
2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

1

Nimbus: Towards Latency-Energy Efficient Task
Offloading for AR Services

Vittorio Cozzolino, Leonardo Tonetto, Nitinder Mohan, Aaron Yi Ding, Jörg Ott

F

Abstract—Widespread adoption of mobile augmented reality (AR) and
virtual reality (VR) applications depends on their smoothness and im-
mersiveness. Modern AR applications applying computationally intensive
computer vision algorithms can burden today’s mobile devices, and cause
high energy consumption and/or poor performance. To tackle this chal-
lenge, it is possible to offload part of the computation to nearby devices
at the edge. However, this calls for smart task placement strategies
in order to efficiently use the resources of the edge infrastructure. In
this paper, we introduce Nimbus — a task placement and offloading
solution for a multi-tier, edge-cloud infrastructure where deep learning
tasks are extracted from the AR application pipeline and offloaded to
nearby GPU-powered edge devices. Our aim is to minimize the latency
experienced by end-users and the energy costs on mobile devices. Our
multifaceted evaluation, based on benchmarked performance of AR
tasks, shows the efficacy of our solution. Overall, Nimbus reduces the
task latency by ∼4× and the energy consumption by ∼77% for real-time
object detection in AR applications. We also benchmark three variants
of our offloading algorithm, disclosing the trade-off of centralized versus
distributed execution.

1 INTRODUCTION

Since the advent of consumer mobile devices equipped with
multiple sensors and powerful chipsets, multimedia applica-
tions have garnered increasing interest amongst smartphone
users. A recent study reports that the mobile AR adoption
currently stands at 32%, where 54% of the respondents use
mobile AR at least once per week and 36% percent several
times per week [7]. Despite the increasing popularity of
the technology, most current mobile AR applications often
offer poor user perceived performance. The reason for this is
two-fold. Firstly, object recognition and detection algorithms
are a bottleneck for AR [97] as the front-end devices are
often insufficiently equipped to execute them with acceptable
latencies for the end user [1, 23]. Secondly, extended usage of
such applications results in high power consumption, which
leads to significant battery drain and overheating [35, 77].

Edge computing allows applications developers to ac-
celerate their services’ performance by offloading computa-
tionally intensive tasks to nearby powerful machines instead
of the distant cloud datacenter. Latency critical applications
operating on mobile devices, such as AR/VR, benefit most
from the availability of the edge as they can utilize more

• V. Cozzolino, L. Tonetto. N. Mohan and J. Ott are with the Technical
University of Munich, Germany.

• A.Y. Ding is with the Delft University of Technology, Netherlands

powerful hardware, in addition to on-board processors,
without traversing long paths to the cloud [88, 91]. As
shown in previous research, such approaches not only allow
smartphones to run multimedia applications and games
with better visual quality [17, 21, 30, 34, 41, 80, 81, 93],
but also enable older mobile devices (provided they are
equipped with the required spatial sensors) to support such
applications in the first place.

Unlike other driving applications for edge computing (e.g.
smart homes), real-time multimedia applications impose
much stricter constraints on offloading computations at
edge devices. Since such applications need to incorporate
tightly-coupled user interactions, they operate under strict
delay thresholds imposed by the human vestibular system
– bordering between 75ms for online gaming and 250ms
for telemetry [66]. In practice, requirements for seamless
interaction between the physical world and the virtual
overlay are estimated to be much lower, ∼7ms [10, 25].
Currently, a modern smartphone can run object detection in
∼200ms per frame using an optimized model [78], which is
some orders of magnitude off from the strict requirements of
AR applications. Preserving loss of smoothness and excessive
delays in applications relying on virtual environment is
paramount to prevent phenomena such as motion sickness
[66]. Additionally, AR/VR applications are power-hungry
and can quickly drain the phone’s battery [9]. The growing
demand for higher precision deep learning models and
increased immersiveness of the augmented experience can
cost even more battery power. Chen et al. [28] show that
a smartphone can spend significant portion of its battery
capacity while running a mobile-optimized object recognition
service. Pairing this workload with client-side rendering, net-
work communications, and running specific AR application
logic can reduce the expected battery life even further.

Considering the complexities levied by deep learning
based real-time applications, it is challenging to exploit a
nearby edge infrastructure in a scalable manner. Moreover,
while the cloud has potentially unlimited resources, the same
cannot be assumed for the edge computing paradigm. In fact,
the latter is by definition distributed across multiple edge
networks and hence associated with considerable heterogene-
ity in bandwidth and compute resources [61]. On the other
hand, recent large-scale measurement studies have shown
that despite the significant growth in cloud infrastructure,
the network latencies from users to nearest cloud datacenters
exceed the strict operational boundaries of AR applications

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

Camera
Input

Frame
Pre-processing

Object
Detection

Feature
Extraction

Object
Recognition

Template
Matching

Object
Tracking

Annotation
Rendering

Camera
Input Decode/ISP Image

Processing Batching DNN(s)
Detect and Classify Tracking Visualization Display/

Storage

AR Pipeline

Video Analytics
Pipeline

Examples of offloadable steps. In this work, we focus on the one marked in red.

Fig. 1: Mobile applications requiring deep learning steps.

almost globally [31, 32, 36]. As a result, we see edge-cloud
interplay as key to extend cloud computing reach outside
of datacenters, and enhance its services by leveraging an
infrastructure closer to the end-users [66, 87]. We believe that
effective application offloading is a crucial problem for edge-
cloud computing that must be addressed when thinking at
scale. For that, selecting an appropriate offloading candidate
must be at the core of maximizing user satisfaction, as
allocating multiple users to an already overloaded edge node
can negatively impact an AR application’s performance [28].

To summarize, the motivation behind our work is boosting
the performance of mobile applications that use DNNs (as
shown in Figure 1) by offloading part of their execution
pipeline to the edge-cloud infrastructure. The ultimate goal
is to improve the quality of experience and enable poten-
tially new classes of applications which have strict latency
constraints (such as real-time mobile VR). We approach the
problem from a system design perspective and proceed by
using an algorithm for resource provisioning to measure
the effectiveness of our architecture.

Contributions. In this paper, we present Nimbus, a real-time
task offloading system designed to determine an optimal
task placement strategy. We aim at reducing the latency gap
afflicting the execution of real-time deep learning models
required by AR and similar applications by making use of
resources offered at the network edge, at scale. We select and
support the execution of mobile-optimized, object detection
convolutional neural network (CNN) for AR applications,
as shown in Figure 1. This shows also the pipeline for live
video analytic applications which programmatically share
core components of AR/VR applications and are becoming
the solution to many safety and management tasks [95].
The design principles of Nimbus are devised to address
three crucial constraints of target applications: (1) latency
as a primary measure of the application QoS, (2) battery
consumption which defines the extent of the user’s QoE,
and (3) task coordination as the role of the infrastructure in
orchestrating, load balancing and distributing computation
based on the users’ demands. Nimbus aims at minimizing
the overall mobile-to-edge latency while avoiding increasing
battery consumption. Additionally, Nimbus’s offloading
policy ensures a balanced load distribution across the edge
nodes participating in the infrastructure. Our contributions
in this paper are as follows:

• We benchmark the performance of different classes of edge
devices to understand their support towards real-time
object detection for mobile AR.

• We devise a multi-tier edge-cloud infrastructure and
propose a best-effort resource provisioning algorithm ad-
dressing the problem of serving multiple users competing
for heterogeneous resources. Overall, our approach reduces
task latency by∼4× and the energy consumption by∼77%
for real-time object detection.

• We develop an edge infrastructure simulator1 to evaluate
the performance of Nimbus against other related solutions.
From an empirical analysis based on extensive measure-
ments in real testbeds, we extract the parameters of the
simulator to closely mimic the realistic operations of edge
devices and core network latencies.

• We develop and evaluate several variants of Nimbus
reflecting both centralized and distributed execution of
the task placement algorithm.

2 RELATED WORK

The intuition of offloading computationally intensive tasks
from mobile devices towards powerful servers has been
explored vastly in the past decade. Originally, the offloading
procedure targeted powerful datacenters in the cloud [39, 42].
With the rise of edge computing, the status quo changed
drastically with new possibilities to mitigate the most
prominent drawback of cloud offloading: latency. In fact, the
introduction of cloudlets and edge envisioned a collaborative
computational infrastructure where intensive tasks could
be offloaded to nearby edge microservers, thus saving on
access latency [20, 79]. Moreover, edge computing can also
help in reducing energy consumption of mobile devices.
For example, with Voltaire [27] it is proposed to perform
code offloading to enables resource-constrained devices to
leverage idle computing power of remote resources.

Nevertheless, edge nodes have limited computational
resources, limiting the number of clients that can be served at
the same time. Approaches based on offloading to the nearest
edge-cloud can lead to situations where too many clients are
allocated to the same node, competing for limited resources.
Multiple works have focused on solving a similar problem
by using either hierarchical edge-cloud architectures or load
balancing among edge-cloud [24, 29, 47, 58, 62, 63, 90, 92].
In particular, MCDNN [45] developed a compiler together
with a runtime scheduler to balance between accuracy and
resource consumption by reasoning about on-device/cloud
execution tradeoffs, while Markov decision processes [46]
were used for VMs load management to reduce energy

1. Code and dataset are available here https://github.com/
vitcozzolino/nimbus.

2

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

https://github.com/vitcozzolino/nimbus
https://github.com/vitcozzolino/nimbus

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

consumption in datacenters. A similar approach was pro-
posed by Tan et al. [84] to minimize the expected response
time, where tasks uploaded from mobile device are sent to
an edge-cloud infrastructure and scheduled by an online
job dispatching algorithm. While their method is limited
– assuming a server can only process one job at a time
– we instead consider parallel execution of multiple jobs.
Other approaches have focused on reconfiguration of edge-
clouds [51], specifically on how to optimize the placement of
cloudlets in a given network. The approach of using a hierar-
chical edge-cloud infrastructure has been proposed already
by Tong et al. [85] to efficiently handle the peak load and
satisfy the requirements of remote program execution. Recent
work from Braud et al. [26] introduces a task allocation
algorithm based on a latency model leveraging multipath
computation to offer multiple resources in parallel. The key
difference from the these approaches is that our system
tackles the problem of parallel tasks execution offloaded
to the same edge device while they focus on sequentially
placed workloads. Additionally, previous solutions focused
only on latency (computational and/or communication)
without factoring in mobile energy consumption in the
offloading decision. Finally, many scheduling algorithms
translate task complexity in the number of CPU cycles
required for its execution eventually combined with other
parameters such RAM, disk, and bandwidth [38, 53, 98].
We instead focus on GPU workloads and their performance
variance with overlapping tasks — a parameter which is
seldomly explored.
While most of the previous work aimed to minimize mobile
task execution time, we focus specifically on AR application
offloading [57, 89]. By doing so, we gain a clear under-
standing of how and where a task should be offloaded
since we are aware of the inherent requirements of such
applications. Our scheduling algorithm focuses primarily
on improving the perceived performance for the mobile
user. Similar work has been done for visual applications
offloading in the past. LAVEA [96] is a system built on top
of an edge computing platform, which offloads computation
between clients and edge nodes, to provide low-latency video
analytics at places closer to the users. The work closest to ours
is [72] – a framework that ties together front-end devices with
more powerful backend servers to support complex deep
learning tasks. However, unlike our work, the authors do not
consider a multi-tier edge infrastructure and scenario where
multiple users are competing for the resources offered by the
infrastructure.

For mobile-cloud offloading, some work has been con-
ducted in the past for optimizing DNNs. Kang et al. [52]
and Xia et al. [94] identified how to optimally slice a
model to offload only a part of it to the cloud in order
to minimize either latency or energy consumption. DynO
[16] is a distributed inference framework addressing several
challenges, such as device heterogeneity, varying bandwidth
and multi-objective requirements. Key components that
enable this are its novel CNN-specific data packing method,
which exploits the variability of precision needs in different
parts of the CNN when onloading computation, and its
novel scheduler that jointly tunes the partition point and
transferred data precision at run time to adapt inference to
its execution environment. Our work is inspired by those

AP AP AP AP AP AP

EN

EN

EN

EN

EN

EN

EN

EN

EN EN EN

MD MD MD

Increase latency
Increase computational power

Decrease in EN density

AP/EN (Tier 1)

EN (Tier 2)
EN (Tier 3)

Tier 3

Tier 2

Tier 1

Cloud

Fig. 2: Multi-tier edge-cloud infrastructure.

studies and strives to characterize the problem in a multi-
tenant environment where resource contention is the primary
issue.

Recapping, Nimbus differentiates from the aforemen-
tioned research works in many ways. It tackles the problem
of parallel task execution instead of makespan optimization
(sequential). Our offloading solution revolves around a joint
latency and mobile battery optimization procedure with a
focus on GPU workloads and their scaling properties. Finally,
Nimbus performance is rooted in a set of real measurements
gathered from devices which are part of our envisioned
edge-cloud infrastructure.

3 SYSTEM OVERVIEW

Figure 2 shows the entities in our system – mobile devices
(MD) and edge nodes (EN) interacting over the network.
While the former interact with the infrastructure as users of
AR applications, the latter are responsible for handling tasks
offloaded by the MD. In our case, an MD is a battery-powered
mobile device that can offload part of its computation to the
edge-cloud infrastructure. We assume a hierarchical edge
architecture where compute and caching capabilities of EN
increase with increasing distance from the MD. Nodes in
different (logical) layers of the edge network can be accessed
via ad-hoc connections or gateways [33, 56, 60, 65, 67, 83].

The design of our edge computing infrastructure is
inspired by networks like Eduroam2. The deployment of
Eduroam is widespread as it can be found outside academic
facilities, e.g., libraries and study centers. While such a
network (currently) only offers Internet access to clients, we
acknowledge its capabilities to support an edge computing
infrastructure due to the presence of multiple connected
networked resources capable of running computations on
behalf of the connected users. We logically divide the
network into three layers – each one offering different
capabilities and, as we approach the core of the infrastructure,

2. https://www.eduroam.org

3

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

latency and computational capacity of the resources increases.
Conceptually, the architecture proposed by Tong et al. [85]
and Mohan and Kangasharju [64] come closest to ours and
we use them as point of reference in our system design.

Tier One Edge Nodes (T1-EN). The outer-most layer (de-
noted by blue circles in Figure 2) is a set of augmented
access points (AP) or base stations with minimal compute
capabilities. We assume these APs to be either equipped with
(or directly connected to) an embedded device with low-end
GPUs, e.g. NVIDIA Jetson Nano or Intel NCS2. Resources in
this layer act as entry points to the network, offering limited
computation in addition to standard routing and connectivity
functionalities.

Tier Two Edge Nodes (T2-EN). T2-EN (denoted with squares
Figure 2) form the second layer of our multi-tier edge
cloud infrastructure. Logically these devices can be viewed
as backbone routers co-located close to T1-EN. However,
unlike T1-ENs, T2-ENs posses more computational power
and network bandwidth that allows them to serve multiple
users in parallel. An example of T2-EN resources in the real
world is a mid-range micro-server equipped with a discrete
GPU.

Tier Three Edge Nodes (T3-EN). The core of our architecture
comprises of T3-EN (shown as orange hexagons) that are
powerful servers equipped with multiple GPUs, offering
the most significant computational power of all layers. The
capabilities of T3-EN are analogous to traditional cloud
datacenters, both in terms of the number of users that can
be served in parallel and network bandwidth connecting
servers within the layer. However, due to their proximity to
the network core, the network latency incurred to access
the resources in this layer is the highest amongst edge
infrastructure.

We consider a system where a mobile device hosting an
AR application can offload component tasks in the pipeline
(e.g. those requiring deep learning) to the edge infrastructure.
Considering the inherent heterogeneity that exists in the
infrastructure — different hardware capabilities, network
latency to server, task requirements etc. — an effective task
offloading strategy is required ensuring that the application
performance meets the required expectations. Additionally,
we assume that ENs in our system are managed resources
and can communicate/exchange details regarding their
current processing load with other ENs. This assumption
roughly resembles the current state of resource management
in cloud datacenters and it allows our task offloading
algorithm (presented in the following section) to have fresh
information regarding the edge network state.

4 TASK OFFLOADING AT THE EDGE

We consider a system where a controller estimates the
feasibility of offloading a task proposed by a mobile device
to the edge infrastructure. Since our objective is to showcase
the effectiveness of our offloading solution, we start by con-
sidering a centralized controller located in the cloud. Later
in the paper (§6), we design a distributed and hybrid variant
of our offloading mechanism and compare the operational
differences of all approaches. Figure 3 shows a high-level
concise workflow representing the MD-Controller interaction.

MD EN Controller

Benchmark
Lookup

Handshake

H
an

ds
ha

ke

Ph
as

e Execute
Nimbus

Offloading Target

Notify

O
ffl

oa
di

ng
Ph

as
e

*Task arrival
Offload Task

Processing

Inference Result

R
el

ea
se

Ph
as

e

Release Resources

Release

Acknowledgement

Update

Fig. 3: MD-Controller Workflow.

The infrastructure is composed of N interconnected and het-
erogeneous ENs, which, based on their computing capacity,
can serve several concurrent tasks. An MD can offload its
task via T1-EN, which act as gateways to the infrastructure.

Before entering the handshake phase, the MD performs
a one-time procedure called benchmark lookup. Normally,
games and other multimedia applications run benchmarks
to estimate their runtime performance in order to tune and
set configuration parameters. Similarly, there are tools to
profile deep learning models on mobile devices [50]. In
our model, we assume that benchmarked results for each
MD are uploaded to a repository that is looked-up by
the system to identify MD’s capabilities. Afterwards, the
handshake procedure begins and the MD exchanges with
the infrastructure controller its requirements in terms of
deliverable performance (in FPS and battery consumption).
In the offloading phase, the MD connects to the network
to offload and it receives a list of offloading candidates
from the controller obtained by running Nimbus (details
about the algorithm logic will be provided in §5). Then, the
MD will interact with the selected EN until required by
the underlying application. Finally, in the release phase, the
resources booked for the MD on the EN are released, and
the controller is notified. The Nimbus offloading decision is
based on minimizing deep learning based task latency (i.e.,
maximizing FPS) as it directly affects the QoE for mobile AR
applications.

Offloaded Tasks. As shown previously in Figure 1, AR/VR
applications (especially games) can be decomposed into
subroutines executed at each rendering step [97]. Some of
these steps are not tied to the application logic and are
perfect offloading candidates. Let us take the example of
tracking-by-detection principle [19, 55, 71] for object tracking.
The principle requires that the object is detected in the first
and all subsequent frames. The object is tracked simply by

4

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

TABLE 1: List of parameters used by the algorithm.

Term Description Unit
di Amount of data transferred by the i-th MD KB
BWij Bandwidth between i-th MD i and j-th EN Mbps
TETj Inference time on the j-th EN ms
TECi Local energy execution cost for i-th MD mJ
qj Queuing time at j-th EN ms
w Transmission module power mJ/ms
εt Latency threshold ms
εb Energy budget J/s
RTTm RTT matrix ms
κ, α, β Additional coefficients (described in § 5) —

associating detection results to form target trajectories. This is
a necessary component in all AR applications where smooth
integration with real world is paramount. While tracking
requires sophisticated application logic to interpolate objects
positions across frames, detection is oblivious to past ex-
ecutions and depends only on the latest frame. Therefore,
object detection is a prime candidate for offloading to the
edge. In practice, a stream of pictures can be sent by the MD
towards the target EN for processing. Even if the EN becomes
unresponsive, the MD can switch to executing the task locally
so that the underlying offloading process is transparent
to the end-user who would experience no interruptions
in the service. We consider each task submittable to the
infrastructure as atomic (i.e., indivisible and uninterruptible).
In this work, we focus on stateless tasks that are resilient
to the loss of connectivity due to their independence from
past transactions. However, our solutions proposed in this
paper can be extended to stateful tasks as well with proper
synchronization mechanisms. That, we leave them for future
work as hereby we concentrate our efforts on the offloading
strategy and algorithm formulation.

Our problem formulation assumes that MDs offload tasks
to the system in bulks, which translates into a constant, worst-
case arrival rate. This allows us to devise a solution that
does not assume any prior knowledge about the offloaded
task makespan nor use it to optimize the decision making
process. It is not realistic for an MD to know in advance for
how long the user will run the application (e.g., minutes to
hours). The only information available are inference time
of the DNN task and its energy cost (estimated during
the benchmarking phase shown in Figure 3). Therefore, we
optimize the resources allocation in a maximum concurrency
scenario – where all the MD are concurrently using the
infrastructure and all resources, from network bandwidth to
compute, must be shared.

In a practical scenario, tasks can have different complexity
and requirements. For simplicity, we select a class of tasks
for which we provide execution time distributions for the
device executing them. We used the NVIDIA Triton [14] suite
to benchmark MobileNetv2, a common CNN-model central
to image classification tasks, with an increasing number
of clients. We run benchmarks on three device types, each
representative of the different tiers of our multi-tier edge
infrastructure. Figure 4 shows the results we gathered in our
experiments and specifically the inference and queue time
for different EN tiers. More details will be discussed in §6.

Objective 1: Minimize Latency. The total task latency
consists of transmission time Ltij between the i-th mobile

101

6 × 100

2 × 101

[m
s]

In
fe

re
nc

e
Ti

m
e

0 50 100 150 200 250
Parallel Clients

101

103

[m
s]

Qu
eu

e
Ti

m
e

Jetson TX2 (EN-T1) GTX 1060 (EN-T2) 2x RTX 2080 (EN-T3)

Fig. 4: Inference and queue time for the three EN tiers.

device and the j-th edge node, plus the execution time
Leij of the required tasks at the j-th node. Transmission
time depends on the network bandwidth BWij and on the
amount of data di sent by a mobile device. Furthermore,
this communication delay can be negatively affected by
multiple clients interacting with an EN if they share the
same access medium (e.g., WiFi). Hence, a fair queuing best-
effort communication model is assumed where each client
connecting to an EN perceives a connection bandwidth equal
to R/N, where R is the total offered data rate and N the
number of active users.

Execution time represents the amount of time an MD
has to wait in the processing queue before its request can
be served, i.e the time to execute a task (TETj) plus the
GPU queuing time (qj) on the j-th EN. Queue time can
grow substantially depending on the EN’s capabilities and
the number of concurrently served clients. Figure 4 shows
inference and queue time for each edge device tier and the
number of users concurrently using the device. As expected
for T1-EN, the queue time increases with the number of
served clients due to the limited hardware capabilities of
devices in this tier. On the other hand, powerful discrete
GPUs found in expensive workstations can handle many
more clients with a minimal queue time penalty. Another
key insight from Figure 4 is that unlike inference time,
queue time is heavily influenced by the number of parallel
users and is a primary variable to model highly concurrent
scenarios. Moreover, ENs equipped with powerful GPUs
incur a queuing penalty only after concurrently serving many
MDs, as shown for the T3-EN in Figure 4. Eventually, this
leads to a point where even a powerful EN can not meet the
QoE requirements of the MDs.

Objective 2: Reduce battery consumption for the MD. When
mobile phones receive or transmit data, they consume energy
depending on the network bandwidth and the amount of
data to be transferred. Additionally, in real scenarios, wireless
mobile devices often experience high variances in link
quality [36, 68], directly affecting the data transfer latency and
the final energy consumption. When offloading or accessing
cloud resources, it is important to take into account the
additional delay introduced by the network load pattern as
they change throughout the day [59]. Therefore, network
conditions for mobile devices experience high variance, and
narrowing down to a single energy consumption model for
all kinds of mobile devices in all network conditions is very
challenging. In this paper, we build on top of previous work
from Xia et al. [94] and Kang et al. [52] to express the energy

5

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

Device Name Inference
Energy Cost Time

OnePlus 5T Mobile_A 182 mJ 154 ms
OnePlus 3 Mobile_B 318 mJ 116 ms

Redmi Note 4X Mobile_C 268 mJ 190 ms

TABLE 2: Mobile inference time and energy cost for Mo-
bileNetv2.

cost of transferring data Bt as a function of the transmission
module power w and the overall transmission time Lt as
shown below:

Lt =
d

BW
+RTT (1)

Bt = Lt × w (2)

where d is the amount of transferred data, BW the upload
bandwidth and RTT the network round-trip time.

We follow Xia et al. [94] and define three classes of mobile
devices, each one with different hardware resources and
power consumption profiles. We benchmark the performance
of all three device classes for executing MobileNetv2. For
Mobile_A and Mobile_B class, we use a single, CPU core
while for Mobile_C we use 8 CPU cores. The energy cost and
inference time achieved by all classes is shown in Table 2.
In all cases, no model partitioning was applied. Also, the
amount of energy spent to execute inference locally on the
mobile device allows us to compare the cost of offloading
the task against running it locally. While many contributions
model both network transfer and mobile inference energy
cost [43], we favor the approach described above due to its
comprehensiveness and precise results — especially for the
object detection task we focus on in our study.

Mathematical formulation. Assume that the i-th task is exe-
cuted by j-th EN, the task latency and battery consumption
incurred by the device can be formalized as:

Lij = (Ltij + Leij) =

[
(

di
BWij

) +RTTij

]
+ (TETj + qj) (3)

Bij = Btij = Ltij × w (4)

We ignore the downlink cost for the energy consumption
calculations as we assume it to be negligible when compared
to the uplink, especially for object detection applications.
While the input can be an image of arbitrary size, the output
are bounding boxes of comparatively smaller in size for
which the network transmission has a negligible energy cost.
Therefore, when a task is offloaded, both its latency and
mobile energy consumption are affected by the process of
communicating with the edge infrastructure. In other cases,
the task is running locally and its execution latency and
energy consumption are described in Table 2.

Based on the system described above, we define the
task assignment problem as selecting an EN for assigning a
task to minimize latency (L) and battery consumption (B) for the
mobile device. The problem translates into a multi-objective
optimization problem with two objective functions in the
form of min g(L(~x), B(~x)) with ~x ∈ X and X the space of
feasible decision vectors. In our case, we focus on identifying

a set of Pareto optimal solutions which, by definition, cannot
be improved in any of the objectives without degrading at
least one of the others.

To solve for both latency and battery consumption, we
make use of an approach called scalarizing. Scalarizing is
an a priori method that allows us to formulate a single-
objective optimization problem such that optimal solutions to
it are Pareto optimal solutions to the original multi-objective
optimization problem [49]. In our case, it would lead to the
following reformulation of the problem: min g(L(x), B(x), φ)
with x ∈ Xφ and Xφ set depending on the vector φ. Of the
multiple scalarization techniques, we adopt the ε-constraint
method [37] to reformulate the multi-objective optimization
problem by just keeping one of the objectives and restricting
the rest within user-specified values (which fits our scenario).
Based on the system described before, the offloading problem
demands us to identify the best EN to run a user submitted
task to minimize the experienced task latency while not
violating the stated constraints. Mathematically, let xij ∈
{0, 1} denote the case when the j-th EN serves the i-th device.
We express the ε-constrained latency minimization problem
as follows:

min

N∑
i=1

M∑
j=1

xijLij(p) (5)

subject to
N∑
i=1

xij = 1,∀j ∈M, (6)

Lij ≤ εt,∀j ∈M, (7)
Bij ≤ εb ≡ TECi,∀j ∈M, (8)
xij ∈ {0, 1},∀i ∈ N, ∀j ∈M (9)

where N and M are the set of mobile devices and EN, re-
spectively, and with p= 〈di, BWij , TETj , RTTij , qj〉 vector
containing part of the parameters shown in Table 1. Equation
5 is our objective function. Equation 6 and 9 limit each MD
to offload its task to as single EN, at most. Equation 7 and
8 are formalization of the latency and energy consumption
constraints limiting the feasible solution space.
Constraints. The εt represents a predefined latency threshold
after which offloading computation does not benefit the
mobile device. The value covers both the transmission
time and remote execution of the task. Depending on the
mobile devices’ requirements, εt can be a different value
reflecting the specific user or application needs. Therefore,
the threshold value depends on many factors, e.g., FPS
requirements of the offloaded task. εb represents the battery
consumption threshold, exceeding which offloading the task
becomes too expensive in terms of energy. Fundamentally,
εb depends solely on the cost of running the task locally
(TECi) on the i-th device. This constraints are a function
of the MD capabilities. For example, a powerful MD will
have a much lower value for εt and, potentially, εb as it can
complete locally its task quickly and efficiently (in terms of
energy cost).

5 ALGORITHM

Following the ε-constrained approach in §4, we are able
to re-construct our optimization problem in convex form

6

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

Algorithm 1: Nimbus allocation algorithm.
Input : Refer to Table 1.
Output : Best offloading target for the i-th MD.

// Warmup

1 ~ENr ← FilterAndMinimize(AP,RTTm, εt)

2 ~EN ← LookAheadLoad(~ENr, κ)
// Core

3 for ENj in ~EN do
4 Lij = (Ltij + Leij) =[

(di
BWij

) +RTTij

]
+ (TETj + qj)

5 Bij = Btij = (Ltij × w)
6 if Lij ≥ εt or Bij ≥ εb then
7 Drop(ENj , ~EN)
8 end
9 end

10 if ~EN 6= ∅ then
11 for ENj in ~EN do
12 return argmin[α ∗ Lij

εt
+ β ∗ loadj

maxloadj
]

13 end
14 else

// Failover
15 cloud← FindClosest(εt)
16 if Lcloud ≤ εt and Bcloud ≤ εb then
17 return cloud
18 end
19 end
20 return ∅

Src
Dst T1-EN T2-EN T3-EN

EN0 ... ENn−1 ENn EN0 ... ENn−1 ENn EN0 ... ENn

T1− EN0 c
... ... c

T1− ENn−1 c
T1− ENn c

TABLE 3: RTT matrix structure.

that we solve using a meta-heuristic. The adopted search
strategy for our meta-heuristic is inspired by the hill climbing
algorithm [3] that is widely used due to its effectiveness and
simplicity in different convex optimization problems (e.g.,
artificial intelligence) for which it can provide the optimal
solution [74]. Algorithm 1 describes Nimbus task offloading
approach.

Nimbus operation is divided into three phases: Warmup,
Core, and Failover. The Warmup phase identifies a list of ENs
that are accessible from the AP the device is connected to and
are the best candidates to offload computation. In the Core
phase, the algorithm calculates the latency and battery cost
for offloading to each EN in the list using the formulation
described in §4. Afterwards, it selects the best EN based on
the balance-ensuring allocator. In the Failover phase, if the
algorithm failed to find a suitable EN for offloading the task,
it looks for a cloud server that best satisfies the latency and
energy consumption constraints of the task.

Warmup Phase: To start off, Nimbus identifies a list of
EN candidates for offloading the task. The function Fil-
terAndMinimize extracts the set of ENs reachable from the
AP to which the mobile device is connected. For reducing

Algorithm 2: LookAheadLoad procedure.

Input : ~EN , exploration coefficient κ, εt.
Output : List of compatible EN.

1 ~compatibleEN = ∅
2 for ENj in ~EN do
3 if devicesListj 6= ∅ then
4 mnl = argmax deviceNetworkLatencyj
5 if size(devicesList)�

maxServableDevicesj(εt −mnl) then
6 ~compatibleEN ← ENj
7 end
8 else
9 ~compatibleEN ← ENj

10 end
11 end
12 if kappa ≡ 0 then
13 return ~compatibleEN
14 else
15 return randomSet(κ, ~compatibleEN)
16 end

the search space, Nimbus filters out all ENs for which the
network latency or the queue time is already greater (or
equal to) the maximum threshold εt for the i-th mobile device.
Subsequently, LookAheadLoad removes those EN candidates
which are already close to their critical mass and serving
another MD would violate the εt constraint. In fact, whenever
we offload a task to an EN, the queue time increases for
all the other tasks. As we can quantify this domino effect
(discussed in §4), it is possible to use the MD experiencing
the highest network latency as a reference point. If, for such
device, we violate the task latency constraint, that EN is
excluded from the list of viable offloading targets. Algorithm
2 describes the procedure in details. The parameter κ controls
the search space by setting an upper bound to the number of
ENs we want to consider. In our evaluation, κ will be used
as a tradeoff parameter between convergence time and the
solution’s goodness. The output of the Warmup phase is a list
of ENs that are passed to the next phase of the algorithm.
Core Phase: As the name suggests, this phase is the core of
the algorithm as it identifies the best offloading target by
solving the minimization problem defined in §4. For each of
the candidate ENs collected by the Warmup phase, Nimbus
calculates the execution latency and battery consumption
for offloading the task. We then use these estimates in the
optimization step to identify which ENs respect the latency
and battery constraints and avoid overloading the EN. This
step is necessary for an effective task offloading at the edge
as any new mobile device allocated to an EN impacts the QoS
of all the other device being served by that EN. We assume
that MDs do not change their requirements after being
offloaded. If, in case they do, the device needs to resubmit
the updated requirements triggering a new schedule by
the algorithm. The α and β coefficients strike a balance
between minimizing the latency for the MDs and avoiding
infrastructure overload. If latency optimization is the only
objective for the infrastructure’s orchestrator, it can easily

7

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

achieve it by setting β to zero. In our evaluation, we set α to
0.7 and β to 0.3 to strongly favor latency optimization rather
than balancing the infrastructure load. Other combinations
can be used depending on the specific optimization goals
and on the infrastructure capacity. Additionally, loadj and
maxloadj represent the current and maximum load in terms
of devices for the j-th EN, respectively. We calculate the latter
using an inverse formula of the queue time growth, which
we omit for brevity.
Failover Phase: The final phase of Nimbus is optional as it is
only reached if the algorithm is unable to find any suitable
candidate in the edge infrastructure that can meet the mobile
device requirements. In this phase, FindClosest identifies the
best datacenter (in terms of network RTT) for offloading the
task. We do not assume any prior knowledge of the compute
and hardware capabilities of the target datacenter. Instead,
we assume constant execution latency for the cloud, making
network RTT the main discriminating factor.

Finally, if the Failover step fails, the mobile device fallbacks
to local execution and exits the scheduling algorithm.

6 MEASUREMENT AND EVALUATION SETUP

To evaluate Nimbus’s performance in realistic settings, we
conduct several experiments and measurements to collect
data concerning multiple variables of the algorithm. In this
section, we explore and analyze all facets of our algorithm,
namely network latency, inference and queuing time, and
specifications of MD and T1-EN. Note, however, that we do
not simulate or model network flows. From the network
perspective, we elevate our point of view so that all the
consequences of routing queues, path selection, and network
connection fluctuations are reflected solely by the network
RTT. We delve deeper into the consequences of our choice in
§ 8.
Network latency. As mentioned in § 3, we target an aca-
demic network infrastructure like Eduroam. At the time
of writing, no network latency datasets were available for
such a network. Nevertheless, to provide a meaningful
distribution of the network latency across different layers
of the infrastructure, we followed two approaches. The first
approach focused on measuring network RTTs targeting
some of our devices connected to the Eduroam infrastructure.
We performed measurements from three vantage locations:
overseas (connecting USA to Europe), from a different city
(∼20 miles away), and directly connected in the same subnet.
By analyzing these data, we generated three probability
distributions, one for each EN tier.

We utilized two publicly available RTT datasets from
two p2p-based networks: Seattle [11] and PlanetLab [8]. The
dataset is publicly available at [4]. In order to assign network
RTT to each EN, we identified three latency classes through
k-nn clustering and subsequently generated the respective
distributions, shown in Figure 5. The distributions were then
used to generate relative RTT matrices (Table 3) that we feed
to our solver. The row and column of the matrix represent
an AP and EN in the network respectively. The values of the
matrix represent the network RTT to reach any of the EN
from an AP. As the probe’s data are anonymized, we do not
have information about the relative distance of the nodes or
their location.

0.00

0.02

0.04

S
ea

ttl
e

D
en

si
ty

(K
D

E
)

High RTT Low RTT Medium RTT

0 50 100 150 200 250
Network Latency [ms]

0.00

0.02

0.04

P
la

ne
tL

abLow RTT High RTT Medium RTT

Fig. 5: Latency distributions for selected datasets.

Since our results from Seattle and PlanetLab datasets
were almost similar, we only estimate latencies within
our edge infrastructure using numbers from the Seattle
dataset in § 7. As described in the Failover phase, MDs are
allowed to connect to a cloud server if the performance
offered by the edge network is not satisfactory. To estimate
user latency to the cloud, we utilize our large-scale ping
measurements from 3200+ RIPE Atlas probes [82] to 101
datacenters operated by seven major cloud providers globally.
Our measurements over five months resulted in ≈3.2M
datapoints spanning several GBs [31]. We make our dataset
publicly-available at [40].

Inference and queuing time. To measure the computational
cost of the task, we selected three different devices: an
NVIDIA Jetson TX2, a laptop with an NVIDIA 1060 GTX,
a micro-server with 2x NVIDIA 2080 RTX. We used the
NVIDIA Triton [14] suite to benchmark MobileNetv2 with an
increasing number of clients. Finally, as shown in Figure 4,
we extracted the inference and queuing time. While the
former remains constant regardless of the number of users,
the latter instead, grows quasi-linearly with the number
of clients. Note that this also depends on the amount of
model instances loaded into the memory, as GPUs with
more available VRAM can host more models in parallel,
effectively boosting the overall performance by being able
to concurrently serve more clients in parallel. T3-EN nodes
have plenty of VRAM but this is not the case for T1-EN
which might only be able to load concurrently a handful of
models.

MD and T1-EN setting. The MDs are assigned hardware
specs based on § 4. For simplicity, we uniformly distribute the
total mobile devices across the three available hardware specs.
The ratio of APs that are also T1-EN nodes is variable and
depends on the experiment we run. However, for each AP,
the maximum nominal Wi-Fi bandwidth is set to 300 Mbps.
We assume that all devices connected to an AP experience the
same connection quality apart from the effective bandwidth.
Additionally, we do not account for any transmission-related
issues that could negatively affect the signal.

We extrapolate data from the publicly accessible Leibniz-
Rechenzentrum (LRZ) dataset [5, 6] to assign a location to
each AP in the edge-cloud network plus their respective
loads in terms of connected MDs. We extracted nine months’
worth of network association data of public buildings and
networks from the LRZ dataset. This contains over 4500
access points scattered across ∼450 buildings. The data are
aggregated in 15 minutes slices, which we use as MD-batches

8

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

in our system (see § 4). We partitioned the dataset in different
approaches, described further in the following section. We
also compare the performance of several variants of our
algorithm in the evaluation and discuss the tradeoff between
convergence speed and efficiency of Nimbus.

7 RESULTS

The results presented in this section cover two parts: (i)
performance gain on MD and (ii) algorithm capability. We ran
multiple experiments in different conditions (summarized
in Table 4), highlighting different characteristics of our
algorithm. Due to space constraints, we select a set of
scenarios to showcase out system capabilities.

(A) Scalability & Performance. We first analyze the effective
task latency and energy benefits3 of Nimbus for processing
tasks offloaded by MDs. We select four combinations of
edge infrastructure and MDs, plus we set the required FPS
threshold to 15 (frame interval ∼66.6 ms). We select four
configurations where the number of connected MDs are 500,
1000, 2000, and 4000. Figure 6 depicts distributions of total
task execution time and saved energy (per 1 second, or 15
frames) for 100 simulation iterations.

Even in the worst case (left panel of Figure 6), the
expected task latency achieved by Nimbus is∼2× lower than
running it locally on the fastest MD in our dataset (see Table
2 in § 4). From a performance standpoint, this offloading
strategy can boost deep learning based applications and
increase the quality of experience for its end-users. As the
number of MDs increases, the performance proportionally
decreases. With more congestion and tasks offloaded, the
delivered performance drops, as multiple MDs use the same
EN and influence each other’s execution time by increasing
the overall queuing time. This saturation behavior is mirrored
by the MDs allocation ratio. Figure 7 shows the percentage
of mobile devices served by the edge infrastructure, for four
different configurations of ENs shown in Table 4-(A). With
an increasing number of users, the edge resources tend to
saturate more quickly, forcing most of the mobile devices to
run their computation locally or utilize the cloud. We find
that, with the largest infrastructure used in our experiments
(constituting 4000 MDs), roughly 75% can offload to the
edge. Conversely, only 25% utilized the edge in our smallest
infrastructure configuration.

Task offloading also allows MDs to save energy (right
panel of Figure 6), reducing the power consumption in all
cases. These results are significant as battery consumption is
hugely relevant for high user satisfaction and retention [99].
Offloading tasks from more modern phones will lead to lesser
energy savings due to their more efficient hardware compo-
nents, decreasing the battery cost for running deep learning
tasks. However, our results show a non-trivial margin of gain
in offloading using Wi-Fi to the edge infrastructure. Even
if we consider the most power-hungry smartphone in our
dataset and the average energy saving in the worst-case,
Nimbus still consumes ∼77% less battery. Note that using a
mobile connection (e.g., 4G) alongside task offloading leads
to different results, which we discuss in the next experiment.

3. We calculate energy benefits by comparing the energy cost for
offloading the task to running it locally at the MD.

500 1000 2000 4000
Total Mobile Devices

0

20

40

60

80

100

120

Ta
sk

E
xe

cu
tio

n
[m

s]

500 1000 2000 4000
Total Mobile Devices

0

1000

2000

3000

4000

5000

6000

7000

S
av

ed
E

ne
rg

y
[m

J]

T1-EN,T2-EN,T3-EN
350, 200, 10
250, 100, 5

150, 50, 2
100, 25, 0

Fig. 6: Task latency and energy saving in various setups.

C0 C1 C2 C3
EN Configuration

0
20
40
60
80

100

%
Ed

ge
-o

ffl
oa

de
d

MDs
500
1000

2000
4000

Fig. 7: Fraction of task offloaded to the edge (see Table 4).

Takeaway 1. The offloading strategy of Nimbus can
boost deep learning based applications and increase the
perceived performance for its end-users. The expected task
latency achieved by Nimbus is ∼2× lower compared to
the fastest MD in our dataset. Additionally, MDs consume
up to ∼77% less battery when offloading with Nimbus.

(B) Full dataset. For this test, we run our algorithm on the
entire nine-month LRZ dataset but limited to the top five
most-populated buildings. Additionally, we set a minimum
threshold of 30 MDs to simulate a reasonable load on the
infrastructure. We fix the other parameters to values shown
in Table 4. This experiment provides a broader view of the
algorithm performance over an extended period with a fixed-
sized edge infrastructure.

The time-series in Figure 8 shows the task execution
latency (top) and MD density (bottom) for the entire nine-
month period. To obtain these results, we progressively feed

20
25
30
35
40
45
50
55
60

Ta
sk

E
xe

cu
tio

n
[m

s]

May June July Aug Sept Oct Nov Dec Jan
Month

0

100

200

300

400

500

M
D

D
en

si
ty

Fig. 8: Mobile devices and task latency for the LRZ dataset
[6].

9

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

Configuration Edge-cloud Infrastructure Mobile Devices FPS RTT DatasetC# AP T1-EN T2-EN T3-EN Density Low-End Mid High-End

(A) Scalability &
Performance

C0 4371 350 200 10 (500,
1000,
2000,
4000)

33% 33% 33% 15 SeattleC1 4371 250 100 5
C2 4371 150 50 2
C3 4371 100 25 0

(B) Full Dataset — 182 182 30 3 ≥ 30 33% 33% 33% 15 Seattle
(C) Nimbus Baseline — 4371 100 50 2 1000 33% 33% 33% 10 Seattle
(D) Nimbus Variants — 4371 100 50 2 1000 33% 33% 33% 10 Seattle

TABLE 4: Evaluation settings.

10 20 30 40 50 60 70 80
Task Execution [ms]

2800
3000
3200
3400
3600
3800
4000
4200
4400
4600

S
av

ed
E

ne
rg

y
[m

J]

Fig. 9: Energy saving in relation to task execution time.

our algorithm with 15-minutes snapshots of MD densities
from the LRZ dataset for the selected set of buildings. We
further group the results by months for ease of readability.
The selected buildings are part of a university campus,
therefore, they exhibit a lower concentration of MDs during
summer holiday period (July-September). Consequently,
between October and January, the higher delivered task
latency grows with the concentration of users connected
to the network. However, due to the fairly low number
of devices (between 30 and 500) and the generous size of
the edge infrastructure, the median task latency is low. For
example, the fastest MD in our dataset has a local inference
time of 116 ms, which is almost 4× higher than the average
task latency that our edge infrastructure can deliver.

Figure 9 shows the relationship between the amount of
saved energy for the MD and task latency, giving additional
insights compared to Figure 6. For this plot, we calculated
the energy consumption when the algorithm allocates all the
MDs. The trend line demonstrates that with a higher task
latency, we tend to save less energy. The leading cause can
be a longer transmission time due to lower available uplink
bandwidth. As an additional observation, we note having
a static edge-cloud infrastructure might not always be the
best option as the MD density changes at different times of
the year. We hypothesize the possibility of a dynamic edge-
cloud infrastructure where EN can be added dynamically in
response to an increased density and demand of MDs. This
would be similar to cloud computing, where resources are
managed on-demand.

Finally, we analyzed the overall MD allocation ratio for
the slice of data extracted from the dataset. Notice how 28.3%
and 51.6% of total the MDs are allocated to T1- and T2-EN,
respectively. The reasons for this can be manifold. Firstly, the
number of T1-EN exceeds other tiers in our infrastructure
and offers the lowest network RTT which compensates for
the longer execution time. However, due to their limited

resources, they can only serve a handful of MDs. T2-ENs, on
the other hand, are more powerful and strike a good balance
between scalability and network latency. Only 18% of the
MD were offloaded to T3-EN as they offer low computation
time but at the expense of longer network RTT. We remind
that the MD population is small for this experiment. In
fact, increasing the MD density pushes the algorithm to
allocate more on T3-EN, as it is the only class of edge nodes
capable of scaling efficiently without hindering performance.
Finally, 1.1% of the MD ran the task locally, and the remaining
1.1% used the cloud. In the next section, we investigate how
infrastructure size and the amount of MDs affect these ratios.

(C) Nimbus Baseline. For the baseline comparison, we
evaluate our algorithm against a greedy version for 100
repetitions. Additionally, we also compare against a scenario
where only cloud datacenters are available as offloading
candidates, and MDs access them via either WiFi or 4G. We
do not compare directly against other related algorithms
(discussed in § 2) as our task allocation is fundamentally
different from these approaches. Unlike related approaches,
we do not rearrange and serialize the tasks to minimize the
makespan but allow them to execute in parallel. For a fair
comparison, we set side by side our approach with variants
of Nimbus, which closely mimic the core ideology of related
task offloading algorithms.

The greedy variant of Nimbus is fundamentally selfish: it
selects the most profitable offloading candidate regardless
of the possible performance degradation for the other MDs.
While the standard version of the algorithm will use an
unlimited search space, the greedy one will instead favor
a quicker, local solution that minimizes network latency.
This approach is typical of greedy algorithms that make
the locally optimal choice at each stage [22]. We exploit the
exploration parameter (κ) to limit greedy Nimbus’s search
space. The parameter also allows us to force the algorithm
to produce the best offloading target from the network
latency perspective and ignore the current load on edge
nodes. Additionally, in the greedy version, the LookAheadLoad
procedure is deactivated, and the weights α and β are set to
1 and 0, respectively.

Figure 10 illustrates the results of our multifaceted
analysis. From a latency standpoint, the greedy algorithm is
able to find good offloading candidates for mobile devices.
As a matter of fact, the difference in terms of median latency
achieved by greedy compared to the standard version of
Nimbus is minimal. However, the standard deviation is
much more noticeable due to the increasing number of non-
offloaded MDs. Nimbus offloads ∼30% more MDs than
the greedy version and, specifically, minimizes MDs that

10

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

Nimbus Greedy Cloud Cloud4G
0

50

100

150

200

250
Ta

sk
Ex

ec
ut

io
n

[m
s]

N G C C4G
0.001
0.01
0.1

1

[s
]

Convergence Time

Nimbus Greedy Cloud Cloud4G
0

200

400

600

800

1000

1200

M
ob

ile
D

ev
ice

s

Local Edge Cloud

Fig. 10: Baseline comparison.

resort to using local resources for task execution. Note
that these results are drawn over a largely homogeneous
edge infrastructure, with only three classes of participating
ENs. In a highly heterogeneous environment, the limited
search scope used in the greedy configuration could lead
to unstable results, since there is an increased chance of
missing good offloading targets in the search procedure.
We extract the cloud network RTTs from the RIPE Atlas
dataset discussed in § 6). We obtained the network RTTs
using probes pinging datacenters co-located in the same
region. Additionally, we set the inference latency in the
cloud to 5 ms (comparable to a T3-EN) regardless of the
served devices (e.g., no queue time). The cloud-only approach
(labeled Cloud in Figure 10) produces acceptable results, but
at the cost of slight higher median task latency and greater
variance compared to Nimbus. Additionally, the approach
is unable to offload tasks from many MDs, forcing them to
run locally. Finally, the cloud-only variant with mobile access
network (labeled Cloud4G) delivers the worst performance –
with close to 100% MDs unable to offload their computation.
The primary reasons are significantly expensive transmission
and energy costs, and higher network RTT to the processing
server. Our result is in line with previous research, which
shows that mobile connections require significantly more
energy per bit in transmission compared to Wi-Fi [43].

Figure 11 shows the relationship between percentage
of edge-offloaded MD, convergence time of the algorithm,
and value of κ for an edge-cloud infrastructure of 152 ENs
and 1000 MDs. Regarding the algorithm convergence time,
the greedy version performs one order of magnitude faster
compared to the standard one (inset plot in Figure 10).
It should be noted that the Nimbus cloud-only variants
converge much faster due to their simplified solver logic.
When in need to allocate high densities of MDs, properly
tuning the exploration parameter κ allows us to find a
convenient tradeoff between offloaded MDs ratio and al-
gorithm convergence time. Selecting a value of 10 for κ
allows to already offload ∼91% of the MD while keeping a
sub-second convergence time. During our experiments with
different infrastructure and ENs configurations, we noticed
that setting κ between 10-20% of the total EN in the network
strikes a good balance between MDs allocation percentage
and convergence time. However, this cutoff point might
also be affected by the rather strong homogeneity of our
infrastructure, since we only consider three classes of ENs.
We hypothesize that with a more heterogeneous network,

D

D

Fig. 11: Exploration Tradeoff (152 ENs, ∼1000 MDs).

the cutoff point would be higher which translates into a
greater range of exploration and an increased cost in terms
of convergence time.

Note that the convergence time in Figure 11 represents
the time required to allocate all the MDs in the batch. The
allocation operation does not run for every offloaded frame,
but only once when the mobile devices initiate an offload
request to the infrastructure. Additionally, the system is
designed in such a way that, while the MD waits be offloaded,
the end-user will not experience any service interruptions
as the task will keep running locally until the allocation on
the edge-cloud infrastructure is completed. In this case, we
assume that the MD is capable of executing the task locally.
Finally, it is valid to assume that the amount of time the
user will spend using the infrastructure offsets greatly the
allocation waiting time similarly to start-up latency in video
streaming.

Takeaway 2. The greedy algorithm is able to find good
offloading candidates for MDs faster than Nimbus at the
cost of sub-optimal utilization of the edge-cloud resources
(e.g., skipping good offloading targets in the search pro-
cedure). The cloud-only variant is effective but provides
higher median task latency, increased energy consumption
for the MD, and greater variance compared to Nimbus.

(D) Nimbus Variants. We developed three versions of
our solver. The one used in the previous benchmarks was
single-threaded (ST), meaning that the decision process was
handled by a single controller node which had complete
knowledge of the edge infrastructure. From a practical
viewpoint, such a solver offers limited scalability, especially
when both the size of the edge infrastructure and density of
participating MDs increases. For such cases, the convergence
time of the single-threaded variant becomes prohibitive.
Therefore, we developed a multi-threaded (MT) variant of
Nimbus, termed MT Nimbus, that makes it deployable in
a distributed fashion. We applied a partitioning procedure
to the edge-cloud infrastructure. For a simple-yet-effective
solution, we adopted a naive approach where we created non-
overlapping sets of ENs so that every thread (or, equivalently,
the entity managing a network slice) is independent of the
others. We are aware that the procedure followed to split
the edge-cloud network resources is not optimal, but, in this
context, it suffices the evaluation purpose. Transforming an
algorithm from centralized to distributed entails additional
costs as synchronizing different entities increases communi-
cation overheads. Our goal is to demonstrate the possibility
of transforming our algorithm into a distributed form
and characterize its performance. In this work, we do not
delve into communication and cross-node synchronization

11

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

challenges of a distributed system and leave it for future
work.

As the number of ENs for each tier can be non-
proportional to the number of threads, the network slices
created can be unbalanced. For example, with ten solver
threads and three T3-EN, the first three threads would
have in their network slice at most one T3-EN. While the
principal benefit for our distributed algorithm is decreased
convergence time, we sacrifice in quality of the solution
as the algorithm is now less capable of fully exploiting
the available edge-cloud infrastructure resources. Figure
12 shows the convergence time and task execution latency
with an increasing number of threads. It can be observed
that the more we slice the network, the fewer MDs are
offloaded because each slice becomes shallower, thus reducing
the degrees of exploration for the algorithm. However, the
convergence time per-thread reduces by up to ∼15× when
Nimbus uses four threads instead of one.

To mitigate the inefficient use of the edge-cloud infrastruc-
ture, we developed a two-stage solver version of Nimbus. In
this variant, all the MDs not offloaded in the first distributed
stage are scheduled for a second allocation pass. The second
stage executes centrally and is modified so that it attempts
to allocate the remaining MDs on the entire edge-cloud
infrastructure (updated with the current load). This final
variant is called 2PMT Nimbus and the results obtained are
shown in Figure 13.

While there is an additional cost in terms of convergence
time due to the presence of a final aggregation step, the
amount of non-offloaded MDs reduces drastically, especially
with an increasing number of threads. The effective ratio of
offloaded users also increases compared to MT-Nimbus as
2PMT-Nimbus tends to fit more MDs into the edge-cloud
infrastructure. Overall, 2PMT-Nimbus does not violate any
of the inherent constraints and is able to deliver the required
quality of experience (e.g., FPS) to all the offloaded users.
With only two threads, 2PMT-Nimbus achieves similar MD
allocation ratios as the single-threaded version while almost
halving the convergence time. With eight threads, 2PMT-
Nimbus converges almost 3× faster than two-threads and
offloads the majority of the users. While the convergence
time achieved by 2PMT-Nimbus is much slower than MT-
Nimbus, the former is able to allocate many more MDs at
the edge-cloud infrastructure.

Note the anomaly in convergence time trend of 2PMT-
Nimbus – where the convergence time increases despite an
increased degree of parallelism. We explain the exception
as follows. By assigning more threads, the generated net-
work slices become shallower and fewer EN candidates are
available to allocate MDs. The fewer users are allocated,
the more effort is required by the centralized solver to
complete the final reallocation step. This entails that the law
of diminishing returns applies to the threads parallelism. In
fact, with ten threads, the multi-threaded convergence time
decreases, but the single-threaded increases. However, the
overall performance in terms of allocation ratio looks better
with increasing thread count. Consequently, if we would
progressively increase the assigned threads boundlessly, we
would circle back to the single-threaded performance, both
for allocation and convergence time.

1 2 4 6 8 10
Threads

0.0

0.5

1.0

1.5

2.0

C
on

ve
rg

en
ce

Ti
m

e
[s

]

1 2 4 6 8 10
0

20
40
60
80

100
120
140 Task Execution [ms]

1 2 4 6 8 10
Threads

0

200

400

600

800

1000

M
ob

ile
D

ev
ic

es

Local Edge Cloud

Fig. 12: Performance of MT-Nimbus.

2 4 6 8 10
Threads

0.0

0.5

1.0

1.5

2.0

Co
nv

er
ge

nc
e

Ti
m

e
[s

]

2 4 6 8 10
0

20
40
60
80

100
120
140
160 Task Execution [ms]MT

ST

2 4 6 8 10
Threads

0

200

400

600

800

1000

M
ob

ile
D

ev
ic

es

Local Edge Cloud

Fig. 13: Performance of 2PMT-Nimbus.

Takeaway 3. The ST version of Nimbus scales poorly as the
size of the edge infrastructure and density of participating
MDs increases. The MT variant is much faster but cannot
fully makes use of the edge-cloud infrastructure. Finally,
2PMT-Nimbus provides the best performance in terms of
ratio of offloaded MDs.

8 LIMITATIONS AND OUTLOOK

Edge computing will play a significant role in reshaping the
future of cloud networks infrastructure. New applications
and services will leverage information and processing capa-
bilities offered at the network edge for varying purposes –
including but not limited to data aggregation and analysis,
multimedia content delivery, machine learning and AI. In
this section, we explore orthogonal problems affecting edge
computing putting our findings into a broader perspective.

Application & Network. Immersive applications, such as
AR/VR, necessitate the deployment of edge servers in the
network due to the strict latency constraints they impose.
Such applications are guided by the human vestibular system
which requires sensory inputs and interactions to be in
complete sync; failure of which results in motion sickness and
dizziness. As QoS of network communication technologies
(e.g., 5G and millimeter waves) improve (i.e., shorter network
delay and higher throughput [73, 76, 86]), optimizations
in compute capabilities and task allocation mechanisms
at edge become paramount to support multimedia QoE
requirements.

However, end-to-end application latency still accounts for
the most significant fraction of the perceived user experience,
as discussed in § 7. Therefore, in this work, we focused on

12

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

task execution time and network latency while ignoring the
non-marginal overhead introduced by other components.
These additional delays may have multiple sources, includ-
ing the operating system, bloated network queues, network
fluctuations (retransmissions, packet loss), to name a few.
We ignore these variables in this work to keep the problem
tractable since added delay caused by some of the above
is predictable only to a certain extent. Consequently, our
results should be considered as an optimistic estimate on
top of which application logic and context overhead must be
added. The Nimbus system presented in this paper manages
the interaction between edge infrastructure and MDs and
offers a device-independent framework to offload tasks to the
edge. In our future work, we plan to extend the platform to
calculate the additional application overheads, as discussed
above.

Smartphone evolution. The symbiosis between edge com-
puting and mobile-based applications is complicated. Fac-
tors like ever-increasing computational capacities of smart-
phones [12, 13], and more general-purpose utility of edge
computing begs re-thinking the applicability of edge for
mobile clients. For example, high-end smartphones equipped
with powerful mobile GPUs benefit more from running
computations locally than offloading, due to higher efficiency
(in energy consumption and inference time) offered by
their processor architectures and algorithms [15]. On the
other hand, essential operations utilizing local GPU may
become throttled as number of applications competing
for the shared GPU cycles increases. We feel that edge
resources can be used to further enhance (or enable) what
can be achieved by a smartphone. An example could be
executing more sophisticated and accurate neural networks –
which are often prohibitive for smartphones as they require
considerably more RAM and computational power. Until
mobile devices are battery-powered, there will always be a
trade-off in performance versus battery consumption. One
can also envision smartphones becoming part of the edge
infrastructure [48], which poses new and exciting challenges
for managing transient, mobility capable compute nodes.

Security Implications. We purposefully avoid delving into
possible security vulnerabilities of Nimbus since we consider
it out-of-scope. Here, we explore possible security holes in
our system and provide hints on how to mitigate them. In
our approach, we do not restrict an MD to the maximum
time for which they can utilize the edge-cloud infrastructure.
This can lead to numerous problems: a malicious MD might
decide to offload tasks forever and to multiple servers to
leech resources from the infrastructure, which may lead to
starvation. One solution could be to use a credit or reputation
system [54], where an MD can only utilize services offered
by the edge-cloud by spending some virtual currency. Other
possible approaches could be introducing a fixed time limit
after which the MD is forcefully rescheduled. However, all
these solutions require MD to be registered so that system
can keep track of their credit or the amount of time spent
using the service. Distributed ledgers and blockchain might
be useful in this scenario to help keep track of the user credit
and enable point-to-point payments [44, 70].

In § 7, we discussed the possibility of an elastic infrastruc-
ture composed of consumer ENs offering compute resources

similarly to [18] to respond to network overloads. There
are several issues associated with such an infrastructure,
including reduced control over ENs, intermittent resource
availability, reliability, inconsistent execution and queue time
predictions, and security and privacy concerns. Additionally,
trust can be a problem for such an infrastructure as malicious
ENs might extract sensitive information while computing a
task or deliberately modify the outcome to disrupt the service.
Possible resolutions could be employing Trust Execution
Environments (TEE) [69, 75] to secure the compute steps at
the cost of operational complexity.

Deployment Challenges. When discussing changes advo-
cated by edge computing, it is essential to keep in mind
its adoption cost. Depending on the type of deployed ENs,
the Capital Expenditures (CapEx) [2] and Operational Ex-
penditures (OpEx) cost demand careful planning of the
infrastructure as function of the QoS to be delivered over
a period of time. Similar to cloud and ISP services, edge-
cloud could employ a subscription-based operation model.
End-users could choose from different subscription plans
that best cater to desired QoE of targeted applications, e.g.
gaming, healthcare, video analytics, etc.

9 CONCLUSION

In this paper we presented Nimbus, a multi-objective task
allocation solution that can minimize the latency of mobile
real-time object detection models by offloading them to an
edge-cloud infrastructure. Based on an extensive set of real
data and measurements, our multifaceted evaluation bench-
marks three ever-improving variants of Nimbus addressing,
especially, the problem of scalability from the infrastructure
and end-users point of view. We verify the effectiveness
of Nimbus through trace-driven simulations. Based on an
extensive set of real data and measurements, we show the
potential of Nimbus in boosting the performance of AR
applications when offloaded from mobile devices to an
edge-cloud infrastructure. Additionally, our multifaceted
evaluation presents three ever-improving variants of Nim-
bus addressing, especially, scalability issues of edge-cloud
infrastructure. Finally, in light of our algorithm and approach,
we discuss several crucial open questions concerning edge
computing and highlights future research directions.

REFERENCES

[1] Benchmarking Hardware for CNN Inference in
2018. https://towardsdatascience.com/benchmarking-
hardware-for-cnn-inference-in-2018-1d58268de12a.

[2] Capital Expenditure. https://en.wikipedia.org/wiki/
Capital_expenditure. Accessed: 2020-04-27.

[3] Hill Climbing. https://en.wikipedia.org/wiki/
Hill_climbing. Accessed: 2020-04-27.

[4] Network Latency Datasets. https://github.com/uofa-
rzhu3/NetLatency-Data. Accessed: 2020-06-30.

[5] Leibniz-Rechenzentrum. https://www.lrz.de, . Ac-
cessed: 2020-05-22.

[6] WLAN-Verbindungen im MWN (Statistik). http://
wlan.lrz.de/apstat/search, . Accessed: 2020-05-22.

[7] How is Mobile AR Landing with Consumers?
https://virtualrealitypop.com/how-is-mobile-ar-

13

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

https://towardsdatascience.com/benchmarking-hardware-for-cnn-inference-in-2018-1d58268de12a
https://towardsdatascience.com/benchmarking-hardware-for-cnn-inference-in-2018-1d58268de12a
https://en.wikipedia.org/wiki/Capital_expenditure
https://en.wikipedia.org/wiki/Capital_expenditure
https://en.wikipedia.org/wiki/Hill_climbing
https://en.wikipedia.org/wiki/Hill_climbing
https://github.com/uofa-rzhu3/NetLatency-Data
https://github.com/uofa-rzhu3/NetLatency-Data
https://www.lrz.de
http://wlan.lrz.de/apstat/search
http://wlan.lrz.de/apstat/search
https://virtualrealitypop.com/how-is-mobile-ar-landing-with-consumers-cbc4b14e5957

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

landing-with-consumers-cbc4b14e5957. Accessed:
2020-04-27.

[8] PlanetLab. https://www.planet-lab.org. Accessed:
2020-06-30.

[9] A First Inside Look at Pokémon GO Battery Drain.
http://mobileenerlytics.com/a-first-inside-look-at-
pokemon-go-battery-drain-you-wont-catch-many-if-
your-battery-dies-so-quickly/. Accessed: 2020-04-02.

[10] Latency – the sine qua non of AR and VR.
http://blogs.valvesoftware.com/abrash/latency-
the-sine-qua-non-of-ar-and-vr/. Accessed: 2020-04-27.

[11] Seattle. https://seattle.poly.edu. Accessed: 2020-06-30.
[12] Your Phone Is Now More Powerful Than Your

PC. https://insights.samsung.com/2018/08/09/your-
phone-is-now-more-powerful-than-your-pc/, . Ac-
cessed: 2020-05-22.

[13] How the computing power in a smartphone
compares to supercomputers past and present.
https://www.businessinsider.com/infographic-how-
computing-power-has-changed-over-time-2017-11?r=
DE&IR=T, . Accessed: 2020-05-22.

[14] NVIDIA Triton Inference Server. https://github.com/
NVIDIA/triton-inference-server. Accessed: 2020-05-22.

[15] UbiSpark project. https://ubispark.cs.helsinki.fi/. Ac-
cessed: 2020-06-30.

[16] Mario Almeida, Stefanos Laskaridis, Stylianos I Venieris,
Ilias Leontiadis, and Nicholas D Lane. Dyno: Dynamic
onloading of deep neural networks from cloud to device.
arXiv preprint arXiv:2104.09949, 2021.

[17] Brandon Amos, Bartosz Ludwiczuk, Mahadev Satya-
narayanan, et al. Openface: A general-purpose face
recognition library with mobile applications. CMU
School of Computer Science, 6:2, 2016.

[18] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebof-
sky, and Dan Werthimer. Seti@ home: an experiment in
public-resource computing. Communications of the ACM,
45(11):56–61, 2002.

[19] Mykhaylo Andriluka, Stefan Roth, and Bernt Schiele.
People-tracking-by-detection and people-detection-by-
tracking. In 2008 IEEE Conference on computer vision and
pattern recognition, pages 1–8. IEEE, 2008.

[20] Mohammad Babar, Muhammad Sohail Khan, Far-
man Ali, Muhammad Imran, and Muhammad Shoaib.
Cloudlet computing: Recent advances, taxonomy, and
challenges. IEEE Access, 9:29609–29622, 2021.

[21] Rajesh Krishna Balan, Darren Gergle, Mahadev Satya-
narayanan, and James Herbsleb. Simplifying cyber
foraging for mobile devices. In Proceedings of the 5th
international conference on Mobile systems, applications and
services, pages 272–285, 2007.

[22] Paul E Black. Greedy algorithm. Dictionary of Algorithms
and Data Structures, 2:62, 2005.

[23] Michaela Blott, Lisa Halder, Miriam Leeser, and Linda
Doyle. Qutibench: Benchmarking neural networks on
heterogeneous hardware. J. Emerg. Technol. Comput. Syst.,
15(4), dec 2019. ISSN 1550-4832. doi: 10.1145/3358700.
URL https://doi.org/10.1145/3358700.

[24] Mathieu Bouet and Vania Conan. Mobile edge comput-
ing resources optimization: A geo-clustering approach.
IEEE Transactions on Network and Service Management, 15
(2):787–796, 2018.

[25] Tristan Braud, Farshid Hassani Bijarbooneh, Dimitris
Chatzopoulos, and Pan Hui. Future networking chal-
lenges: The case of mobile augmented reality. In
2017 IEEE 37th International Conference on Distributed
Computing Systems (ICDCS), pages 1796–1807. IEEE,
2017.

[26] Tristan Braud, Pengyuan Zhou, Jussi Kangasharju, and
Pan Hui. Multipath computation offloading for mobile
augmented reality. In 2020 IEEE International Conference
on Pervasive Computing and Communications (PerCom),
pages 1–10. IEEE, 2020.

[27] Martin Breitbach, Janick Edinger, Siim Kaupmees, Heiko
Trötsch, Christian Krupitzer, and Christian Becker.
Voltaire: Precise energy-aware code offloading decisions
with machine learning. In 2021 IEEE International
Conference on Pervasive Computing and Communications
(PerCom), pages 1–10. IEEE, 2021.

[28] Kaifei Chen, Tong Li, Hyung-Sin Kim, David E. Culler,
and Randy H. Katz. Marvel: Enabling mobile aug-
mented reality with low energy and low latency. In
Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’18, page 292–304,
New York, NY, USA, 2018. Association for Computing
Machinery. doi: 10.1145/3274783.3274834.

[29] Ying Chen, Ning Zhang, Yongchao Zhang, and Xin
Chen. Dynamic computation offloading in edge com-
puting for internet of things. IEEE Internet of Things
Journal, 6(3):4242–4251, 2018.

[30] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis,
Mayur Naik, and Ashwin Patti. Clonecloud: elastic
execution between mobile device and cloud. In Proceed-
ings of the sixth conference on Computer systems, pages
301–314, 2011.

[31] Lorenzo Corneo, Maximilian Eder, Nitinder Mohan,
Aleksandr Zavodovski, Suzan Bayhan, Walter Wong,
Per Gunningberg, Jussi Kangasharju, and Jörg Ott. Sur-
rounded by the Clouds: A Comprehensive Cloud Reach-
ability Study. In Proceedings of The Web Conference 2021,
WWW ’21, New York, NY, USA, 2021. Association for
Computing Machinery. doi: 10.1145/3442381.3449854.
URL https://doi.org/10.1145/3442381.3449854.

[32] Lorenzo Corneo, Nitinder Mohan, Aleksandr Za-
vodovski, Walter Wong, Christian Rohner, Per Gun-
ningberg, and Jussi Kangasharju. (how much) can
edge computing change network latency? In 2021 IFIP
Networking Conference (IFIP Networking), pages 1–9. IEEE,
2021.

[33] V. Cozzolino, J. Ott, A. Y. Ding, and R. Mortier. Ecco:
Edge-cloud chaining and orchestration framework for
road context assessment. In 2020 IEEE/ACM Fifth
International Conference on Internet-of-Things Design and
Implementation (IoTDI), pages 223–230, 2020.

[34] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho,
Alec Wolman, Stefan Saroiu, Ranveer Chandra, and
Paramvir Bahl. Maui: making smartphones last longer
with code offload. In Proceedings of the 8th international
conference on Mobile systems, applications, and services,
pages 49–62, 2010.

[35] Eduardo Cuervo, Alec Wolman, Landon P Cox, Kiron
Lebeck, Ali Razeen, Stefan Saroiu, and Madanlal Musu-
vathi. Kahawai: High-quality mobile gaming using gpu

14

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

https://virtualrealitypop.com/how-is-mobile-ar-landing-with-consumers-cbc4b14e5957
https://www.planet-lab.org
http://mobileenerlytics.com/a-first-inside-look-at-pokemon-go-battery-drain-you-wont-catch-many-if-your-battery-dies-so-quickly/
http://mobileenerlytics.com/a-first-inside-look-at-pokemon-go-battery-drain-you-wont-catch-many-if-your-battery-dies-so-quickly/
http://mobileenerlytics.com/a-first-inside-look-at-pokemon-go-battery-drain-you-wont-catch-many-if-your-battery-dies-so-quickly/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
https://seattle.poly.edu
https://insights.samsung.com/2018/08/09/your-phone-is-now-more-powerful-than-your-pc/
https://insights.samsung.com/2018/08/09/your-phone-is-now-more-powerful-than-your-pc/
https://www.businessinsider.com/infographic-how-computing-power-has-changed-over-time-2017-11?r=DE&IR=T
https://www.businessinsider.com/infographic-how-computing-power-has-changed-over-time-2017-11?r=DE&IR=T
https://www.businessinsider.com/infographic-how-computing-power-has-changed-over-time-2017-11?r=DE&IR=T
https://github.com/NVIDIA/triton-inference-server
https://github.com/NVIDIA/triton-inference-server
https://ubispark.cs.helsinki.fi/
https://doi.org/10.1145/3358700
https://doi.org/10.1145/3442381.3449854

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

offload. In Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and Services,
pages 121–135, 2015.

[36] The Khang Dang, Nitinder Mohan, Lorenzo Corneo,
Aleksandr Zavodovski, Jörg Ott, and Jussi Kangasharju.
Cloudy with a Chance of Short RTTs: Analyzing
Cloud Connectivity in the Internet. In Proceedings of
Internet Measurement Conference, IMC ’21, New York,
NY, USA, 2021. Association for Computing Machinery.
doi: 10.1145/3487552.3487854. URL https://doi.org/
10.1145/3487552.3487854.

[37] Kalyanmoy Deb. Multi-objective optimization. In Search
Methodologies: Introductory Tutorials in Optimization and
Decision Support Techniques, pages 403–449. Springer,
2014.

[38] Thinh Quang Dinh, Jianhua Tang, Quang Duy La, and
Tony QS Quek. Offloading in mobile edge computing:
Task allocation and computational frequency scaling.
IEEE Transactions on Communications, 65(8):3571–3584,
2017.

[39] Utsav Drolia, Rolando Martins, Jiaqi Tan, Ankit Chheda,
Monil Sanghavi, Rajeev Gandhi, and Priya Narasimhan.
The case for mobile edge-clouds. In 2013 IEEE 10th
International Conference on Ubiquitous Intelligence and
Computing and 2013 IEEE 10th International Conference on
Autonomic and Trusted Computing, pages 209–215. IEEE,
2013.

[40] Maximilian Eder, Lorenzo Corneo, Nitinder Mohan,
Aleksandr Zavodovski, Suzan Bayhan, Walter Wong,
Per Gunningberg, Jussi Kangasharju, and Jörg Ott.
Surrounded by the clouds, 2021. URL https://
mediatum.ub.tum.de/1593899.

[41] Jason Flinn and Z Morley Mao. Can deterministic replay
be an enabling tool for mobile computing? In Proceedings
of the 12th Workshop on Mobile Computing Systems and
Applications, pages 84–89, 2011.

[42] Mark S Gordon, D Anoushe Jamshidi, Scott Mahlke,
Z Morley Mao, and Xu Chen. {COMET}: Code offload
by migrating execution transparently. In Presented as part
of the 10th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 12), pages 93–106,
2012.

[43] Tian Guo. Cloud-based or on-device: An empirical study
of mobile deep inference. In 2018 IEEE International
Conference on Cloud Engineering (IC2E), pages 184–190.
IEEE, 2018.

[44] Ye Guo and Chen Liang. Blockchain application and
outlook in the banking industry. Financial Innovation, 2
(1):24, 2016.

[45] Seungyeop Han, Haichen Shen, Matthai Philipose,
Sharad Agarwal, Alec Wolman, and Arvind Krishna-
murthy. Mcdnn: An approximation-based execution
framework for deep stream processing under resource
constraints. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services,
pages 123–136. ACM, 2016.

[46] Zhenhua Han, Haisheng Tan, Guihai Chen, Rui Wang,
Yifan Chen, and Francis CM Lau. Dynamic virtual
machine management via approximate markov decision
process. In IEEE INFOCOM 2016-The 35th Annual IEEE

International Conference on Computer Communications,
pages 1–9. IEEE, 2016.

[47] Ting He, Hana Khamfroush, Shiqiang Wang, Tom
La Porta, and Sebastian Stein. It’s hard to share:
Joint service placement and request scheduling in edge
clouds with sharable and non-sharable resources. In
2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pages 365–375. IEEE, 2018.

[48] Junyan Hu, Kenli Li, Chubo Liu, and Keqin Li. Game-
based task offloading of multiple mobile devices with
qos in mobile edge computing systems of limited
computation capacity. ACM Trans. Embed. Comput. Syst.,
19(4), July 2020. ISSN 1539-9087. doi: 10.1145/3398038.
URL https://doi.org/10.1145/3398038.

[49] C-L Hwang and Abu Syed Md Masud. Multiple objective
decision making—methods and applications: a state-of-the-art
survey, volume 164. Springer Science & Business Media,
2012.

[50] Andrey Ignatov, Radu Timofte, William Chou, Ke Wang,
Max Wu, Tim Hartley, and Luc Van Gool. Ai benchmark:
Running deep neural networks on android smartphones.
In Proceedings of the European conference on computer vision
(ECCV), pages 0–0, 2018.

[51] Mike Jia, Jiannong Cao, and Weifa Liang. Optimal
cloudlet placement and user to cloudlet allocation in
wireless metropolitan area networks. IEEE Transactions
on Cloud Computing, 5(4):725–737, 2015.

[52] Yiping Kang, Johann Hauswald, Cao Gao, Austin
Rovinski, Trevor Mudge, Jason Mars, and Lingjia Tang.
Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge. ACM SIGARCH Computer
Architecture News, 45(1):615–629, 2017.

[53] Kuljeet Kaur, Tanya Dhand, Neeraj Kumar, and Sherali
Zeadally. Container-as-a-service at the edge: Trade-off
between energy efficiency and service availability at fog
nano data centers. IEEE wireless communications, 24(3):
48–56, 2017.

[54] Michael Kinateder and Kurt Rothermel. Architecture
and algorithms for a distributed reputation system. In
International Conference on Trust Management, pages 1–16.
Springer, 2003.

[55] Chenge Li, Gregory Dobler, Xin Feng, and Yao Wang.
Tracknet: Simultaneous object detection and tracking
and its application in traffic video analysis. arXiv
preprint arXiv:1902.01466, 2019.

[56] Fangming Liu, Peng Shu, Hai Jin, Linjie Ding, Jie Yu,
Di Niu, and Bo Li. Gearing resource-poor mobile devices
with powerful clouds: architectures, challenges, and
applications. IEEE Wireless communications, 20(3):14–22,
2013.

[57] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge
assisted real-time object detection for mobile augmented
reality. In The 25th Annual International Conference on
Mobile Computing and Networking, pages 1–16, 2019.

[58] Qiang Liu, Siqi Huang, Johnson Opadere, and Tao Han.
An edge network orchestrator for mobile augmented
reality. In IEEE INFOCOM 2018-IEEE Conference on
Computer Communications, pages 756–764. IEEE, 2018.

[59] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André
Barroso, and Christos Kozyrakis. Towards energy
proportionality for large-scale latency-critical workloads.

15

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3487552.3487854
https://doi.org/10.1145/3487552.3487854
https://mediatum.ub.tum.de/1593899
https://mediatum.ub.tum.de/1593899
https://doi.org/10.1145/3398038

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

In 2014 ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pages 301–312. IEEE, 2014.

[60] Pavel Mach and Zdenek Becvar. Mobile edge com-
puting: A survey on architecture and computation
offloading. IEEE Communications Surveys & Tutorials,
19(3):1628–1656, 2017.

[61] Sumit Maheshwari, Dipankar Raychaudhuri, Ivan
Seskar, and Francesco Bronzino. Scalability and per-
formance evaluation of edge cloud systems for latency
constrained applications. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC), pages 286–299. IEEE, 2018.

[62] Jiaying Meng, Wenbin Shi, Haisheng Tan, and Xi-
angyang Li. Cloudlet placement and minimum-delay
routing in cloudlet computing. In 2017 3rd International
Conference on Big Data Computing and Communications
(BIGCOM), pages 297–304. IEEE, 2017.

[63] Jiaying Meng, Haisheng Tan, Chao Xu, Wanli Cao,
Liuyan Liu, and Bojie Li. Dedas: Online task dispatching
and scheduling with bandwidth constraint in edge
computing. In IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, pages 2287–2295. IEEE, 2019.

[64] Nitinder Mohan and Jussi Kangasharju. Edge-fog cloud:
A distributed cloud for internet of things computations.
In 2016 Cloudification of the Internet of Things (CIoT),
pages 1–6. IEEE, 2016.

[65] Nitinder Mohan and Jussi Kangasharju. Placing it right!:
optimizing energy, processing, and transport in edge-
fog clouds. Annals of Telecommunications, 73(7-8):463–474,
2018.

[66] Nitinder Mohan, Lorenzo Corneo, Aleksandr Za-
vodovski, Suzan Bayhan, Walter Wong, and Jussi Kan-
gasharju. Pruning edge research with latency shears.
In Proceedings of the 19th ACM Workshop on Hot Topics
in Networks, HotNets ’20, page 182–189, New York, NY,
USA, 2020. Association for Computing Machinery. ISBN
9781450381451. doi: 10.1145/3422604.3425943. URL
https://doi.org/10.1145/3422604.3425943.

[67] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding,
Nicklas Beijar, and Jorg Ott. Consolidate iot edge com-
puting with lightweight virtualization. IEEE Network,
32(1):102–111, 2018.

[68] Ashkan Nikravesh, David R Choffnes, Ethan Katz-
Bassett, Z Morley Mao, and Matt Welsh. Mobile
network performance from user devices: A longitudinal,
multidimensional analysis. In International Conference
on Passive and Active Network Measurement, pages 12–22.
Springer, 2014.

[69] Zhenyu Ning, Jinghui Liao, Fengwei Zhang, and
Weisong Shi. Preliminary study of trusted execution
environments on heterogeneous edge platforms. In 2018
IEEE/ACM Symposium on Edge Computing (SEC), pages
421–426. IEEE, 2018.

[70] Jianli Pan, Jianyu Wang, Austin Hester, Ismail Alqerm,
Yuanni Liu, and Ying Zhao. Edgechain: An edge-iot
framework and prototype based on blockchain and
smart contracts. IEEE Internet of Things Journal, 6(3):
4719–4732, 2018.

[71] Horst Possegger, Thomas Mauthner, Peter M Roth, and
Horst Bischof. Occlusion geodesics for online multi-
object tracking. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 1306–1313,
2014.

[72] Xukan Ran, Haolianz Chen, Xiaodan Zhu, Zhenming
Liu, and Jiasi Chen. Deepdecision: A mobile deep
learning framework for edge video analytics. In IEEE
INFOCOM 2018-IEEE Conference on Computer Communi-
cations, pages 1421–1429. IEEE, 2018.

[73] Theodore S Rappaport, Shu Sun, Rimma Mayzus, Hang
Zhao, Yaniv Azar, Kevin Wang, George N Wong, Jo-
celyn K Schulz, Mathew Samimi, and Felix Gutierrez.
Millimeter wave mobile communications for 5g cellular:
It will work! IEEE access, 1:335–349, 2013.

[74] Stuart Russell and Peter Norvig. Artificial intelligence:
a modern approach. 2002.

[75] Mohamed Sabt, Mohammed Achemlal, and Abdel-
madjid Bouabdallah. Trusted execution environment:
what it is, and what it is not. In 2015 IEEE Trust-
com/BigDataSE/ISPA, volume 1, pages 57–64. IEEE, 2015.

[76] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair, and
K. Kittichokechai. 5g radio network design for ultra-
reliable low-latency communication. IEEE Network, 32
(2):24–31, 2018.

[77] Onur Sahin and Ayse K Coskun. Providing sustainable
performance in thermally constrained mobile devices. In
Proceedings of the 14th ACM/IEEE Symposium on Embedded
Systems for Real-Time Multimedia, pages 72–77, 2016.

[78] Mark Sandler, Andrew Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 4510–4520, 2018.

[79] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cac-
eres, and Nigel Davies. The case for vm-based cloudlets
in mobile computing. IEEE pervasive Computing, 8(4):
14–23, 2009.

[80] Ryan Shea, Di Fu, and Jiangchuan Liu. Rhizome:
Utilizing the public cloud to provide 3d gaming in-
frastructure. In Proceedings of the 6th ACM Multimedia
Systems Conference, pages 97–100, 2015.

[81] Shu Shi and Cheng-Hsin Hsu. A survey of interactive
remote rendering systems. ACM Computing Surveys
(CSUR), 47(4):1–29, 2015.

[82] RIPE NCC Staff. Ripe atlas: A global internet measure-
ment network. Internet Protocol Journal, 18(3), 2015.

[83] Xiang Sun and Nirwan Ansari. Edgeiot: Mobile edge
computing for the internet of things. IEEE Communica-
tions Magazine, 54(12):22–29, 2016.

[84] Haisheng Tan, Zhenhua Han, Xiang-Yang Li, and Fran-
cis CM Lau. Online job dispatching and scheduling in
edge-clouds. In IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pages 1–9. IEEE, 2017.

[85] Liang Tong, Yong Li, and Wei Gao. A hierarchical
edge cloud architecture for mobile computing. In
IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE,
2016.

[86] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and D. Soldani.
Towards zero latency software defined 5g networks.
In 2015 IEEE International Conference on Communication
Workshop (ICCW), pages 2566–2571, 2015.

16

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3422604.3425943

2168-7161 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2022.3146615, IEEE
Transactions on Cloud Computing

[87] Blesson Varghese, Eyal De Lara, Aaron Yi Ding, Cheol-
Ho Hong, Flavio Bonomi, Schahram Dustdar, Paul
Harvey, Peter Hewkin, Weisong Shi, Mark Thiele, et al.
Revisiting the arguments for edge computing research.
IEEE Internet Computing, 25(5):36–42, 2021.

[88] Massimo Villari, Maria Fazio, Schahram Dustdar, Omer
Rana, and Rajiv Ranjan. Osmotic computing: A new
paradigm for edge/cloud integration. IEEE Cloud
Computing, 3(6):76–83, 2016.

[89] Fangxin Wang, Miao Zhang, Xiangxiang Wang, Xiao-
qiang Ma, and Jiangchuan Liu. Deep learning for edge
computing applications: A state-of-the-art survey. IEEE
Access, 8:58322–58336, 2020.

[90] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis,
Kin K Leung, Christian Makaya, Ting He, and Kevin
Chan. When edge meets learning: Adaptive control
for resource-constrained distributed machine learning.
In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 63–71. IEEE, 2018.

[91] X. Wang, L. T. Yang, X. Xie, J. Jin, and M. J. Deen. A
cloud-edge computing framework for cyber-physical-
social services. IEEE Communications Magazine, 55(11):
80–85, 2017.

[92] Yue Wang, Xiaofeng Tao, Xuefei Zhang, Ping Zhang, and
Y Thomas Hou. Cooperative task offloading in three-
tier mobile computing networks: An admm framework.
IEEE Transactions on Vehicular Technology, 68(3):2763–
2776, 2019.

[93] Jiyan Wu, Chau Yuen, Ngai-Man Cheung, Junliang
Chen, and Chang Wen Chen. Enabling adaptive high-
frame-rate video streaming in mobile cloud gaming
applications. IEEE Transactions on Circuits and Systems
for Video Technology, 25(12):1988–2001, 2015.

[94] Chunwei Xia, Jiacheng Zhao, Huimin Cui, Xiaob-
ing Feng, and Jingling Xue. Dnntune: Automatic
benchmarking dnn models for mobile-cloud comput-
ing. ACM Trans. Archit. Code Optim., 16(4), December
2019. ISSN 1544-3566. doi: 10.1145/3368305. URL
https://doi.org/10.1145/3368305.

[95] Zhujun Xiao, Zhengxu Xia, Haitao Zheng, Ben Y Zhao,
and Junchen Jiang. Towards performance clarity of edge
video analytics. arXiv preprint arXiv:2105.08694, 2021.

[96] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang,
Weisong Shi, and Qun Li. Lavea: Latency-aware video
analytics on edge computing platform. In Proceedings
of the Second ACM/IEEE Symposium on Edge Computing,
page 15. ACM, 2017.

[97] Wenxiao Zhang, Bo Han, and Pan Hui. On the
networking challenges of mobile augmented reality.
In Proceedings of the Workshop on Virtual Reality and
Augmented Reality Network, pages 24–29, 2017.

[98] Junlong Zhou, Tian Wang, Peijin Cong, Pingping
Lu, Tongquan Wei, and Mingsong Chen. Cost and
makespan-aware workflow scheduling in hybrid clouds.
Journal of Systems Architecture, 100:101631, 2019.

[99] Agustin Zuniga, Huber Flores, Eemil Lagerspetz, Petteri
Nurmi, Sasu Tarkoma, Pan Hui, and Jukka Manner.
Tortoise or hare? quantifying the effects of performance
on mobile app retention. In The World Wide Web
Conference, pages 2517–2528, 2019.

Vittorio Cozzolino is a PhD candidate in the Chair of Connected
Mobility at the Technical University of Munich, and his research interests
are in distributed systems, edge and cloud computing, and resource
management and virtualization.

Leonardo Tonetto is a PhD candidate in the Chair of Connected Mobility
at the Technical University of Munich, and his research interests are in
mobile user behavioral modeling, human mobility and complex networks.

Dr. Nitinder Mohan is a Postdoctoral researcher in the Chair of Con-
nected Mobility at Technical University of Munich, Germany. He received
his Ph.D. (as Marie Curie ITN fellow) from the Department of Computer
Science at the University of Helsinki in Finland and M.Tech. degree
(honors) from Indraprastha Institute of Information Technology Delhi (IIIT-
D), India. He has been awarded “Outstanding Ph.D. Dissertation Award"
by IEEE Technical Committee on Scalable Computing (TCSC). He has
worked as Visting Researcher in NEC Labs Europe, Germany and at
University of Göttingen, Germany, and as a Project Scientist in Indian
Institute of Technology Delhi (IIT-D), India.

Aaron Yi Ding is the Head of Cyber-Physical Intelligence (CPI) Lab,
Asst Professor at TU Delft and Adjunct Professor (Dosentti) in Computer
Science at University of Helsinki. He has worked at TU Munich, Columbia
University, and University of Cambridge. He received the M.Sc. and Ph.D.
degrees from the Department of Computer Science (Birthplace of Linux),
University of Helsinki, supervised by Prof. Sasu Tarkoma and Prof. Jon
Crowcroft. Funded by Nokia Foundation, part of his Ph.D. programme was
completed at the University of Cambridge, U.K., and Columbia University,
USA. He has 50+ peer reviewed publications and his work was awarded
the best paper of ACM EdgeSys, ACM SIGCOMM Best of CCR, and
Nokia Foundation Scholarships.

Jörg Ott holds the Chair of Connected Mobility in the Department
of Informatics at TUM. He is also Adjunct Professor for Networking
Technology at Aalto University. He received his diploma and doctoral
(Dr.-Ing.) degree in computer science from TU Berlin (1991 and 1997,
respectively), and his diploma in industrial engineering from TFH Berlin
(1995). His research interests are in network architecture, (Internet)
protocol design, and networked systems, with a focus on (mobile)
decentralized services.

17

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on March 07,2022 at 09:24:45 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1145/3368305

