
ComB: A Flexible, Application-Oriented Benchmark
for Edge Computing

Simon Bäurle
Technical University of Munich

simon.baeurle@tum.de

Nitinder Mohan
Technical University of Munich

mohan@in.tum.de

ABSTRACT
Edge computing is an attractive platform where applications, previ-
ously hosted in the cloud, shift parts of their workload on resources
closer to the users. The field is still in its nascent stages with signifi-
cant ongoing innovation in small form-factor hardware designed to
operate at the edge. However, the increased hardware heterogeneity
at the edge makes it difficult for application developers to deter-
mine if their workloads will operate as desired. Simultaneously,
edge providers have to make expensive deployment choices for
the “correct” hardware that will remain suitable for the near future.
We present ComB, an application-oriented benchmarking suite for
edge that assists early adopters in evaluating the suitability of an
edge deployment. ComB is flexible, extensible, and incorporates a
microservice-based video analytics pipeline as default workload to
measure underlying hardware’s compute and networking capabili-
ties accurately. Our evaluation on a heterogeneous testbed shows
that ComB enables both providers and developers to understand
better the runtime capabilities of different hardware configurations
for supporting operations of applications designed for the edge.

CCS CONCEPTS
• Computer systems organization → Distributed architec-
tures; • Networks→ In-network processing; • Software and
its engineering→ Software architectures.

KEYWORDS
edge computing, benchmarking, next-generation applications

ACM Reference Format:
Simon Bäurle and Nitinder Mohan. 2022. ComB: A Flexible, Application-
Oriented Benchmark for Edge Computing. In 5th International Workshop
on Edge Systems, Analytics and Networking (EdgeSys ’22), April 5–8, 2022,
RENNES, France. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3517206.3526269

1 INTRODUCTION
Over the past decade, edge computing has emerged as a compelling
solution to enable many next-generation networked applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EdgeSys ’22, April 5–8, 2022, RENNES, France
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9253-2/22/04. . . $15.00
https://doi.org/10.1145/3517206.3526269

The primary selling point of edge is its ability to satiate latency-
sensitive compute requirements of applications by moving work-
loads from centralized datacenter silos to infrastructures deployed
closer to the users [7, 8, 10]. However, edge computing is most ad-
vantageous for bandwidth-hungry applications, such as live video
analytics, augmented/virtual reality, etc., due to the possibility to
pre-process and reduce the data sizes closer to the collectors [9, 29].
As a result, these applications have also been proclaimed as “killer”
use-cases by the edge research community [6].

Several options for deploying edge servers have been proposed
in recent years. While cloud providers are expanding their infras-
tructure to the edge by making use of spare CDN server capacity
via technologies like Azure IoT Edge [28] or AWS Greengrass [4],
ETSI and industrial standardization bodies aim to install compute
hardware (like miniature datacenters) within their premises [3]. On
the other hand, democratic adopters of the edge envision a world in
which any entity with spare hardware can contribute to the infras-
tructure at large – thereby establishing a ubiquitous, crowdsourced
compute fabric [15, 33]. While we believe that the edge computing
concepts will continue to mature and a shared understanding of
the infrastructure will persist, different assumptions regarding the
capability of “edge infrastructures” are limiting the technological
growth of applications aimed at the edge [29]. The uncertainty is
further exacerbated by the increasing heterogeneity of edge de-
vices, caused by the recent availability of specialized resources (e.g.,
Intel NCS2, Raspberry PI 4, or other accelerated devices) that take
radical design choices to achieve smaller form factors. This results
in several complications for both application providers and edge
infrastructure operators. Not only would the application providers
have to assess if their services would be optimally supported on the
variety of edge hardware, but the early providers of edge computing
also have to make expensive hardware investments in the hope
that the majority of edge-oriented applications are compatible with
their infrastructure.

To this end, we present ComB, which is a comprehensive bench-
marking suite designed explicitly for edge infrastructures and ap-
plications. ComB enables edge operators to understand, assess, and
adjust their infrastructure to become more suitable for different
edge applications (§3). Unlike existing benchmarks, ComB relies on
realistic microservice-based edge-oriented applications instead of
artificial workloads to provide a realistic assessment of a hardware’s
capabilities for supporting edge computing tasks. In the current
implementation, we use a modular distributed live video analytics
pipeline as our application workload – which detects and tracks ob-
jects across video frames captured from live video cameras (§4). We
also allow developers to easily replace the workload in ComB to the
application of their choice with minimal programming overhead
– enabling them to explore counter-intuitive deployment options.

https://orcid.org/0000-0001-9034-287X
https://orcid.org/0000-0001-6198-016X
https://doi.org/10.1145/3517206.3526269
https://doi.org/10.1145/3517206.3526269
https://doi.org/10.1145/3517206.3526269

EdgeSys ’22, April 5–8, 2022, RENNES, France Bäurle and Mohan

ComB includes its own scheduling and service placement scheme
for mapping workload tasks over a distributed infrastructure, but
is expandable to support widely-used orchestration platforms (e.g.,
K3s [1]). As we show in §5, ComB can accurately highlight the run-
time capabilities of heterogeneous hardware with different proces-
sor configurations and provide valuable metrics to users regarding
the realistic operation of edge infrastructure.

2 BACKGROUND AND RELATEDWORK
Benchmarking edge devices is not a new endeavor, and several
works in the past have proposed toolchains for different flavors of
edge computing.
Hardware benchmarking. Kruger and Hanke [20] propose a two-
phase benchmark that measures the performance of constrained
off-the-shelf hardware (Raspberry Pi, BeagleBone Black, etc.). In
the first phase, Lmbench [27] is used to compute operation speeds
and latencies to determine the overall machine performance. The
second phase deploys a gateway for the constrained application pro-
tocol (CoAP) on the devices and measures the response latency for
repeated requests. While the benchmark provides a good overview
of the CPU and network performance, the included workloads are
quite simplistic and do not highlight the potential for realistic edge
applications. RIoTBench [31] focuses on distributed stream pro-
cessing system (DSPS) that provides a dataflow model for scalable,
low-latency streaming-based applications. The suite includes 27
distinct micro-benchmarks that address different types of stream-
ing tasks (e.g., data parsing, filtering or pattern detection, visual
analytics, I/O operations). IoTBench [22] provides benchmark tasks
imitating edge processing of IoT applications. The authors provide
workloads for computer vision (e.g. video summarization, image
recognition, etc.), speech recognition and signal processing.
Neural network based benchmarking. Due to the increasing
popularity and use of neural networks and machine learning in
applications, many researchers have designed benchmarking tools
specifically to assess a device’s capability to support such work-
loads. Reuther et. al. [30], and Dinelli et. al. [13] benchmark, study
and compare the performance of different pluggable hardware ac-
celerators (e.g., Google Edge TPU, Intel Movidius Compute Stick)
with general CPU execution. Their research primarily focuses on
the performance of different accelerators and not on application-
based generic edge benchmarking. OpenRTiST [16] implements an
end-to-end benchmark that utilizes neural style transfer (NST) to
transform a live video stream in a reference painting. The bench-
mark takes the camera input from a mobile phone and processes
the image on the cloud and the cloudlet. The benchmark provides
end-to-end metrics for image processing and network communica-
tion between the user device and the resource executing the neural
network. Scission [23] proposes a context-aware distribution of
deep neural networks across multiple devices such that the indi-
vidual layers are scattered across the edge-cloud continuum. The
network layers are split at specified partitioning points – deter-
mined by the architecture of the neural net (linear or branching).
While the approach provides insights into the distributed execution
of convolutional neural networks, the benchmark disregards the
networking performance as the metric is only simulated and never
explicitly measured.

Edge infrastructure benchmarking. EdgeBench [11] focuses on
benchmarking the performance of the commercial edge-like offer-
ings, specifically AWS IoT Greengrass [4] and Azure IoT Edge [28].
Since both platforms are based on serverless computing paradigm,
the workloads in the toolchain are composed of service functions
and includes a speech-to-text decoder, an image recognition model,
and a scalar value generator. DeFog [26], on the other hand, is
designed to support different possible infrastructure deployment
options in the edge-cloud continuum. The benchmark includes a
diverse mix of edge-oriented workloads, such as ML-based object
classification, speech-to-text conversion, geo-location-based gam-
ing, etc. The assets for these tasks are hosted in the cloud and trans-
ferred to the service destination upon scheduling. Yang et al. [32]
implement an extensible benchmarking suite for functional edge
workflows, also named EdgeBench. The benchmark uses OpenFaaS
on top of Kubernetes to execute either a video analytics pipeline
or an IoT hub as predefined workloads. The suite comes clostest
to ComB and allows the integration of custom workloads, however,
their extensibility is limited to FaaS workloads which does not
encompass stateful complex edge applications (e.g. using ML/AI).

ComB complements the previous work by providing a comprehen-
sive and flexible benchmark suite for edge computing to date. We
design ComB to support distributed pipelined tasks that measure the
edge infrastructure’s processing and networking capabilities. The
in-built orchestration scheme of ComB enables developers to tweak
and extend the workload design to benchmark their infrastructure
as per the intended application operation. Our default video ana-
lytics workload is a good representation of neural network-based
tasks common in edge applications. ComB is fully customizable and
extensible and is therefore compatible with future innovations in
edge hardware and applications. Additionally, we make ComB open-
source1 to allow developers and researchers to use and customize
the benchmark for their specific edge infrastructure and use cases.

3 COMB OVERVIEW
Majority of the state-of-the-art benchmarks discussed in §2 do not
accurately incorporate the complexities at the edge since they either
rely on generic stress-based workloads or specialized applications
that only assess a resource’s capabilities for specific ML/neural
network tasks. Contrarily, we believe that much like the growth
of cloud computing, the intended applications, technologies, and
hardware for the edge will continue to evolve. We envision a more
generic and configurable benchmark suite that not only allows
developers to assess their infrastructure’s capabilities via provided
workloads but also supports customized applications. In this regard,
the benchmark suite can be viewed more like an orchestrator with
several different applications as workload options. To accomplish
this vision, we identify the following goals.
(1) The rapid development in hardware and software for the edge
mandates a flexible, intuitive configuration structure that allows
easy integration of novel applications. Adopting new metrics and
processing procedures should only require minimal code changes
in the benchmark suite.
(2) By definition, edge environments are heterogeneous and incor-
porate many specialized devices with varying network (or other)

1https://github.com/sbaeurle/ComB

https://github.com/sbaeurle/ComB

ComB: A Flexible, Application-Oriented Benchmark for Edge Computing EdgeSys ’22, April 5–8, 2022, RENNES, France

Edge Infrastructure

NodegroupNodegroupNodegroup

Workload
Service 1

Workload
Service 2

Workload
Service 3

Metric
Collection

Service

Benchmark
Orchestrator

Aggregations
& Plots

C
LI

Raw Data

Control

Control

HTTP/Metric Link

SSH/Control Link

SSHG
en

er
ic

M
O

T

Sc
rip

t

Evaluation: evaluation-address
NodeGroups:
- Name: human-readable-name
Arch: ISA
Capabilities: [list-of-capabilities]
Nodes: [list-of-node-addresses]
NodeCapacity: capacitiy-per-node
Workload:
 - Name: human-readable-name
 Image: docker-image-name
 Ports:
 - port-binding
 Tags: [image-tags]
 Arch: [image-architectures]
 Command: executable --args {{Evaluation}}
 Mounts:
 - tmpfile:containerpath
 LocalData:
 - file-to-distribute

Name: metric-name
Url: /http-endpoint
Module: metric-module
Config: extra-config-map
Fields: [list-of-input-fields]
Outputs: [list-of-outputs]
Metrics:
 - output_metric: [aggregations]

Figure 1: Overview of ComB benchmark suite. The benchmark orchestrator (blue) finds the mapping and places the microservices
of the underlying workload (see §4) to each device in the edge infrastructure. The metric collection service (red) collects the
performance results of each microservice from the infrastructure, aggregates it and plots it in human-readable format.

constraints. Distributing application services on a fixed subset of
these devices may produce counter-intuitive results, where initially
unreasonable scenarios may appear more performant (e.g., high net-
working costs to the cloud might outweigh the penalty of a slightly
less powerful edge accelerator). As such, the benchmarking suite
must evaluate all reasonable configurations and service placements
– guiding the developers towards such anomalies.
(3) The control plane of the benchmark must have a minimal foot-
print such that the inherent workload can assess the hardware’s
capability at its full capacity. Costly operations (such as I/O or
postprocessing) should be decoupled from the collection routine.
Local data persistence should be avoided at best since many edge
devices typically rely on slower storage, such as SD-cards or eMMC
storage. Furthermore, the suite must also support remote resource
benchmarking over networking restrictions (e.g., firewalls or NATs),
which are common in edge deployments.

3.1 System Architecture
ComB is designed as a split system, consisting of the benchmark
orchestrator and the metric collection service. Figure 1 shows the
cross-section of ComB components and their interaction with the
edge infrastructure. Edge operators can register their infrastruc-
ture and schedule benchmark runs through a configuration file
(outlined blue) in the benchmark orchestrator. The configuration
includes details of edge resources grouped based on their hardware
capabilities (a.k.a. node groups). For example, multiple Raspberry
Pi 4 with the exact RAM and storage capacity in the infrastruc-
ture form a single node group since their performance is likely to
be similar. Each node group is defined with hardware capabilities
(e.g., CPU or GPU), underlying processor architecture and access
to special peripherals (e.g., cellular dongle, accelerators, etc.). The
configuration file also includes runtime information for the work-
load services, e.g., execution environment, processor architecture,

port bindings, data volumes, etc. The operator can also specify a
list of container image tags that explicitly correspond to the node
group’s hardware capability. This way, ComB can utilize specialized
build artifacts specifically compiled for different hardware types,
e.g. x86, ARM, CUDA-support, etc., without probing.

Using the supplied configuration settings, the benchmark orches-
trator performs multiple iterations and combinations of workload
placement on the infrastructure (detailed in §3.2). In the current
version of ComB, the workloads (discussed in §4) are scheduled as
docker containers via the built-in SSH executor. However, ComB
allows future integration with widely-used orchestration platforms
(e.g., Kubernetes or KubeEdge) and novel virtualization techniques
(e.g., AWS Firecracker [5], Unikernels, etc.). For each benchmark
run, the metric system asynchronously collects the results of the
workload from the involved resources (see §3.3).

3.2 Benchmark Orchestration
ComB interprets the described configuration as a bipartite graph
𝐺 = (𝑉𝑊 ∪𝑉𝑁 , 𝐸), where workload services (𝑉𝑊) and node groups
(𝑉𝑁) are connected with an edge iff the service requirements (tags
𝑇 , processor architecture 𝑃𝐴) match the node group (capabilities𝐶 ,
architecture 𝐴) [𝑇 ∩𝐶 ≠ ∅ ∧𝐴 ∈ 𝑃𝐴]. Each maximal matching (𝑀)
in this graph corresponds to a valid distribution of workload ser-
vices across the node groups, with the set of all maximal matchings
(𝑀𝑎 = {𝑀1, . . . , 𝑀𝑛}) containing all possible schedules. Initially, we
experimented with multiple algorithmic approaches to find opti-
mal matchings [18, 21]. However, we found a brute-force matching
scheme to be the best fitting performance-wise during the imple-
mentation, which we explain as follows. Since most resources and
workloads will have a matching for CPU execution, this likely
results in (almost) fully-connected graphs. As a result, the computa-
tional complexity of more efficient approaches converges towards
𝑂 (𝑛!) with 𝑛 = |𝑉𝑊 | ∧ |𝑉𝑁 |, similar to a brute-force approach. For

EdgeSys ’22, April 5–8, 2022, RENNES, France Bäurle and Mohan

Video
Source

1

+

Video
Aggregation

2

Object
Detection

3

Object
Tracking

4

Figure 2: Architecture of the video analytics pipeline used
as workload for ComB. Each square represents a microservice
which can be independently executed on an edge device in
the infrastructure. Arrowed links represent dependencies
and data flows within the application pipeline.

reasonable workload sizes, the performance difference between
efficient and brute-force matches becomes negligible, favoring the
more straightforward implementation.

After all possiblematchings are generated, the orchestrator filters
them based on maximum service capacity and the number of nodes
per node group – such that only sensible workload distributions are
scheduled as different runs. The benchmark orchestrator uses a tem-
plate for each run to generate (docker) scheduling commands over
SSH connection towards selected resources. Our implementation
allows us to later support other virtualizations and communication
protocols through minor template adjustments.

3.3 Metric System
ComB also features a highly customizable metric system that re-
ceives and processes metrics from the benchmark workloads after
every run. We implement the system as a separate component
to allow flexible placement and overcome network restrictions
within the benchmark (read edge) environment. Developers can
express metrics as shallow JSON objects that get processed using
configurable HTTP handlers (see configuration in blue outline in
fig. 1). Any costly operations (such as calculating metrics or I/O) are
fully decoupled from the HTTP endpoints and handled in separate
execution routines to maintain asynchronicity. After each bench-
mark run finishes, ComB calculates configurable aggregations along
with complex metrics, such as Higher Order Tracking Accuracy
(HOTA [25]) or Multiple Object Tracking Accuracy (MOTA), and
writes them to disk. In the current version, ComB supports three
different metric modules, which are easily extensible. The GENERIC
module converts received metrics to numerical values and outputs
them in a machine-readable format. The SCRIPT module allows
developers to provide custom tengo language [19] based scripts
for quick and easy integration of custom calculation procedures
without significant code modification. The MOT module integrates
multiple object tracking code from the TrackEval [24] repository
and exports valuable performance assessments from our video an-
alytics workload. The module expects the current frame number,
IDs, and bounding boxes of all currently tracked objects and logs
them in the MOTChallenge [12] format.

4 COMBWORKLOAD
The quality of a benchmark’s workload directly influences the
representativeness of its results. We employ a microservice-based

Multi-Object Tracking (MOT) pipeline implemented using mod-
ern application design principles and technologies. The following
reasons influence our design:
(1) The workload should resemble potential edge applications and
provide a realistic insight into the performance of the infrastructure.
Moreover, the workload must be composed of services that rely on
heavy and lightweight computations and must be interconnected
to assess the communication between resources.
(2)We expect rapid development of new edge solutions, with poten-
tial to disrupt current development principles or technologies. As a
result, the workload should be modular to support future technolog-
ical extensions. Developers should be able to easily improve, replace
or extend individual services without affecting other components.
(3) Typical edge environments will consolidate various devices with
different configurations, such as Raspberry PIs, BeagleBone Boards,
Nvidia Jetson accelerators, Google Edge TPUs, etc. An ideal work-
load should be able to exploit the entire computational potential
of such hardwares by supporting accelerators and instruction set
optimizations.

4.1 Architecture
ComB’s workload is a video analytics pipeline that consists of four
independent microservices, each responsible for a specific task
(see Figure 2) The services interconnect with each other to form a
“pipe”, and the inter-communication is over well-defined gRPC [17]
interfaces.

The video source 1 takes a video input (e.g. video file or we-
bcam) and ingests it as a RTSP/RTP stream into the pipeline. By
default, we utilize an h264 encoded video from MOTChallenge [12]
dataset but developers can easily plug video feeds from real IP
cameras as input. The implementation is based on gstreamer and
supports multiple video sources. The video aggregation service
2 reads video frames from the source and performs pre-processing
for the following services in the pipeline (e.g., frame resizing for
detection). Frames are then forwarded to either the object detection
or object tracking, with the former path only utilized periodically
at fixed frame intervals. We draw inspiration from next-generation
applications (e.g., autonomous driving), where timely processing is
critical for performance [29]. The frames that arrive faster than the
underlying hardware capabilities are skipped – negatively affect-
ing tracking performance. This performance indicator is especially
useful for constrained edge infrastructures where slow execution
times are expected. The implementation utilizes OpenCV [2] and
supports both CPU and OpenCL-accelerated execution.

The objects detection service 3 utilizes a convolutional neu-
ral net (CNN) to detect objects in the received video frame. By
default, we utilize a pre-trained YOLOv3 network using OpenCV’s
dnnmodule. The module supports common neural network formats
and allows for future integration of other neural nets for evolved
use cases (e.g. YOLOX for an improved detection). In the current ComB
version, the detection service supports CPU, OpenCL-accelerated
and CUDA-accelerated execution. However, we plan to integrate
more backends (e.g. OpenVINO) in future iterations. The object
tracking service 4 receives input from the detection service and
initializes tracker instances for each newly detected object. The
trackers are then updated for each frame received directly from

ComB: A Flexible, Application-Oriented Benchmark for Edge Computing EdgeSys ’22, April 5–8, 2022, RENNES, France

A-cpu

A-opencl
J-cpu

J-l4t

W-cuda
P-cpu

0
250
500
750

1000
1250
1500
1750
2000
2250
2500
2750
3000

P
ro

ce
ss

in
g

T
im

e
(m

s)

Detection

A-cpu
J-cpu

P-cpu
0

15
30
45
60
75
90

105
120
135
150
165

Tracking

A-cpu

A-opencl
J-cpu

P-cpu
0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0

Aggregation

(a) Service Performance (Hardware-Execution environment)

W
-A

-P

W
-P

-A

W
-A

-A
J-

A-P
J-

A-A

P-A
-A

P-A
-P

A-A
-P

A-P
-A
A-J

-A
0

10
20
30
40
50
60
70
80
90

100

H
O

T
A

no
rm

al
iz

ed
(%

)

W
-A

-P

W
-P

-A

W
-A

-A
J-

A-P
J-

A-A

P-A
-A

P-A
-P

A-A
-P

A-P
-A
A-J

-A
0

25
50
75

100
125
150
175
200
225
250
275
300
325

S
ki

pp
ed

F
ra

m
es

(n
)

(b) Pipeline Performance (Detection-Tracking-Aggregation)

Figure 3: Benchmark Output (W: Workstation, A: APU, J: Jetson, P: Raspberry Pi)

the aggregation service. The service integrates a naive IoU-based
identification scheme that associates existing trackers with objects
from the detection service. We use OpenCV’s implementation of
different tracking algorithms with KCF as the default method.

To resemble applications deployed in multi-tenant environments
that runmultiple, different service alongside each other, we incorpo-
rate Docker containers [14] as virtualization technology. Containers
are the most common form of application packaging in modern
applications and are essentially a good fit for constrained devices
available at the edge. Additionally, we use a verbose image naming
scheme to address different different docker image variants of each
microservice with explicit hardware support compiled into the ser-
vice binaries – allowing us to onload the most suitable container
image based on the edge device hardware configuration.

5 EVALUATION
5.1 Experimental Setup
We evaluate ComB on a heterogeneous, edge-like testbed consisting
of two Raspberry PI 4s with 4GB of RAM and an ARM Cortex
A72 quad-core processor; one Nvidia Jetson AGX Xavier Developer
Board with octa-core ARMv8 processor, 32GB of RAM, and a 512
core Volta GPU; one Fujitsu small form factor PC with a six-core
Intel 8400T x86 APU and 8GB of RAM; and a workstation PC with
a six-core Ryzen 2600x processor, 16GB RAM, and an Nvidia RTX
2070 GPU. We interconnect all devices over both WiFi and ethernet.
We perform several iterations of ComB runs over multiple days.
All runs were with a fixed 5 fps input framerate and utilized the
Darknet based YOLOv3 CNN pre-trained on the COCO dataset. We
only benchmark the GPU capabilities of the workstation and use
the CPU to execute the benchmark orchestrator and the metric
system.

5.2 Edge Accelerator Performance
An essential aspect of ComB is to highlight the impact of different
accelerator hardware on service performance. Figure 3a shows the
processing time for the aggregation, detection, and tracking service
deployed on all hardware-execution environment combinations.
The detection service paints a complete picture since our testbed
supports all technology combinations. As expected, the workstation
GPU performs the fastest with a mean processing time of 42 ms,
followed closely by Intel APU using CPU with 184 ms. Interestingly,

we find that Jetson using GPU (J-l4t) performs at par with the
Intel APU using OpenCL, disproving the assumed notion behind the
highly optimized performance of edge accelerators. On the other
hand, we confirm that the ARM-based CPUs are unsuitable for CNN
tasks, with the Jetson-CPU and Raspberry Pi 4 achieving processing
time in seconds scale.

The aggregation and tracking services support fewer accelera-
tors but perform comparably to the detection service. The Intel APU
achieves the best performance taking 50 ms (tracking) and 12 ms
(aggregation) processing time, with OpenCL acceleration granting a
minimal boost of 0.5ms. Similar to the detection, the ARM-based
devices perform noticeably slower with 156ms/21ms (Jetson) and
164ms/28ms (Pi) for tracking and aggregation, respectively. Fur-
ther investigation reveals that both services are primarily single-
threaded, which is the default OpenCV behavior over Python and is,
therefore, inherited by applications relying on the library.

5.3 Benchmark and Workload Performance
Figure 3b shows the end-to-end performance of the video analytics
pipeline (as tracking accuracy) in different hardware mappings. We
use HOTA [25] as well as the number of skipped frames as our key
performance indicators. Note that higher HOTA values correlate to
higher tracking accuracy, while higher skipped frames lead to lower
performance. The pipeline achieves the best tracking accuracy for
schedules that utilize the workstation’s GPU for the detection and
the APU for tracking. We find that the aggregation service does not
influence the quality-of-service (QoS) as all resources performed
sufficiently fast. The slower detection at both the APU and the
Jetson increases the number of skipped frames to 24 and 60 respec-
tively, which decreases the end-to-end accuracy – highlighting the
sensitivity of ComB to differentiate between configurations. Simi-
larly, we observe that scheduling the detection on the Raspberry
Pis causes a drastic drop in accuracy, and executing the tracking
on either the Pi or the Jetson significantly increases the number of
skipped frames (and, therefore, accuracy). We also experiment with
network connections between resources and find that WiFi leads
to additional skipped frames and higher variance in pipeline per-
formance compared to wired (not shown due to space restriction).
We also find that our runs over multiple days produce very similar
results (as evident by the minimal deviation in our results in fig. 3),
highlighting the repeatability of ComB. We also evaluate ComB on a
large, homogeneous, compute cluster with resource configurations

EdgeSys ’22, April 5–8, 2022, RENNES, France Bäurle and Mohan

resembling cloudlets. We found the performance results similar to
all-CPU mapping in our edge testbed, which is why we leave it
from the discussion for brevity.

While we carefully implement ComB to avoid process blocking,
we also evaluate the overhead of our benchmark for completeness.
We integrate a CPU profiler into our workload to measure the
time taken by each function call in each service. We find that the
services spend a majority of their time on functions relevant to the
pipeline execution for all configurations (not shown due to brevity)
– indicating a minimal footprint of ComB.

6 CONCLUSION
In this work, we presented ComB, which is benchmarking suite
specifically designed for edge infrastructures and workloads. The
innovation lies in the decoupled orchestration and workload design
– allowing developers to customize, extend (or entirely swap) the
workload to better complement the target application. The default
workload of ComB is a distributed video analytics application, which
includes multiple microservices with distinct operational character-
istics and requirements. We designed ComB to be highly extensible
and future-proof as novel virtualization and execution technologies
can be incorporated into the system with minimal implementation
overhead. Our evaluation showed that ComB is sensitive to detecting
inconsistencies in hardware operation and provides valuable run-
time metrics beyond the capacity (and configuration) to resource
operators. We make ComB public and open-source for community
contributions. In future iterations of ComB, we want to integrate
better object detection and object tracking procedures in the default
workload to significantly improve performance accuracy. Further-
more, we would like to incorporate workloads compatible with
lightweight virtualization technologies (e.g., Unikernels) and spe-
cialized execution environments, such as TEEs.

REFERENCES
[1] 2022. K3s - Lightweight Kubernetes. https://github.com/k3s-io/k3s
[2] OpenCV 2022. Opencv. OpenCV. https://github.com/opencv/opencv
[3] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. 2018. Mobile Edge

Computing: A Survey. IEEE Internet of Things Journal 5, 1 (2018), 450–465.
https://doi.org/10.1109/JIOT.2017.2750180

[4] Amazon Web Services, Inc. 2021. AWS IoT Greengrass. https://aws.amazon.com/
greengrass/

[5] Amazon Web Services, Inc. 2021. Firecracker MicroVM. https://github.com/
firecracker-microvm/firecracker

[6] Ganesh Ananthanarayanan, Paramvir Bahl, Peter Bodík, Krishna Chintalapudi,
Matthai Philipose, Lenin Ravindranath, and Sudipta Sinha. 2017. Real-Time Video
Analytics: The Killer App for Edge Computing. Computer 50, 10 (2017), 58–67.
https://doi.org/10.1109/MC.2017.3641638

[7] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan, Aleksandr Zavodovski,
Suzan Bayhan, Walter Wong, Per Gunningberg, Jussi Kangasharju, and Jörg
Ott. 2021. Surrounded by the Clouds: A Comprehensive Cloud Reachability
Study. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW
’21). Association for Computing Machinery, New York, NY, USA, 295–304.
https://doi.org/10.1145/3442381.3449854

[8] Lorenzo Corneo, NitinderMohan, Aleksandr Zavodovski, WalterWong, Christian
Rohner, Per Gunningberg, and Jussi Kangasharju. 2021. (How Much) Can Edge
Computing Change Network Latency?. In 2021 IFIP Networking Conference (IFIP
Networking). 1–9. https://doi.org/10.23919/IFIPNetworking52078.2021.9472847

[9] Vittorio Cozzolino, Leonardo Tonetto, Nitinder Mohan, Aaron Yi Ding, and
Jorg Ott. 2022. Nimbus: Towards Latency-Energy Efficient Task Offloading
for AR Services. IEEE Transactions on Cloud Computing (2022), 1–1. https:
//doi.org/10.1109/TCC.2022.3146615

[10] The Khang Dang, Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Jörg
Ott, and Jussi Kangasharju. 2021. Cloudy with a Chance of Short RTTs: Analyz-
ing Cloud Connectivity in the Internet. In Proceedings of the 21st ACM Internet

Measurement Conference (Virtual Event) (IMC ’21). Association for Computing
Machinery, New York, NY, USA, 62–79. https://doi.org/10.1145/3487552.3487854

[11] Anirban Das, Stacy Patterson, and Mike Wittie. 2018. EdgeBench: Benchmarking
Edge Computing Platforms. In 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion). 175–180. https://doi.org/10.
1109/UCC-Companion.2018.00053

[12] Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers,
Ian Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. 2020. MOT20: A
Benchmark for Multi Object Tracking in Crowded Scenes. arXiv:2003.09003 [cs]
(March 2020). arXiv:2003.09003 [cs]

[13] Gianmarco Dinelli, Gabriele Meoni, Emilio Rapuano, Gionata Benelli, Luca
Fanucci, and Martin Margala. 2019. An FPGA-Based Hardware Accelerator
for CNNs Using On-Chip Memories Only: Design and Benchmarking with In-
tel Movidius Neural Compute Stick. Int. J. Reconfig. Comput. 2019 (jan 2019),
13 pages. https://doi.org/10.1155/2019/7218758

[14] Docker Inc. [n.d.]. Empowering App Development for Developers | Docker.
https://www.docker.com/.

[15] Leo Eichhorn, Tanya Shreedhar, Aleksandr Zavodovski, and Nitinder Mohan.
2021. Distributed Ledgers for Distributed Edge: Are We There Yet? (IWCI’21).
Association for Computing Machinery, New York, NY, USA, 26–33. https://doi.
org/10.1145/3488663.3493687

[16] Shilpa George, Thomas Eiszler, Roger Iyengar, Haithem Turki, Ziqiang Feng, Jun-
jue Wang, Padmanabhan Pillai, and Mahadev Satyanarayanan. 2020. OpenRTiST:
End-to-End Benchmarking for Edge Computing. IEEE Pervasive Computing 19, 4
(2020), 10–18. https://doi.org/10.1109/MPRV.2020.3028781

[17] gRPC Authors. 2021. gRPC. https://grpc.io/
[18] John E. Hopcroft and RichardM. Karp. 1973. An $n{̂5/2} $ Algorithm forMaximum

Matchings in Bipartite Graphs. SIAM J. Comput. 2, 4 (1973), 225–231. https:
//doi.org/10.1137/0202019 arXiv:https://doi.org/10.1137/0202019

[19] Daniel Kang. 2021. The Tengo Language. https://github.com/d5/tengo
[20] C. P. Kruger and G. P. Hancke. 2014. Benchmarking Internet of things devices. In

2014 12th IEEE International Conference on Industrial Informatics (INDIN). 611–616.
https://doi.org/10.1109/INDIN.2014.6945583

[21] H. W. Kuhn. 1955. The Hungarian Method for the Assignment Problem. Naval
Research Logistics Quarterly 2, 1-2 (1955), 83–97. https://doi.org/10.1002/nav.
3800020109

[22] Chien-I Lee, Meng-Yao Lin, Chia-Lin Yang, and Yen-Kuang Chen. 2019. Iotbench:
A Benchmark Suite for Intelligent Internet of Things Edge Devices. In 2019 IEEE
International Conference on Image Processing (ICIP). 170–174. https://doi.org/10.
1109/ICIP.2019.8802949

[23] Luke Lockhart, Paul Harvey, Pierre Imai, Peter Willis, and Blesson Varghese.
2020. Scission: Performance-driven and Context-aware Cloud-Edge Distribution
of Deep Neural Networks. (2020), 257–268. https://doi.org/10.1109/UCC48980.
2020.00044

[24] Jonathon Luiten and Arne Hoffhues. 2020. TrackEval. https://github.com/
JonathonLuiten/TrackEval.

[25] Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip Torr, Andreas Geiger,
Laura Leal-Taixé, and Bastian Leibe. 2020. HOTA: A Higher Order Metric for
Evaluating Multi-Object Tracking. International Journal of Computer Vision
(2020), 1–31. https://doi.org/10.1007/s11263-020-01375-2

[26] Jonathan McChesney, Nan Wang, Ashish Tanwer, Eyal de Lara, and Blesson
Varghese. 2019. DeFog: Fog Computing Benchmarks (SEC ’19). Association for
Computing Machinery, New York, NY, USA, 47–58. https://doi.org/10.1145/
3318216.3363299

[27] LarryWMcVoy, Carl Staelin, et al. 1996. lmbench: Portable Tools for Performance
Analysis.. In USENIX annual technical conference. San Diego, CA, USA, 279–294.

[28] Microsoft Corporation. 2021. IoT Edge. https://azure.microsoft.com/en-us/
services/iot-edge/

[29] Nitinder Mohan, Lorenzo Corneo, Aleksandr Zavodovski, Suzan Bayhan, Walter
Wong, and Jussi Kangasharju. 2020. Pruning Edge Research with Latency Shears
(HotNets ’20). Association for ComputingMachinery, NewYork, NY, USA, 182–189.
https://doi.org/10.1145/3422604.3425943

[30] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,
and Jeremy Kepner. 2019. Survey and Benchmarking of Machine Learning
Accelerators. In 2019 IEEE High Performance Extreme Computing Conference
(HPEC). 1–9. https://doi.org/10.1109/HPEC.2019.8916327

[31] Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. 2017. RIoTBench: An
IoT Benchmark for Distributed Stream Processing Systems. Concurrency and
Computation: Practice and Experience 29, 21 (2017), e4257. https://doi.org/10.
1002/cpe.4257

[32] Qirui Yang, Runyu Jin, Nabil Gandhi, Xiongzi Ge, Hoda Aghaei Khouzani, and
Ming Zhao. 2020. EdgeBench: AWorkflow-based Benchmark for Edge Computing.
arXiv:2010.14027 [cs] (Oct. 2020). arXiv:2010.14027 [cs]

[33] Aleksandr Zavodovski, Nitinder Mohan, Suzan Bayhan, Walter Wong, and Jussi
Kangasharju. 2019. ExEC: Elastic Extensible Edge Cloud (EdgeSys ’19). Association
for Computing Machinery, New York, NY, USA, 24–29. https://doi.org/10.1145/
3301418.3313941

https://github.com/k3s-io/k3s
https://github.com/opencv/opencv
https://doi.org/10.1109/JIOT.2017.2750180
https://aws.amazon.com/greengrass/
https://aws.amazon.com/greengrass/
https://github.com/firecracker-microvm/firecracker
https://github.com/firecracker-microvm/firecracker
https://doi.org/10.1109/MC.2017.3641638
https://doi.org/10.1145/3442381.3449854
https://doi.org/10.23919/IFIPNetworking52078.2021.9472847
https://doi.org/10.1109/TCC.2022.3146615
https://doi.org/10.1109/TCC.2022.3146615
https://doi.org/10.1145/3487552.3487854
https://doi.org/10.1109/UCC-Companion.2018.00053
https://doi.org/10.1109/UCC-Companion.2018.00053
https://arxiv.org/abs/2003.09003
https://doi.org/10.1155/2019/7218758
https://www.docker.com/
https://doi.org/10.1145/3488663.3493687
https://doi.org/10.1145/3488663.3493687
https://doi.org/10.1109/MPRV.2020.3028781
https://grpc.io/
https://doi.org/10.1137/0202019
https://doi.org/10.1137/0202019
https://arxiv.org/abs/https://doi.org/10.1137/0202019
https://github.com/d5/tengo
https://doi.org/10.1109/INDIN.2014.6945583
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/ICIP.2019.8802949
https://doi.org/10.1109/ICIP.2019.8802949
https://doi.org/10.1109/UCC48980.2020.00044
https://doi.org/10.1109/UCC48980.2020.00044
https://github.com/JonathonLuiten/TrackEval
https://github.com/JonathonLuiten/TrackEval
https://doi.org/10.1007/s11263-020-01375-2
https://doi.org/10.1145/3318216.3363299
https://doi.org/10.1145/3318216.3363299
https://azure.microsoft.com/en-us/services/iot-edge/
https://azure.microsoft.com/en-us/services/iot-edge/
https://doi.org/10.1145/3422604.3425943
https://doi.org/10.1109/HPEC.2019.8916327
https://doi.org/10.1002/cpe.4257
https://doi.org/10.1002/cpe.4257
https://arxiv.org/abs/2010.14027
https://doi.org/10.1145/3301418.3313941
https://doi.org/10.1145/3301418.3313941

	Abstract
	1 Introduction
	2 Background and Related Work
	3 ComB Overview
	3.1 System Architecture
	3.2 Benchmark Orchestration
	3.3 Metric System

	4 ComB Workload
	4.1 Architecture

	5 Evaluation
	5.1 Experimental Setup
	5.2 Edge Accelerator Performance
	5.3 Benchmark and Workload Performance

	6 Conclusion
	References

