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Abstract—Amazon Web Services (AWS) offers transient virtual
servers at a discounted price as a way to sell unused spare
capacity in its data centers. Although transient servers are
very appealing as some instances have up to 90% discount,
they are not bound to regular availability guarantees as they
are opportunistic resources sold on the spot market. In this
paper, we present SPA, a framework that remarkably increases
the spot instance reliability over time due to insights gained
from the analysis of historical data, such as cross-region price
variability and intervals between evictions. We implemented the
SPA reliability strategy, evaluated them using over one year
of historical pricing data from AWS, and found out that we
can increase the transient instance lifetime by adding a pricing
overhead of 3.5% in the spot price in the best scenario.

I. INTRODUCTION

Cloud computing is the de facto way of providing large
scale Internet services. Large cloud data centers leverage
economies of scale and elastic demands, mostly via virtual
machine offerings on which service providers deploy their own
services. This model presents some benefits as enterprises do
not need to make upfront investments in hardware purchases
for their data centers. Cloud providers, such as Amazon,
Google, and Microsoft, offer two different classes of virtual
computing instances: on-demand, where users use them until
they release the virtual instance; and transient instances, where
cloud providers sell their spare capacity to users with some
availability limitations. These less reliable transient instances
attract users due to their cheaper pricing, which can be offered
at up to 90% discount compared to the regular on-demand
instances [1], [3], [4]. However, these instances do not have
any availability guarantees, meaning that they can be shut
down by the cloud operator with a very short notice period.

Although transient instances do no offer uptime guarantees,
many studies in the past have explored the benefit of these
instances. For example, SuperCloud [9] explores how to utilize
transient resources via algorithms that deal with the expected
failures by migrating the instance running state from one vir-
tual machine to another. Other approaches include saving the
service data in a shared partition [8], [10], [16], checkpointing
the job processing at regular time intervals [23], increasing
application availability by proactively migrating applications
between spot and on-demand instances [17]-[19] and mix-and-

match spot and on-demand instances to trade availability for
cost reduction [2]. Users need to bid for a transient instance
by setting the maximum price that they are willing to pay for
that instance and, if the market price of the instance goes over
the bid price, the instance is evicted from the data center. In
order to optimize the bid price, authors in [20], [25] propose
algorithms that optimize the bidding price to avoid eviction.

In this paper, we propose SPot Availability (SPA) — a frame-
work that assists users in selecting the best AWS transient
instance options based on service availability requirements.
SPA operation can be summarized in three steps. First, it
passively analyzes the historical pricing data of the transient
instances. Second, it compares the offerings in different AWS
regions and availability zones based on instant price, price
volatility, and price change interval. Finally, it returns the user
the best transient resource option that matches their availability
requirements at a given time. The pricing data analysis shows
there is a minimum price update interval for all spot instances,
and SPA leverages this to place or migrate instances to regions
where they can have a longer lifetime. The major contributions
we make are as follows.

1) We propose SPA, a software tool that calculates the best
spot instances to provide the same reliability as the on-
demand instances but at a fraction of the cost.

2) We analyze the AWS historical spot pricing data and
highlight the main insights in the data, such as best
prices and more stable instances across availability
zones.

3) We propose and evaluate one strategy that reduces
spot instance failure rates. The results show that our
proposed Spot Instance MarketPLace Exploitation (SIM-
PLE) strategy can achieve the same reliability as on-
demand instances with only 3.5% overhead in cost.

The rest of the paper is structured as follows. Section II
presents related work. Section III presents the background on
AWS. Section IV describes the data analysis and insights in the
pricing data. Sections VI and VII present the implementation
and evaluation of the SPA framework and the experimental re-
sults. Section VIII presents the discussion and some takeaways
of the paper. Finally, Section IX concludes the work.



II. RELATED WORK

Cloud economics has attracted the interest of academia,
resulting in attempts to deconstruct AWS price formation
model [6], infer the optimal bidding strategy using statis-
tical and optimization tooling [25], predict adaptively price
dynamics [13], and offer a better market model employing
learning techniques [15]. Abhishek et al. [S] explore trade-
offs between fixed and spot pricing, whereas [7] analyze the
problem of fixed and spot market coexistence. Besides pure
economics, there are works addressing other aspects of the
spot market utilization, such as dynamic resource allocation
and management [14], demand scheduling [12], cost-aware
migration, and checkpointing [24].

Next, we examine practical systems and architectures aimed
to exploit the advantages of the spot market. HotSpot [18]
uses containers to move between spot instances by periodically
computing the lowest spot pricing and proactively migrates to
a new instance to avoid preemption. One benefit of HotSpot is
it does not require any changes in the application. However, the
migration mechanism only works within the same availability
zone. SpotOn [19] is a batch computing service running on
top of spot instances, enabling automatic selection of spot
instances and implementing fault tolerance mechanisms to
mitigate data loss without modifying the application. It uses
containers to encapsulate jobs with their dependencies, and it
may use reactive or proactive container state checkpointing
on the disk. SpotCheck [17] is a derivative cloud market
where SpotCheck purchases cloud resources from providers
and resell them with customizations to customers. This is
aimed at customers with demands not supported by the
cloud providers and SPA can again reduce the overhead and
costs of SpotCheck. SuperCloud [11] is a cloud architecture
running over OpenStack integrating multiple cloud providers
and allowing for live migration across those providers using
Xen virtualization. Supercloud uses nested virtualization to
enable complete VM migration from one server to another,
allowing users to relocate virtual machines from one cloud
provider to another without disrupting the running application.
Bricklayer [21] optimizes resource composition using Spot
instances. It uses a variety of attributes such as ECU, volatility,
and eviction rate to compose spot instances aiming to optimize
the availability. SPA is different from the previous approaches
as it explores the minimum update interval to trigger the
migration rather than using prediction techniques or redundant
instances. The benefit is that SPA is more assertive in the
migration policy and migrates only when required, reducing
the overall cost due to the redundant number of instances.

III. AWS SPOT INSTANCES BACKGROUND

AWS offers virtual instances with two types of availability
Service Level Agreement (SLA): reserved and on-demand
instances have an SLA of 99.95% of guaranteed uptime, and
transient instances (known as spot instances [1] in AWS) that
do not have any guarantees and are available while AWS has
spare capacity in their data-centers. Both reserved and on-
demand instances have a higher hourly price, and AWS cannot
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Fig. 1: Spot instance price distribution. More than 50% of spot
instances have over 67% off discount over on-demand prices.

reclaim the instances back unless the user releases them, while
the spot instances can be reclaimed at any time as they don’t
have any uptime SLA.

AWS spot instances are offered in the spot market and
use a dynamic pricing model, where each spot instance has
a flexible price at each availability zone and its hourly price
varies based on the supply and demand of resources in the
data-center. To get a spot instance, users need to bid for it in
the market. In AWS, instance bidding can be understood as a
pricing threshold. The bid price will remain valid as long as
it is higher than the market price and, consequently, the user
will get that spot instance. Despite higher price bids for the
spot instance, the user only pays for the current market price
of that instance, and the bid amount cannot be changed once
it has been submitted to AWS. Whenever the market price for
that spot instance goes over the bid price, the owner of the
spot instance will receive a 2-minute eviction notice to save
or migrate the spot data, and AWS will reclaim the resources.

Fig. 1 shows the discount percentage offered in spot in-
stances compared to on-demand ones with the same specifica-
tion. More than 50% of the spot instances have a discount of
over 67% compared to the on-demand pricing, thus, users are
able to run up to 3 spot instances (with 3x more resources) at
the cost of 1 on-demand instance in AWS.

There are two main challenges of using spot instances
regarding selection and availability. For spot instance selection,
users have too many options to select, i.e., AWS has 21
regions, 39 availability zones, and 292 spot instances, resulting
in a combination of ~ 10k individual spot markets. AWS
recommends looking at AWS spot advisor for 3-month of
historical data and manually select which is the best instance
at a given time. However, this is unfeasible in practice as users
would need to analyze too many options and compare each of
them. With regards to availability, AWS recommends creating
a SpotFleet [2], which is a group of virtual instances where on-
demand and spot instances can be mixed together to increase
system availability. However, we find through our analysis that
users end up paying for the more expensive instance in the
group when using SpotFleet.

We explore the historical pricing data to find actionable
insights on how to use the spot instances on AWS better. Our
aim is to achieve the same level of availability as on-demand



but at a fraction of the price.

IV. AWS SPOT INSTANCE OBSERVATIONS

We collected and analyzed 15 months of AWS spot pricing
data (March 2019 — June 2020) across all regions and avail-
ability zones — exceeding 2M price entries. We start analyzing
three configuration parameters (region, availability zone, and
instance type) and three insights found in the pricing data. We
will discuss each of them below.

A. Spot Instance Attributes

Users select an instance using three configuration parame-
ters: geographical region, availability zone, and instance type.
Most of the time, customers select a region due to external
requirements, i.e., closeness to the customer or availability of
specific instance types such as GPUs. Also, the instance type is
selected based on the customer’s workload, i.e., the amount of
CPU and RAM is dependent on the type of application being
deployed. However, the availability zone (AZ) configuration
parameter can provide some economical and availability gains
if properly chosen. An AZ is a segmented data center inside
the same AWS region and is set up to provide both hardware
redundancy and scalability. Each AZ works separately and
offers different spot instance types and prices. Thus, our
interest is to check which AZ offers the best pricing and
the lowest eviction rate for the same instance type. Fig. 2
shows region us-east-1 has 6 availability zones, and they have
different volatility. In Fig 3, it can be observed that a given
instance type can have a different average number of changes
across the available zones.

B. Spot Instance Insights

We performed the exploratory data analysis (EDA) on the

historical spot pricing data and found out three insights that
will assist with the spot instance selection.
Instance Price Volatility. The instance price volatility is the
number of price changes a spot instance has over time. This
metric is important because a high number of price changes
can result in two main problems: (a) higher price volatility,
resulting in users paying more than expected, and (b) higher
eviction rate, as the spot bid price can go over the spot market
price. Fig. 4 shows the price volatility of the top 10 instances in
us-east-1 and some prices can increase up to ~ 8x, reaching
almost the same as that of the on-demand variant. On the
other hand, Fig. 5 shows instances that did not experience
much change in their price over the 90-day observation period.
Selecting these instances instead would ensure a certain level
of guarantee in the price a user pays to acquire them and
reduces the probability of eviction.

Takeaway: Not all instances are equal in price volatility, and
an effective selection strategy should focus on those with lower
prices and volatility (or higher durability).

Average Price Change Interval. Monitoring the interval
between the price changes allows us to learn the minimum
spot instance lifetime for a given instance type before a price
increase that may evict the user of that instance. Fig. 6 shows

the price update interval for m4.I6xlarge instance plotted
hourly. We can observe that there is a pattern of update times
over days — ranging between 3 to 5 updates per day. On
average, the price of the instance updates after almost 6 hours.
Therefore, intuitively, we conjecture that there is a recurrent
policy at AWS that enforces price updates of spot instances at
regular intervals based on the data usage.

Fig. 7 shows price update intervals over one month (specif-
ically September 2019). One can observe from the figure that
most of the price change intervals are clustered around 6
hours (fitted with a red dashed line), further strengthening our
findings above. Another interesting observation from the figure
is that there is a lower boundary of price updates, indicating
a minimum lifetime for a spot instance.

Takeaway: Our findings indicate scope for a strategy that picks
instances with longer price change intervals, thus guarantee-
ing more instance running time before the price update that
leads to its eviction.

Minimum and Percentile of 1% Price Change Interval.
We now investigate both minimum and percentile of 1% (or
quantile g7) of the price update intervals. By focusing on (ql),
we can observe the top 99% of the price update intervals and
remove any outliers that lie in the lower part of the distribution.
Fig. 8 shows both the minimum and ¢/ price update intervals
for a given spot instance across different availability zones.
Our analysis reveals that the g/ change interval is always
at least 4h35minl2sec in all availability zones, while the
minimum update time is the same as the ¢/ for 35 out of
39 zones (only 4 zones have lower minimum times).

This finding, along with price change interval, reveals that
AWS has rather a roughly fixed price update interval per day
(3 to 5 times per day) with a minimum update interval —
indicating space for a strategy that exploits this behavior.

Takeaway: AWS’s price update policy has a minimum update
interval for most availability zones, which can be exploited to
maximize service availability.

V. SIMPLE ALGORITHM TO KEEP THE AVAILABILITY

Driven by our findings from historical spot instance price
data analysis, we develop the Spot Instance MarketPLace Ex-
ploitation (SIMPLE) algorithm. SIMPLE’s aim is to maximize
service availability over spot instances by retroactively migrat-
ing it to new instances before potential price updates. SIMPLE
calculates the minimum update interval of all instances and
updates its historical data whenever there is a change in the
pricing update interval from AWS. A rudimentary workflow
of SIMPLE is as follows.

First, SIMPLE’s engine fetches the historical pricing data
filtered by the user’s selected region, AZ, and instance type.
Based on this information, the engine calculates the instance’s
price volatility, average price update interval, and the minimum
price update time. Then, SIMPLE calculates the remaining
lifetime of all candidate instances by subtracting the last
price update time from 4h32m (minimum update interval we
observed from our analysis). For example, if the last price
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day) for instance m4.16xlarge.

week period of time.

Algorithm 1: SIMPLE’s Instance Migration Algorithm

1 Input: region, availability_zone, instance_type, and
buffer_time

retrieve_historical_data(instance_type)
calculate_price_volatility(instance_type)
calculate_average_update_time(instance_type)
calculate_minimum_update_interval(instance_type)
retrieve_instance_provisioning_time(instance_type)
calculate_migration_time(instance_type)
calculate_time_to_migrate()
while active do

while current_time < time_to_migrate do

L use_spot_instance()

LR B N N L

provision_new_spot_instance()
migrate_state_to_new_spot_instance()
update_last_price_change()

change time for an instance was 2 hours ago, then the instance
still has 2h32 of guaranteed uptime. Next, the algorithm
calculates the time to bootstrap service on a new spot instance
(in a different zone or at a different price), deploys a replica of
the application, transfers the service’s state to the new instance,
and kills the older version of the service.

Our experimental data shows that instance provisioning and

Fig. 7: Spot price update interval (the
red dotted line shows the average of 6
hours) for instance m4.16xlarge. Both
measurements show a sample of a 2-
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Fig. 8: Comparison between the instance
price change in percentile 1% and the
minimum interval.

application deployment roughly takes 10 min to complete.
Users can also add buffer time to allow any state transfer
after the spot instance is deployed. Since our analysis reveals a
guaranteed uptime ranging around 4h32m, we conservatively
select the 4-hour mark as a trigger to migrate the service to
a new spot instance, practically guaranteeing a continuously
running service. One limitation of SIMPLE is that it requires
a transition time for transferring data and application state
between instances. Therefore, for stateful applications, this can
result in unwanted service interruption. In order to prevent any
downtime, we use additional redundant spot instances during
the transition period.

VI. IMPLEMENTATION

SPA is implemented using Python for the core components
and Numpy, Scipy, Pandas for data analytics and feature
engineering, and the components run in Docker containers
configured in a Docker Swarm setup [22]. Fig. 9 shows the
architecture with its components and correlates to each step
of the algorithm presented in 1.

In step 1, SPA receives the user parameters such as region,
availability zone, and instance type. Then, the historical data
retriever periodically fetches spot pricing from AWS and
updates the local database (step 2). The main purpose of this
scrapper is to keep the last price update for each spot instance,
to allow the analytics engine to calculate the price change
interval. The data engineering component parses the raw data
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retrieved from the spot pricing, reshapes it, and performs
feature engineering and data processing for consumption by
the other components (step 2). The analytics engine calculates
each metric that defines a spot instance in our model, e.g., the
pricing of the instance in each availability zone, the instance
price volatility, eviction rates, and the pricing update inter-
val (step 3 through 5). The reliability component calculates
the minimum update interval for a given instance and it is
responsible for the correct migration to a new spot instance
(steps 6 through 8). It also runs the SIMPLE algorithm and,
once the component triggers the migration event, it provisions
a new instance on AWS and migrates to it (step 9).

VII. EVALUATION

We evaluate the SIMPLE algorithm in two different scenar-
ios: first, we compare the cost to run the SIMPLE algorithm
vs. a naive deployment of redundant spot instances; second,
we evaluate SIMPLE’s efficiency in providing availability on
the historical pricing data.

For the first evaluation, we calculate the additional cost
incurred by the SIMPLE algorithm, shown in 1. Recall that
the SIMPLE algorithm states that we migrate to a new spot
instance every 4h30min. Assuming the spot instance provi-
sioning and state migration takes ~ 10 minutes, we will have
an additional instance running in parallel for 10 minutes, thus,
~ 17% of a 1-hour running time for a redundant spot instance.

Cs(t) = (pspot * t) + (017 * pspot) * mspot(t) (1)

where ¢ is the time, pg,,; the spot instance hourly price, and
Mgpot the number of migrations at time ¢ (per instance type). If
we consider a 24-hour period, the total number of migrations
is going to be 5. Therefore, the total cost Cs(t = 24) is
24.85 hours (24 hours of running instance plus 50 min for
the overlapping running machine), representing an overhead
of 3.5% for SIMPLE.

Tab. I compares the cost of different approaches for a
sample of spot instances. The costs are given as percentages
of the on-demand instance price, i.e., the on-demand price is
100% for reference. The table shows the strategy selection

[ Instance Type | SpotPrice [ SIMPLE [ r=1 [ r=2 |
m?2.xlarge 10.00% 10.35% 20.00% 30.00%
r3.xlarge 19.49% 20.17% 38.98% 58.47%
‘@ m5dn.24xlarge 25.00% 25.88% 50.01% 75.01%
— c3.4xlarge 32.36% 33.49% 64.71% 97.07%
— al.large 44.31% 45.86% 88.63% 132.94%
O\ mb5a.2xlarge 52.50% 54.34% 105.00% 157.50%
r5dn.xlarge 69.10% 71.52% 138.20% | 207.31%
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Fig. 10: Comparison between SIMPLE migration time - start
and end of migration - and the AWS price update time.
SIMPLE anticipates the price update time in all cases.

that can be used when choosing which strategy to select, e.g.,
spot instances that have a discount of over 67% can have
up to 2 redundant elements, while other instances with less
discount can only use the SIMPLE strategy. Note that in the
case of redundant instances, we don’t need to have an extra
overlapping spot instance to migrate given we already have
redundancy. Thus, the cost is proportional to the number of
redundant elements provisioned in the spot instance set.

The second evaluation aims to check if SIMPLE works
over the historical data. Fig. 10 compares the spot migration
events (start and end) and the actual AWS spot price change.
The figure shows that SIMPLE always starts before the price
update event and, in some cases, it triggers a migration in
4h30min, despite the migration only going to happen over
12 hours later. Although this scenario can happen, SIMPLE
guarantees that by migrating every 4h30min, it is able to avoid
any eviction. We also evaluated it on all historical data and
the experimental results show that SIMPLE can avoid spot
instance preemption in all cases.

VIII. DISCUSSION

Many research works have tried to figure out the best
strategy to use spot instances, as we discussed in Section II.
In this paper, we started analyzing the historical pricing data
to find out insights into the AWS price update algorithm.
One insight that we found is the minimum update interval,
which is 4 hours and 32 minutes for roughly all availability
zones. If we take into account the 1% percentile, then this



minimum update interval applies to all availability zones. We
believe there is a system that periodically polls the number of
resources available at each availability zone and updates the
price accordingly and that polling interval should be around
that percentile 1% update time. Based on that, we crafted the
SIMPLE algorithm that provisions a new spot instance when
the lifetime of the original instance is going to expire.

Despite begin a simple algorithm, it only increases the
overall instance price by 3.5% due to the overlapping running
time of a parallel instance for the migration. Compared to the
other approaches discussed in the literature (see Section II),
SIMPLE is much simpler and more predictable. It only looks
at the last price update time and plans for a spot instance
migration when the lifetime is about the expire. This makes
SIMPLE very easy to implement. One limitation of SIMPLE
is it requires a transition period in which data is transferred
from one instance to another, and this may lead to downtime.
To tackle this issue, we designed a reliability model over spot
instances, allowing for the optimal composition of redundant
instances to guarantee availability at the cost of an increased
hourly price. The redundant instance can work as a hot standby
or run in parallel, depending on the user’s requirements.
Compared to the on-demand model, which has an SLA of
99.95% of reliability, the pricing is worth it when the spot
instance is at least 70% off. Thus, the user can have 3 spot
instances running in parallel, providing the same reliability but
with 3 times more processing power.

SPA also can adapt to variations in the AWS pricing model.
If AWS moves away from the minimum pricing model, SPA
can detect this change as it recurrently calculates the minimum
pricing of each instance and updates the SIMPLE algorithm to
take into account the new minimum time. Another important
aspect is if too many users start to use SPA, the demand for
spot instances will increase and, consequently, the spot prices.
However, even if they get more expensive, SPA still will be
able to get savings compared to on-demand instances, as it
will optimize the use of existing spot instances through the
SIMPLE algorithm.

IX. CONCLUSION

In this paper, we presented SPA, a framework that assists
users to select the best spot instance across different availabil-
ity zones. SPA provides insights based on the historical pricing
data and provides a model in which more stable instances
(with less price variation) and with larger price update intervals
are selected. SPA leverages the observation that the minimum
update interval time is 4h32min and proposes the SIMPLE
algorithm, which exploits the minimum price update interval
and triggers the migration to another spot instance to prevent
any instance evictions, resulting in the same availability as
on-demand instances. The experimental evaluation shows the
SIMPLE algorithm only has an overhead of 3.5% over the
regular spot price and, comparing with the 15-month of
historical pricing data, SPA is able to anticipate all AWS
price updates and migrate to another spot instance before any
eviction occurs.
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