as a part of the NLSR protocol. However, we argue against

such a merger for following reasons. While NLSR is a network

layer protocol, DICer is widely application-specific and the groups

formed or the information shared between coordinating nodes is

configured on the application layer offering the required flexibil-

ity. More importantly, DICer is not restricted to only routing and

forwarding decisions.

Security and Privacy : Security and privacy is a crucial re-

search problem in ICN network architectures [22]. Authentication

and authorization are significant techniques for imparting secu-

rity in a system. Although DICer does not provide a full fledged

solution on these, we present some initial directions for DICer. In
DICer, we could take inspiration from the underlying NDN where

producers transmit signed data packets and extend it by enabling

group members to send signed synchronization interests and data

to authenticate the change update notifications, if the operator

of DICer demands for authenticity (eg: DICer employed in WAN

instead of LAN).

Regarding the aspects such as authorization, the Named Access

Control (NAC) [30] is promising for adoption in DICer, as it enables
encryption and decryption of data at different granularities based

on the access privileges of the nodes in synchronization group. The

distribution of decryption keys can be incorporated when nodes

are discovered and added to specific groups. Such methods add to

the network overhead with additional inter-node messages and

processing delays from encryption, decryption, etc at each node.

DICer currently functions on the assumption that there is/will be

a protocol in place to ensure that security aspects arising from

multi-operator infrastructure are handled.

7 CONCLUSION
In-network compute frameworks based on ICN networks such as

NFN are promising for distributed computing. In this paper, we

present the limitations and the scope for improvements with in-

network compute frameworks such as NFN’s resolution strategies.

For this, we adapt the SVS synchronization protocol for enhancing

the node’s knowledge to a broader network scope.The coordina-

tion algorithm at each node then manages the functions deployed

locally by instantiating or terminating functions. DICer enables

balancing the compute load between the coordinating nodes and

helps reducing the completion time. We implement DICer and eval-
uate it against NFN with Find-or-Execute (FoX) resolution strategy

using simulations and present the results and discuss on the crucial

aspects of the system.

ACKNOWLEDGMENTS
This workwas donewithin the EUCELTIC-NEXT project PICCOLO

(Contract No. C2019/2-2) supported in parts by the German Federal

Ministry of Economics and Climate (BMWK) and managed by the

project agency of the German Aerospace Center (DLR) (Contract

No. 01MT20005A).

54

DICer: Distributed Coordination for In-Network Computations ICN ’22, September 19–21, 2022, Osaka, Japan

REFERENCES
[1] 2022. KubeFed. https://github.com/kubernetes-sigs/kubefed Last accessed on

10/04/2021.

[2] Uthra Ambalavanan, Dennis Grewe, Naresh Nayak, and Joerg Ott. 2021. HYDRO:

Hybrid Orchestration of In-Network Computations for the Internet of Things. In

11th International Conference on the Internet of Things (St.Gallen, Switzerland)
(IoT ’21). Association for Computing Machinery, New York, NY, USA. https:

//doi.org/10.1145/3494322.3494331

[3] The Kubernetes Authors. 2021. Kubernetes Components. https://kubernetes.io/

docs/concepts/overview/components/ Last accessed on 20/10/2021.

[4] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan, Aleksandr Zavodovski,

Suzan Bayhan, Walter Wong, Per Gunningberg, Jussi Kangasharju, and Jörg

Ott. 2021. Surrounded by the Clouds: A Comprehensive Cloud Reachability

Study. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW
’21). Association for Computing Machinery, New York, NY, USA, 295âĂŞ304.

https://doi.org/10.1145/3442381.3449854

[5] Lorenzo Corneo, NitinderMohan, Aleksandr Zavodovski, WalterWong, Christian

Rohner, Per Gunningberg, and Jussi Kangasharju. 2021. (How Much) Can Edge

Computing Change Network Latency?. In 2021 IFIP Networking Conference (IFIP
Networking). 1–9. https://doi.org/10.23919/IFIPNetworking52078.2021.9472847

[6] The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Jörg

Ott, and Jussi Kangasharju. 2021. Cloudy with a Chance of Short RTTs: Analyz-

ing Cloud Connectivity in the Internet. In Proceedings of the 21st ACM Internet
Measurement Conference (Virtual Event) (IMC ’21). Association for ComputingMa-

chinery, New York, NY, USA, 62âĂŞ79. https://doi.org/10.1145/3487552.3487854

[7] dSPACE GmbH. 2010. Developments on the Electronic Horizon.
https://www.dspace.com/shared/data/pdf/dspace_magazine/2010-2/english/

dSPACE-Magazine_ADA_2010-02_en.pdf

[8] Colin J Fidge. 1988. Timestamps in Message-Passing Systems That Preserve the

Partial Ordering,âĂİ. In Proc. 11th Austral. Comput. Sci. Conf. (ACSC ’88). 56–66.
[9] Cloud Native Computing Foundation. 2021. KubeEdge project website. https:

//kubeedge.io/en/ Last accessed on 06/08/2021.

[10] Fabio Giust, Vincenzo Sciancalepore, Dario Sabella, Miltiades C. Filippou, Simone

Mangiante, Walter Featherstone, and Daniele Munaretto. 2018. Multi-Access

Edge Computing: The Driver Behind the Wheel of 5G-Connected Cars. IEEE
Communications Standards Magazine 2, 3 (2018), 66–73. https://doi.org/10.1109/

MCOMSTD.2018.1800013

[11] AKMMahmudul Hoque, Syed Obaid Amin, Adam Alyyan, Beichuan Zhang, Lixia

Zhang, and Lan Wang. 2013. NLSR: Named-data link state routing protocol. In

Proceedings of the 3rd ACM SIGCOMMworkshop on Information-centric networking.
15–20.

[12] European Telecommunications Standards Institute. 2021. ETSI Multi-
access Edge Computing (MEC). https://www.etsi.org/technologies/

multi-access-edge-computing 2021-3-16.

[13] Andrew Jeffery, Heidi Howard, and Richard Mortier. 2021. Rearchitecting Ku-

bernetes for the Edge. In Proceedings of the 4th International Workshop on Edge
Systems, Analytics and Networking (EdgeSys ’21). 7âĂŞ12. https://doi.org/10.

1145/3434770.3459730

[14] Michał Król and Ioannis Psaras. 2017. NFaaS: Named Function as a Service. In

Proceedings of the 4th ACM Conference on Information-Centric Networking (Berlin,

Germany) (ICN ’17). 134âĂŞ144. https://doi.org/10.1145/3125719.3125727

[15] Yanbiao Li, Alexander Afanasyev, Junxiao Shi, Haitao Zhang, Zhiyi Zhang, Tianx-

iang Li, Edward Lu, Beichuan Zhang, Lan Wang, and Lixia Zhang. 2018. NDN

Automatic Prefix Propagation.

[16] StateVectorSync maintained by named data. 2021. ndn-svs: State Vector Sync
library for distributed realtime applications for NDN. https://github.com/

named-data/ndn-svs Last accessed on: 21/10/2021.

[17] S. Mastorakis, A. Afanasyev, and L. Zhang. 2017. On the Evolution of NdnSIM: An

Open-Source Simulator for NDN Experimentation. SIGCOMM Comput. Commun.
Rev. 47, 3 (2017), 19âĂŞ33. https://doi.org/10.1145/3138808.3138812

[18] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter

Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears.

In Proceedings of the 19th ACM Workshop on Hot Topics in Networks (HotNets ’20).
182âĂŞ189. https://doi.org/10.1145/3422604.3425943

[19] Nitinder Mohan, Aleksandr Zavodovski, Pengyuan Zhou, and Jussi Kangasharju.

2018. Anveshak: Placing Edge Servers In The Wild. In Proceedings of the 2018
Workshop on Mobile Edge Communications (Budapest, Hungary) (MECOMM’18).
Association for Computing Machinery, New York, NY, USA, 7âĂŞ12. https:

//doi.org/10.1145/3229556.3229560

[20] Philipp Moll, Varun Patil, Nishant Sabharwal, and Lixia Zhang. 2021. A Brief

Introduction to State Vector Sync. Technical Report NDN-0073, Revision 2, NDN,
Tech. Rep. (2021).

[21] Philipp Moll, Wentao Shang, Yingdi Yu, Alexander Afanasyev, and Lixia Zhang.

2021. A Survey of Distributed Dataset Synchronization in Named Data Networking.
Technical Report. Tech. Rep. NDN-0053, Revision 2, Named Data Networking.

[22] Kostas Pentikousis, BÃűrje Ohlman, Elwyn B. Davies, Spiros Spirou, and Gen-

naro Boggia. 2016. Information-Centric Networking: Evaluation and Security

Considerations. RFC 7945. https://doi.org/10.17487/RFC7945

[23] George F Riley and Thomas R Henderson. 2010. The ns-3 network simulator. In

Modeling and tools for network simulation. Springer, 15–34.
[24] C. Scherb, D. Grewe, M. Wagner, and C. Tschudin. 2018. Resolution strategies

for networking the IoT at the edge via named functions. In Proccedings of the
15th IEEE Annual Consumer Communications Networking Conference (CCNC). 1–6.
https://doi.org/10.1109/CCNC.2018.8319235

[25] Manolis Sifalakis, Basil Kohler, Christopher Scherb, and Christian Tschudin. 2014.

An information centric network for computing the distribution of computations.

In Proceedings of the 1st ACM Conference on Information-Centric Networking.
137–146.

[26] Mohit Taneja and Alan Davy. 2017. Resource aware placement of IoT application

modules in Fog-Cloud Computing Paradigm. In 2017 IFIP/IEEE Symposium on
Integrated Network and Service Management (IM). 1222–1228. https://doi.org/10.

23919/INM.2017.7987464

[27] Christian Tschudin and Manolis Sifalakis. 2014. Named functions and cached

computations. In 2014 IEEE 11th Consumer Communications and Networking
Conference (CCNC). 851–857. https://doi.org/10.1109/CCNC.2014.6940518

[28] Aleksandr Zavodovski, Nitinder Mohan, Suzan Bayhan, Walter Wong, and Jussi

Kangasharju. 2019. ExEC: Elastic Extensible Edge Cloud. In Proceedings of the
2nd International Workshop on Edge Systems, Analytics and Networking (Dresden,

Germany) (EdgeSys ’19). Association for Computing Machinery, New York, NY,

USA, 24âĂŞ29. https://doi.org/10.1145/3301418.3313941

[29] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, KCClaffy, Patrick

Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named

data networking. ACM SIGCOMM Computer Communication Review 44, 3 (2014),

66–73.

[30] Zhiyi Zhang, Yingdi Yu, Alexander Afanasyev, Jeff Burke, and Lixia Zhang. 2017.

NAC: Name-Based Access Control in Named Data Networking. In Proceedings of
the 4th ACM Conference on Information-Centric Networking (Berlin, Germany)

(ICN ’17). Association for Computing Machinery, New York, NY, USA. https:

//doi.org/10.1145/3125719.3132102

55

https://github.com/kubernetes-sigs/kubefed
https://doi.org/10.1145/3494322.3494331
https://doi.org/10.1145/3494322.3494331
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://doi.org/10.1145/3442381.3449854
https://doi.org/10.23919/IFIPNetworking52078.2021.9472847
https://doi.org/10.1145/3487552.3487854
https://www.dspace.com/shared/data/pdf/dspace_magazine/2010-2/english/dSPACE-Magazine_ADA_2010-02_en.pdf
https://www.dspace.com/shared/data/pdf/dspace_magazine/2010-2/english/dSPACE-Magazine_ADA_2010-02_en.pdf
https://kubeedge.io/en/
https://kubeedge.io/en/
https://doi.org/10.1109/MCOMSTD.2018.1800013
https://doi.org/10.1109/MCOMSTD.2018.1800013
https://www.etsi.org/technologies/multi-access-edge-computing
https://www.etsi.org/technologies/multi-access-edge-computing
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3125719.3125727
https://github.com/named-data/ndn-svs
https://github.com/named-data/ndn-svs
https://doi.org/10.1145/3138808.3138812
https://doi.org/10.1145/3422604.3425943
https://doi.org/10.1145/3229556.3229560
https://doi.org/10.1145/3229556.3229560
https://doi.org/10.17487/RFC7945
https://doi.org/10.1109/CCNC.2018.8319235
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.23919/INM.2017.7987464
https://doi.org/10.1109/CCNC.2014.6940518
https://doi.org/10.1145/3301418.3313941
https://doi.org/10.1145/3125719.3132102
https://doi.org/10.1145/3125719.3132102

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Named Function Networking (NFN)
	2.2 State Vector Synchronization in NDN

	3 System Model
	3.1 Problem Formulation
	3.2 DICer in Action
	3.3 Discovery of Neighbors
	3.4 Formation of Synchronization Groups
	3.5 Information Sharing
	3.6 Coordination & Decision Making

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 Results

	6 Discussion and Future Work
	7 Conclusion
	Acknowledgments
	References

