(How Much) Can Edge Computing Change
Network Latency?

Lorenzo Corneo*, Nitinder Mohan', Aleksandr Zavodovski*, Walter Wong§,
Christian Rohner*, Per Gunningberg*, Jussi Kangasharju®
*Uppsala University, Sweden
Technical University Munich, Germany
§University of Helsinki, Finland

Abstract—Edge computing aims to enable applications with
stringent latency requirements, e.g., augmented reality, and tame
the overwhelming data streams generated by IoT devices. A core
principle of this paradigm is to bring the computation from a
distant cloud closer to service consumers and data producers.
Consequentially, the issue of edge computing facilities’ placement
arises. We present a comprehensive analysis suggesting where to
place general-purpose edge computing resources on an Internet-
wide scale. We base our conclusions on extensive real-world
network measurements. We perform extensive traceroute mea-
surements from RIPE Atlas to datacenters in the US, resulting
in a graph of 11K routers. We identify the affiliations of the
routers to determine the network providers that can act as edge
providers. We devise several edge placement strategies and show
that they can improve cloud access latency by up to 30%.

I. INTRODUCTION

Over the past decade, edge computing has emerged as a
compellingly sounding solution for improving and enabling
many next-generation networked applications. The excitement
behind this computing domain majorly stems from its ability
to improve overall latency by processing application services
on devices installed close to the end-user. By doing so, edge
servers naturally enable latency-sensitive applications, such as
virtual reality, augmented reality, live video analytics, robotic
control [1]-[3], etc. The capability to offer cloud-like services
closer to the clients has ushered in a new-age revolution in
industries like communication, medical, automobiles, etc.

While the utility and capability of edge computing to disrupt
the technology market are unquestioned, the placement and
availability of edge servers over the network is still an open
problem plaguing the edge community. There are multiple pos-
sibilities for placements. Early advocates envisioned a world
of user-controlled mobile devices that opportunistically form
processing pools for short-lived applications [4], [5]. Industrial
standardization initiatives, e.g., multi-access edge computing
(MEC), suggest edge infrastructure to be a component of the
ISPs [6]. Also, cloud providers are extending their existing net-
works by deploying compute servers at their point-of-presence.
Content Delivery Network (CDN) providers have widespread
storage servers that can also host edge computations [7], [8].

While simultaneous efforts from multiple interested parties
may help popularize the capabilities of edge computing, we

ISBN 978-3-903176-39-3© 2021 IFIP

argue that together these deployments will not be able to fully
harness the capabilities of the edge. One reason is probably
that their launch strategies are often driven by competition for
market dominance that may hinder interoperability in using
edge servers. Despite the growing popularity of the edge
within the research community, relatively little attention has
been paid to understand the distribution of network latency
between routers from a user device to public cloud providers. It
is commonly believed that many latency-sensitive applications
at clouds would benefit from running at edge servers close to
the consumer instead [9].

In this paper, we focus on shared edge computing infrastruc-
tures, similar to the ones already employed by cloud providers.
Hence, we explore the potential of reducing the latency of
public cloud services by hypothetically placing edge servers
at various routers along the path between users and different
cloud providers. To this purpose, we conduct large-scale In-
ternet t raceroute measurements leveraging the RIPE Atlas
platform [10] within the US, where we target 30 datacenters
operated by seven major cloud providers. In addition to the
usual user-to-cloud “vertical” traces, we run traceroute
between all vantage points to get a broader knowledge of the
user-serving network. This will give us additional “horizontal”
paths that will complement the “vertical” ones. The collected
dataset is publicly available at [11].

We evaluate various edge placement strategies and our
results reveal that edge computing could bring a latency
improvement between 6% to 30% with respect to the actual
cloud access latency. More interestingly, we find that many
“horizontal” paths we discovered can, in fact, deliver better
cloud latency compared to the regular routing path, yielding
latency gains of up to 40%. Our contributions are as follows:

1) We provide a large-scale latency study using the RIPE
Atlas platform and traceroute from 900+ vantage
points to seven major cloud providers — totaling 30
datacenters in the US.

2) We attribute the owners of each router. This gives an
insight into potential providers of edge services, i.e., the
ISPs and cloud providers that have the pervasiveness and
router scale for an Internet-scale launch.

3) We evaluate several different edge placement strategies
and find that they can reduce cloud access latency by up
to 30% in some cases. However, the absolute values of

the reductions remain on the order of few milliseconds.

II. RELATED WORK

Cloud access latency has been an active research area
for a long time, with [12] as one of the comprehensive
studies, including OS latency and communication bandwidth.
Recently, we conducted global studies on cloud reachability,
with emphasis on access latency [13], [14]. In this work, we
augment the aforementioned works with edge placement to
reduce communication latency to computing resources. This
is related to the large corpora of cache and CDN placement
research. The foundational work by Krishnan et al. [15]
characterizes the placement problem to be intractable in the
general case, although giving algorithmic solutions for several
restricted variants. Qiu et al. [16] investigate the issue in
the context of CDNs and suggest a number of algorithms,
which are essentially approximations of either facility location
or K means problems, which are both NP-hard. In [17],
the performance of CDN is enhanced by tightening cooper-
ation with ISPs. Benkacem et al. [18] develop a theoretical
framework for VNFs placement, which balances between two
optimization targets, namely, cost and QoE. Concentrating
on IoT needs, [19] utilizes information-centric networking,
therefore differing significantly from our setting. Liu et al. [20]
devise both centralized and decentralized placement algo-
rithms to operate in fog radio access networks, finding their
performance to be approximately equal. The methodology
to harness network topology data for better CDN replica
placement was introduced in [21]. Compared to our work,
optimizing for communication latency to computing resources,
cache placement strategies balance latency related to cache hits
(equivalent to our scenario), and cache misses, which involve
a significant latency to the data source.

Also, the edge research community has become active in
placement issues. Wang et al. [22] develop a combinatorial
optimization algorithm focusing on service entity placement
for VR applications. For MEC environments, Xu et al. [23]
offer an algorithm based on Lyapunov optimization and Gibbs
sampling. Gao et al. [24] optimize placement in MEC envi-
ronments further by taking into account network performance.
Once again, such works’ objectives are distant from ours as
they tackle the placement of software services on hardware that
is already deployed and available. However, this paper’s goal is
to explore the possible outline of in-network edge computing
deployment and assess the latency gains that computational
facilities could bring to end-users when compared to the
already deployed cloud infrastructure.

III. MEASUREMENT METHODOLOGY

The focus of our work is to provide a better understanding of
user to cloud connectivity from the network edge. We consider
the network edge to begin with the last set of routers with
public IP addresses located after the probes, thus excluding
LAN devices. As we consider edge deployment in shared net-
work infrastructure, this best corresponds to that point of view.
While there are several datasets publicly available that attempt

to map the Internet connectivity and routing at large [25],
[26], we found them limiting for our study for several reasons.
Firstly, existing projects primarily focus on mapping the entire
IP address space rather than targeted measurements towards
cloud end-points, which includes routes within datacenters.
Secondly, the number and deployment location of probes used
in these projects do not represent the user connectivity at the
network edge. For example, CAIDA Ark project only hosts 52
probes in the US, the majority of which are hosted by network
providers and educational institutes.

In this work, we fill this research gap by launching
large-scale traceroute measurements towards datacenters
of seven prominent cloud providers from RIPE Atlas plat-
form [10]. traceroute provides information about the path
between probes and datacenters, as well as the per-hop latency
along the path. We process the collected data to build hop-
centric and latency-centric network graphs describing user! to
cloud connectivity. While our methodology can be applied to
any network, we focus our study towards the US as it has
the largest density of cloud datacenters and is an active area
when it comes to deploying new network protocols and edge
infrastructures [27]. Also, RIPE Atlas has a large number of
probes in the US, enabling us to get a very dense network for
our measurements.

A. Data collection

Vantage Points. We select vantage points for our measure-
ments from RIPE Atlas [10], a de-facto standard, and well-
established platform in the Internet measurements community.

RIPE Atlas is a globally distributed Internet measurements
platform that is used extensively for reachability, connectivity,
and performance studies. The platform provides thousands of
small hardware probes connected to the Internet in a variety
of installation environments, ranging from home networks to
managed network core. Users can perform active network
measurements, e.g., traceroute, from probes to end-points
of their choice.

Despite Atlas’s dense deployment nature, a large majority
of the probes are hosted by cloud operators (CO) and network
operators (NO), which allows them to monitor their network
reachability from outside [28]. These probes do not reflect the
connectivity from the network edge and have the potential to
add bias to our measurements. Therefore, we filter out all the
probes that are clearly installed in privileged locations, e.g.,
datacenters, from their user-defined tags [29] datacentre,
us—-eastx, us-westx, gcp and aws. As these tags are
user-contributed, they may be incorrect; we have attempted to
verify some of them manually and they seem largely accurate,
so we do not see this as a major concern. After filtration, we
selected 934 probes scattered across 209 different networks
(ASes) for our measurements. As we focus on the US, all the
probes that ended up being selected were also from the US.

A further point to note is that RIPE Atlas probes are in the
fixed network. While some probes may have wireless links in

Despite statistical and operational differences, we use the terms “probes”
and “users” interchangeably in this paper.

n

(a) Probe-to-Cloud (b) Probe-to-Probe

Fig. 1: Example of different network topologies discovered
through our measurements to the cloud and through the probes.

their connectivity, the bulk of them are fully wired. For our
study this is not an issue, since edge servers would most likely
be placed in the fixed network and not on mobile nodes. In an
actual deployment with wireless last-mile clients, the overall
latency reduction would have the same absolute value that we
observe, but the relative improvement would depend on the
performance of the wireless link.

End-Points. Our traceroute measurements are divided
into two parts — probe-to-cloud and probe-to-probe — one with
the purpose to analyze the paths to the cloud servers, the other
to explore additional possible edge locations close to the users.

1) Probe-to-Cloud: The goal of the Probe-to-Cloud mea-
surement is to discover the network topology that carries traffic
from the network edge (probes) to the cloud. We target 30
datacenters operated by seven? different cloud providers in the
US, motivated by their popularity and effective coverage in the
country. Specifically, we ran traceroute queries to public
VMs hosted by CloudHarmony [30] in all chosen datacenters.
The topology emerging from measurements from the probes
to a particular datacenter is a tree with the datacenter as
root and the probes as leaves (see Fig. 1a). Consequently, the
measurements to all datacenters result in a set of trees.

2) Probe-to-Probe: While our probe-to-cloud measure-
ments provide a useful network map that converges towards
cloud datacenters, it provides limited information about the
complete network topology. In order to further identify the
network connectivity at the network edge, and to discover
additional in-network routers that are possibly closer to the
end-users, we launch mesh-based traceroute measure-
ments between all probes in our dataset. Given the number of
probes, pairwise measurements result in a large set of paths
and related latency information. This knowledge serves to
identify additional potential nodes to host edge servers and
thereby provide lower access latency for the users. Fig. 1b
illustrates the additional paths discovered by Probe-to-Probe
measurements.

Ownership resolution. We supplement our router-level topol-
ogy by augmenting it with the organizations in-charge of oper-
ating them. This allows us to better understand whether future
edge server deployments are more convenient as a natural
expansion of the cloud, or as capillary installation (as close as
possible to end-users). To achieve this, we query the owners
of the in-network routers we encounter in our traceroute

2 Amazon, Microsoft, Google, DigitalOcean, Linode, Vultr and Alibaba.

measurements from a public whois database. We manually
cluster the owners into three organization categories — cloud
operators (CO), network operators and ISPs (NO), and non-
categorized (NC). For instance, in our dataset, CO includes
the operators of our 30 end-points while NO includes major
US network operators such as AT&T, Comcast, etc. Finally,
NC includes all the owners that do not belong to any of the
previous categories, e.g., Internet Exchange Points (IXPs).

B. Network graph generation

In this section, we explain how we sanitize our measure-
ments and generate the network graphs for the hop and latency
analysis. Before doing so, we give a primer about IP aliasing
and how it affects our data collection.

Router-level topology. While t raceroute’s limitations are
well-known [31] and commonly accepted, one of them may
unduly impact our study. Specifically, traceroute reports
a sequence of IP addresses that are matched against the
responding router interfaces, and it is common for routers to
have multiple interfaces. Multiple interfaces translate to mul-
tiple IP addresses belonging to the same router. Furthermore,
IP aliasing® may generate even more IP addresses. In our
study, working on an interface-level topology may lead us to
overestimate the network size and coverage of network owners,
or placing multiple computational units in the same router.
As a consequence, an interface-level topology is not suitable
for our aims. Fortunately, mapping network interfaces-level
to router-level topology is a well-studied topic in networking,
and we use CAIDA’s IP aliasing resolution tool kapar [32].
To quantify the effect of IP aliasing, the size of the router-
level topology is 50% smaller than interface-level topology
(26K to 11K). We now describe how we generate hop- and
latency-centric network graphs from the router-level topology.

1) Hop-centric network graph: Our data cleanup involves
removing all routers which have private IP addresses (e.g.,
home routers) or are unresponsive (show up as *). Trimming
the former is necessary since private IP addresses do not rep-
resent generic user-to-cloud connectivity, and their existence
is largely dependent on how probes’ owners configure their
network. It must be noted that we aggregate all network laten-
cies while removing private IP addresses to maintain the end-
to-end latency estimate. Unresponsive nodes show up in our
measurements due to in-network routers that disallow ICMP
packets and, therefore, do not respond to traceroutes.
Since we cannot determine neither ownership nor latency of
such routers, we exclude them from our dataset.

While our cleanup techniques might result in a network
graph with shorter paths, we believe that it represents a
real Internet topology much closely. Moreover, since our
analysis concerns the ownerships of network routers majorly,
the trimmed network graph does not impact our results.
Consequently, we generate three network graphs from our
measurements, (i) probe-to-cloud (discussed in §III-Al), (ii)

3IP aliasing consists in associating more than one IP address to a single
network interface

0<212 /50\11.6<21.2
()

0<11.6 /R\}
NG%

®

/A 212-11.6 =96
- &)

Fig. 2: Sanitizing RIPE Atlas traceroutes by removing
nodes that violate monotonically increasing RTTs throughout
the network path.

probe-to-probe (in §III-A2) and (iii) probe-and-cloud which
unifies topologies in both (i) and (ii).

2) Latency-centric network graph: The objective of the
latency-centric graph is to augment the hop-centric network
graph with latency values per-hop. Due to the inconsisten-
cies of latencies from traceroutes, our cleanup phase
for generating a latency-centric graph is much stricter than
the hop-centric graph. Every t raceroute includes multiple
measurements (typically three), which includes the RTT and
the IP address of every hop. Since each measurement is
independent of the last, there is a possibility that some routers
earlier in the path yield higher RTT than routers that come
later. This behavior is caused by different forward and reverse
paths taken by ICMP packets for different measurements [33].
Let us consider the scenario illustrated in Fig. 2. The figure
depicts the result of a t raceroute issued by the Atlas probe
towards the datacenter. Assume that the request identifies
(through hop-centric graph processing) two routers on the path,
R4 and Rp. The three RTT measurements recorded for each
router are listed atop each node. Since RTT is the sum of
base communication latency (limited by the speed of light) and
delays due to traffic on the path, each of the three RTT values
can vary significantly from another. We choose the minimum
RTT (MinRTT) value reported for each router as base latency
since our objective is to obtain the latency estimate of each
hop least affected by additional network delays. We mark these
values in bold. Using the MinRTT values, we can calculate
the latency of each network hop by subtracting the MinRTT of
the previous router from the one succeeding it, i.e., the latency
of hop Ry < Rp is MinRTT(Rg) — MinRTT(RA).
However, with non-monotonically increasing per-hop RTTs,
such an approximation could result in negative latencies.

Our cleanup algorithm, shown in Fig. 2, works on the
reverse path, i.e., from datacenter node to the probe. The
first step of the algorithm starts from the destination node
and proceeds backward until the source node. At every step,
the active node (marked with a green arrow) ensures that all
preceding nodes have MinRTT smaller than its own. In Step
1, we check that datacenter’s MinRTT is greater than Rp, R 4,
and the probe (which is assigned 0 RTT). In the considered
example, Rp’s MinRTT is greater than the datacenter, and

therefore Rp is removed from the path. In the second step,
the algorithm repeats itself, but from the perspective of R 4.

The trade-off for enforcing monotonically increasing RTTs
is the reduced graph size, which does not resemble the hop-
centric graph of the network. While our cleanup may reduce
certain edge server deployment opportunities, it delivers, in
turn, a consistent view of the network RTTs; this is quintessen-
tial for investigating the impact of edge computing on network
latency. Similar to our hop-centric graph, we generate two
latency-centric graphs: (i) probe-to-cloud and (ii) probe-and-
cloud (we do not generate probe-to-probe since those paths
do not culminate at cloud DCs).

IV. MEASUREMENTS ANALYSIS

In this section, we analyze the data collected from our
measurements and investigate (i) the make-up of the un-
derlying user-to-cloud connectivity over the Internet, (ii) the
composition of shortest paths from probes to the nearest cloud,
and (iii) the latency contribution w.r.t. the network ownership.

A. Owners Composition of the Network Graph

As discussed in § III, a typical user transits through several
networks owned by different entities while connecting to a
cloud datacenter. Understanding the entities that exist on such
paths is critical for identifying potential players for edge
server deployment and whether some of these players have
an advantage over the others. We use our hop-centric graph
for this scrutiny since it includes all the routers recorded
throughout our traceroute measurements. The results of
our analysis are shown in Fig. 3.

We find that, out ~11K routers in probe-and-cloud network
graph (shown in Fig. 3a), 30% belong to cloud operators
(CO), 50% to network operators (NO), and the remaining 20%
are unclassified (NC). From this, we infer that NOs own the
majority of the in-network routers and, therefore, from a prob-
ability perspective, have much more edge server deployment
space than COs. Interestingly, we find that Amazon, Google,
and Microsoft collectively own the majority of the routers
deployed by COs (95%). This is primarily due to the extensive
datacenter deployment of the three operators, supported by
their own private WAN infrastructure [34]-[36].

Fig. 3b shows the network composition of the probe-
to-probe network graph (described in §III-A2). This graph
includes ~10K nodes — almost 86% of the entire hop-centric
network. Such coverage from probe-to-probe measurements
is somewhat expected since the majority of the path subsets
(especially those operated by NOs) is covered by both mesh
and cloud t raceroutes. Surprisingly, even though our mesh
measurements do not target cloud end-points, and we carefully
remove probes located within DCs in our analysis, we find that
~ 25% of the routers in this graph belong to COs. While these
may be routers leased by COs to NOs for directly peering user
traffic to their private WANs [37], the result requires further
investigation, which we leave for future work.

Fig. 3c shows the network composition of the probe-to-
cloud network graph (described in §III-Al). The graph in-
cludes ~ 8K IP addresses, of which 44% belong to NOs, 39%

-

Zza co
NO
=3 NC

5

L

4 4

IS
L

31

L

Routers [K]
Routers [K]

2 4

©
L

14

L

za co ¥za co
NO | NO
=3 NC =39 NC

Routers [K]

(a) probe-and-cloud: 11358 routers

(b) probe-to-probe: 9830 routers

(c) probe-to-cloud: 6527 routers

Fig. 3: Ownership distribution over all the routers extracted from our t raceroute measurements.

to COs, and 17% are unclassified (NC). It can be observed that
the COs have a significantly higher router share in this graph
compared to the probe-and-cloud graph. Thus, we deduce that
many network segments present at the edge is not accessed
when users connect to the cloud.

We now quantify the degree of the pervasiveness of COs in
the whole network. To do this, we must isolate the network
segments operated by COs in each network graph. The size
of the probe-and-cloud graph (Fig. 3a), in terms of vertices,
is denoted by Sy and can be decomposed into three main
components. Being the union of the probe-to-probe and probe-
to-cloud graphs, Sy = Sg + S¢ — Sgnc, where Sg, Sc,
SEnc are the vertices in the probe-to-probe graph (Fig. 3b),
in the probe-to-cloud graph (Fig.3c), and in the overlapping
vertices from both networks, respectively. Consequently, we
can find Sgnc as Sg + Sc — Sw. By substituting the values
from Fig. 3, Sgpnc translates to 4999 routers. Hence, ~44%
of the whole graph is utilized for connecting towards 30 cloud
DCs in the US. We further isolate the routers installed by COs
at the network edge (Fig. 3b). Adapting the previous formula
to assess the size of CO-only nodes, C, we calculate Cgnc =
Cg + Co — Cw to be =~1.5K nodes. Thus, more than 50%
of the CO routers that are used to access the cloud DCs are
also present in the probe-to-probe mesh measurements which
do not even target cloud end-points. Therefore, we infer that
CO-owned routers have already pervaded the network edge
and are utilized to forward traffic that is not even destined to
DCs. This phenomenon is also shown by a recent study about
the flattening of the Internet [38].

Takeaways. The majority of network routers on user-to-cloud
paths in the US belongs to network operators and ISPs
(50%), making them preferred candidates for deploying edge
servers. On the other hand, cloud operators are expanding
their reach by installing routers within ISP networks, which
directly peer traffic into their private WANS.

B. Owners Distribution on the Shortest Path to the Cloud

In this section, we investigate how the shortest path to the
closest of the 30 DCs is partitioned among the three categories
from §III-A. The overall aim is to quantify how much space
is still available for edge servers deployment throughout the
network paths and which of the categories have the most

deployment potential. Before discussing the results, we want to
emphasize that the plots do not refer to the raw traceroute
result, but what is delivered after data processing from III-B
and, therefore, paths will be shorter. Also, as we are interested
in ownership, we ignore unresponsive nodes.

Fig. 4a shows the CDF of the number of hops (routers)
belonging to each of the categories on the way to the shortest
path to the closest DC. That is, if a path consists of 3 hops
belonging to two NOs and one CO, three points will be
mapped on the CDF, respectively NO=2, CO=1, and NC=0.
From the figure, we see how COs are almost always present
with one router. This result is to be expected as the end-point
of every traceroute is indeed a CO. Also, a tiny fraction
of paths have multiple, up to 4 hops, in a cloud network.
Furthermore, roughly 20% of the shortest paths do not flow
through any NO routers. This is because probes are one hop to
the cloud, or due to unresponsive routers, or because the ISP
belongs to the NC category. Moreover, in slightly less than
50% of the paths, there are no NC routers, and this reflects
the accuracy of the classification of NOs. Many of the NC
routers belong to small businesses and public institutions, e.g.,
universities with their own backbone.

Fig. 4b illustrates the hop distribution for the percentage of
path belonging to each category. We see that COs consistently
cover a significant part of the path that ranges from 20% to
50%. In rare cases, when the probe belongs to a CO but is not
placed within the DC, COs covers up to 100% of the path.

Takeaways. Cloud operators already cover a significant part
of the paths to the cloud, and this reduces edge deployment
space for NOs and NCs.

C. Latency Distribution on the Shortest Path to the Cloud

We now investigate how the shortest RTT towards the clos-
est DCs is distributed among the three categories. Conversely
to the previous section where we worked with IP addresses,
we now consider latency on network edges, and this involves
a source and destination IP. That is, we have to consider a
couple of categories rather than individual ones. As a result, we
will identify latency bottlenecks between inter/intra-category.
The end goal is to identify where in the network edge servers
deployment would benefit end-users. Here we use the latency-
centric network graph, see III-B2.

1.00 —_———— 1.00
0.75 0.75
€3 €3]
A 0.50 A 0.50
o | — CO © - — CO
0.25 | NO 0.25 | NO
| —-= NC | —-= NC
0.001.! | 0.004! 7 : : ! -
012345678910 0 25 50 7 100

Hops Distribution Hops Distribution [%]

(a) Absolute number of hops (b) Relative number of hops

Fig. 4: Ownership of the routers on the shortest path to the
closest cloud DC for each probe.

Fig. 5a depicts the absolute RTT distribution for the pairs
of categories from §III-A. The classification in the legend has
no order, meaning that CO-NO is the same as NO-CO. From
the logarithmic scale on the x-axis, we can see that inter- and
intra-category between NOs and COs is very efficient as it
delivers almost in its totality sub-millisecond RTT. Hence, we
see that the network segments between these two categories
are really efficient. On the other hand, the remaining pair of
combinations are not, and it is there that the bulk of latency
lays. This suggests either congested links or poor links quality.

The percentage weight of these network segments within
the shortest paths to the cloud is shown in Fig. 5b. Network
segments between COs and NOs, as expected, contribute
insignificantly to the overall shortest path latency. In some
rare cases, few probes in the area of the closest DC obtain a
high portion of the overall RTT. However, network segments
between these categories contribute negligibly to the full RTT.
From the CDF, we also notice that the bottleneck of the
RTT is shared among the categories of the remaining network
segments. That is, improvements to that portion of the network
can dramatically reduce cloud access latency.

Takeaways. Network segments between the major network
and cloud operators are very efficient. However, the latency
bottleneck is shared among the remaining links.

V. PLACEMENT STRATEGIES

In this section we present the edge placement strategies
aimed to reduce end-users’ access latency to the nearest com-
pute server, but we first provide common notations. We define
the set of candidate for edge deployment as C = V\{PUE},
where P and E are the set of probes and cloud datacenters,
respectively. This leaves us with every in-network router in
the latency-centric network graph, except probes and DCs.
The RTT matrix is R, that is the RTT between every pair
of nodes, and the the RTT between nodes ¢ and j is obtained
with R; ;. The selection function o(C, U, n) takes as input the
set of candidates and, after the utility function U is applied
to them, it returns the n candidates with the highest value.
Intuitively, each placement strategy ranks candidates based on
their utility function (e.g., RTT) that determines priority for
edge deployment. That is, high utility nodes are preferred over
those with lower value. Note that o(-) is applied to every
placement strategies in the evaluation phase. Through our

1.0 s T — 1.0

:(—— NC-NO
NO-NO

_;r'/, CO-NC i — CO-NO
___' NC-NC H “eer CO-NC
T CO-CO | o
0.0 0.0 o
1072 10° 0.0 0.5

RTT Distribution [ms] RTT Distribution [%]

1.0

(a) Absolute latency (b) Relative latency

Fig. 5: Latency between every pair of routers on the shortest
path to the closest cloud DC.

results, we outline future research directions for maximizing
the utility of edge on the Internet-wide scale.

A. Greedy

The greedy strategy is eventually latency-optimal as it
delivers the best possible latency to all probes. This is achieved
when every probe has an edge facility one hop away. The
utility function for a probe p € P can be expressed as:

U(p)max{ :nGNp} (1)

1
Ry
where N, € C' is the set of probe’s neighbors. The rationale
is that probes with highest latency gain are selected first. The
drawbacks of greedy strategy are the high deployment cost and
the inability to deliver a shared edge infrastructure, as users
may be unwilling to grant access to others in the network.

B. Betweenness centrality (BC)

The goal of the BC strategy is to lower the end-users latency
to the closest server without deploying as many servers as
in the greedy strategy. Betweenness centrality (BC) indicates
node centrality in a graph, and it is based on how many times
a particular node is encountered through the shortest paths
(Freeman’s definition) [39]. BC has been employed widely,
e.g., to maximize the reach of users in caching systems [40].
For edge deployment, betweenness centrality identifies aggre-
gation nodes within a network, i.e., nodes mostly located on
the shortest paths of other nodes. For example, nodes near
the core of the network may be ideal locations to place edge
and maximize reachability. The utility function of a candidate
c € C is simply:

U(C> = B. 2

where B, is ¢’s BC. BC’s complexity varies depending on
implementations; we use Brandes’ fast method that yields
O(VE+V(V + E)logV) for weighted graphs [41].

C. Betweenness centrality with Depth (BC-D)

We believe that BC would be good to maximize reachability,
however we hypothesize that the most central nodes in the
graph (tree-like), see Fig. 1, are the ones closer to the cloud
datacenters. If this is the case, candidate in-network routers
for edge deployment would be gathered rather close to the
datacenters. As a consequence, these nodes would be placed
faraway from the end-users and will bring them little to no

— BC
BC-D
—+= GREEDY

7.5

. —_— BC
_ BC-D
1.8 1 o P e
- GREEDY

Y “_—.

7.0 '~

6.5 ™~

6.0 e

=

Average RTT [ms]

Average RTT [ms]
|
)
|

1.00

0.75

3]
a 0.501 7
&) Ve

0.25

0.00

—— BC MAX
BC-D MAX

—:= GREEDY MAX

CLOUD

400 600 800

Edge servers

0 200 400 600 800 0 200

Edge servers

(a) probe-to-cloud:
average RTT

(b) probe-and-cloud:
average RTT

20 10
RTT [ms]

(c) probe-to-cloud:

60

] = BC-D MAX
1 GREEDY MAX
—-= CLOUD

0.00

0 20 10

RTT [ms]

(d) probe-and-cloud:

60

cloud vs. full deployment cloud vs. full deployment

Fig. 6: Comparison between BC-D and GREEDY strategies over edge servers deployment. Note different y-axis values.

latency benefit. Our proposed BC-D algorithm solves this
problem by weighting the BC’s value by the RTT to the closest
cloud DC. This way, nodes too close to the cloud, which would
minimally reduce latency, are downgraded. Conversely, nodes
further away from the cloud that may deliver better end-users
latency will be preferred. Thus, we define the utility function
of candidate ¢ € C as:

U(c) = B - Ry g+ 3)

where B, is the BC of ¢, Ry 4 is the RTT between the
candidate node ¢ and the closes cloud datacenter d*.

VI. SIMULATION RESULTS

We evaluated the three placement strategies from the latency
point of view and how these target the different categories
defined in §III. All the following results were obtained using
the probe-to-cloud and the probe-and-cloud latency-centric
graphs. We removed all probes that can reach the closest
cloud DC in one hop as these do not have any room for edge
deployment. After processing, probe-to-cloud and probe-and-
cloud graph has 799 and 834 probes, respectively.

A. Edge computing latency benefits

We start our analysis by calculating the access RTT for
every probe. Access RTT is calculated on the shortest path
toward the closest computational facility, e.g., DC or a newly
placed edge server. If a probe has no edge server on the path,
the access RTT equals the latency to access the nearest cloud.

Fig. 6a shows the evolution of the average access RTT for
probes while increasing numbers of edge servers deployed in
the graph. First, we see that the average RTT for accessing
the closest cloud DC when no edge server is deployed is
7.8 ms. On the other hand, when the number of edge servers
is equivalent to the number of probes, the GREEDY strategy
delivers ~5.5ms while the BC-D strategy 6.7 ms. To put it
differently, the GREEDY and BC-D strategies at peak edge
deployment improves network latency by ~40% and ~33%
respectively. More interestingly, we see that the two strategies
perform equivalently when ~ 750 servers are deployed (~95%
of probes in the graph). Except for the remaining 25% of
edge deployment, the BC-D strategy yields better performance.
The constantly better performance of BC-D over the standard
betweenness centrality, highlights the unsuitability of pure
betweenness centrality in the context of edge placement.

Fig. 6b shows the average access RTT for all probes, while
an increasing number of edge servers is deployed in combined
probe-to-cloud and probe-to-probe graph. In this graph, the
average cloud access RTT (x-axis = 0) is 4.87 ms. At peak
edge deployment, the GREEDY strategy delivers an average
access RTT of ~4.6 ms while the BC-D strategy ~4.65 ms,
e.g., gain of =~6% and ~5%, respectively. Again, the two
strategies’ curves intersect, meaning that they are equivalent
when the number of edge servers deployed is ~750. Similar to
our last result, BC-D delivers better access RTT than GREEDY
until the edge deployment covers 95% of the total probes. Even
for this graph, the standard BC is consistently worse than BC-
D, showing poor performance in edge placement.

We now discuss the characteristics of the three strategies.
We designed the BC-D strategy to decrease RTTs for multiple
probes at the same time, as close as possible to the edge of
the network; moreover, BC-D aimed to improve the efficiency
of standard BC in the context of edge placement problems.
The better performance, when compared to BC and GREEDY,
clearly indicates that the design goals are met. Furthermore, as
BC-D is also designed not to deploy too close to the probes,
e.g., first hop, after a certain amount of deployments, it does
not deliver further significant latency improvements, e.g., the
curve flattens. On the other hand, GREEDY is supposed to
optimize the RTT of one probe at the time, and this is reflected
in the linearity of the curve of the average RTT’s evolution
over edge deployment. Latency-optimality is reached when
edge servers cover all of the probes (on-premise deployment).

It must also be stressed that the efficacy of any deployment
strategy is as good as the information of the network it is
applied to. In this work, we augment our information of
the network available to the user via mesh measurements,
which allows for better deployment decisions. There are two
major differences between the probe-to-cloud (Fig. 6a) and the
probe-and-cloud (Fig. 6b) network graphs. Firstly, the probe-
and-cloud (with edge paths) cloud access latency is ~40%
smaller than the probe-to-cloud (without edge paths) graph
(value when no edge servers are deployed). This phenomenon
strongly suggests that the paths being used to access the
cloud are not optimal. Among possible causes, we believe the
Border Gateway Protocol (BGP) routing to be the primary
culprit. BGP is the Internet’s default routing protocol, which
decides the traffic forwarding decisions for routers at the
crossings between ASes. The shortcomings of BGP are well-

40

P O PN ey s 20 e v m

%)
. [%]

— CO

Category Distr
» =
Category Distr

—m NG [o s s i —.)
NO
—- NC

oy e T R 5 04

(‘] 2[‘)[) 4(](] 600 8(‘)[) (‘] 2[‘)[) -'1(‘](] ()'(‘)() 8(‘)[)
Edge Servers Edge Servers

(a) Greedy strategy (b) BC-D strategy

Fig. 7: Percentage evolution of the three categories over edge
servers deployment divided by strategy.

documented in the networking community [42]. The fact that
BC-D algorithm, which is based on the shortest path to the
closest cloud DC, delivers better results than default Internet
makes us believe that there exist better routing opportunities
on the Internet than what BGP offers. Currently, cloud traffic
routing decisions are driven by peering agreements between
providers operating at different portions of the Internet [37].
However, this matter requires further investigation left for
future work. To sum up, our measurements suggest that cloud
access latency in the US improves by ~40% when non-
conventional routes exploiting the network edge are used.

The second difference between the two graphs can be
attributed to the impact of edge deployment on RTT reduction.
The probe-to-cloud graph (without horizontal paths), after
complete edge deployment, delivers an RTT improvement of
2ms — reduction of ~30% of the initial average RTT. On
the other hand, the probe-and-cloud graph (with horizontal
paths) reduces the initial average RTT by 0.27 ms, i.e. ~6%
improvement. We see two interesting renditions of these
results. Firstly, potential edge deployment benefits probe-to-
cloud graph more than probe-and-cloud. This suggests that the
effectiveness of edge can be shadowed by sub-optimal network
routing, and network operators should pay equal attention
to both server placement strategies and cloud traffic pathing
if they want to maximize the utility of their deployment.
Secondly, from complete edge deployment with the GREEDY
strategy (deployment achieves 1:1 mapping between probe and
edge server), we observe that 85% of the average access RTT
is concentrated in the last-mile link (probe to the first hop).
Fig. 6¢c and Fig. 6d compare the cloud access latency with the
full edge server deployment of both GREEDY, BC and BC-D
placement strategies. From the figures, we can conclude that
while it is possible to bring down latencies with aggressive
edge deployment, it is non-trivial to accelerate performance
for all users (exhibited by the long tails). Furthermore, Fig 6d
shows that the impact of the edge in access latency reduction
is even less when underlying networks are well-configured
by their operators. However, since routing decisions can be
influenced by performance-oblivious reasons, their end-to-end
optimality cannot be guaranteed in the real-world. In such
settings, effective edge deployment decisions are likely to
bring immediate access latency benefits, which would increase
with improvement in last-mile (wireless) access technologies.

B. Owners of the network edge

We now inspect which of the network owners (considered
in Section IV-A) are most eligible for deploying edge servers
using our placement strategies. Through our investigation, we
provide insights on how edge computing could be brought
to reality, more specifically, by whom. Fig. 7 shows the
progression of the percentage of servers deployed by the
different categories in the probe-and-cloud network graph (we
leave out BC for relevance and space reason).

Fig. 7a presents the outcome for the GREEDY strategy that
deploys servers as close as possible to each probe. Such a
strategy directly impacts the server share of cloud operators
(CO) — only 5%. On the other hand, the majority, ~70%, of the
deployed servers belong to the network operators (NO) as the
first hop of the probe usually lies within the ISP infrastructure
and provides the probe a point-of-entry to the Internet. The
remaining ~=25% of the deployment is to be attributed to the
non-classified (NC) category that is composed of university
networks and minor NOs.

Fig. 7b shows the division of edge deployment among the
three categories for BC-D. Recall that BC-D aims to lower
the access latency as much as possible by sharing central
nodes. From the figure, we see that the big chunk of these
central nodes in the network still belongs to the NOs (40%)
even though there is a decrease of ~30% with respect to the
GREEDY strategy. Conversely, COs increase their coverage by
15%, for a total amount of ~20%. Finally, the non-classified
(NC) nodes own the remaining ~20% of the edge servers.

From the results, we clearly see that NOs, mainly providing
Internet access, are in a dominant position, especially when
compared to COs, for deploying a wide-scale edge. However,
simply having the ability to place computational facilities
closer to the users may not justify deployment. In fact, the
results from Fig. 6b suggests that deploying edge closer to the
users may not be worthwhile for the latency improvement that
edge could bring.

VII. DISCUSSION

In our study, we asked the question of whether edge com-
puting could reduce cloud access latency for applications, and
if yes, by how much. As a use case, we selected the US since it
has the most extensive cloud data center coverage. Hence, it, in
a way, represents the most difficult case for latency reduction
because the clouds are already very widely spread. Our key
finding is that while edge computing can indeed reduce cloud
access latency, the reduction, in general, is very modest, on
the order of 2 ms. While a reduction of a few ms may sound
trivial, some applications, especially augmented reality, may
depend on these, hence becoming viable with edge computing.
Nevertheless, from a latency perspective, edge computing is
far from a silver bullet in this case. Naturally, in regions with
more sparse cloud deployment, the advantages are going to
be more significant, and this merits a more extensive global
study of cloud reachability. In our previous works [13], [14],
we performed extensive global latency measurements to the
cloud and their results indicate that in Europe and Oceania

the latencies are comparable with the US, making it likely that
our results would similarly apply in those regions. They also
show that Asia, Latin America, and Africa have significantly
higher latencies to the cloud, making them more appealing
as deployment regions. However, these regions have only a
small number of RIPE Atlas probes, making it difficult to
obtain a good picture of the network topology. As future study,
focusing on these regions would be of paramount importance.

Interestingly, our probe-to-probe measurements indicated
the existence of shorter paths to the cloud than taken by the
regular routing due to BGP and peering decisions between
serving operators. We leave the investigation of these calls
for further measurements. These also indicate interesting edge
deployment potential, as it might be possible to get useful
latency gains by going “sideways” to a neighboring network
as opposed to going upwards to the cloud. This is something
the network and cloud operators should look at together.

VIII. CONCLUSION

We focused our work on potential communication latency
reductions that edge computing could bring to a country-
wide network. We built such insights by collecting large scale
measurements with the RIPE Atlas platform. We found that
network operators, being majorly present in the network, are
very good candidates for edge computing market domination.
However, cloud providers already significantly pervaded into
ISP networks, leaving poor space for deployment to network
operators. Moreover, we conducted a thorough analysis aimed
at identifying bottlenecks in the network, and we showed that
cloud providers and network operators links exhibits good
performance. Finally, we evaluated three placement strategies
and estimated latency gains that hypothetical edge computing
deployment could bring. Our finding suggests that either
placing in-network servers or empowering network infras-
tructure, e.g., with peering agreements, could sensibly reduce
network latency and enable a new class of latency-sensitive
applications.

ACKNOWLEDGMENT

A special thanks to Suzan Bayhan that helped shaping the
BC-D placement strategy in its early stage. This work is
funded by SSF Future Factories in the Cloud (GMT-14-0032),
Celtic project Piccolo (C2019/2-2), and Academy of Finland
AIDA (317086) project.

REFERENCES

[1] Y. Chen et al., “An industrial robot system based on edge computing:
An early experience,” in USENIX HotEdge 18.

[2] M. S. Elbamby et al., “Toward low-latency and ultra-reliable virtual
reality,” IEEE Network, vol. 32, no. 2, pp. 78-84, 2018.

[3] G. Ananthanarayanan et al., “Real-time video analytics: The killer app
for edge computing,” Computer, vol. 50, no. 10, pp. 58-67, 2017.

[4] K. Ha et al., “Just-in-time provisioning for cyber foraging,” in ACM
MobiSys 2013.

[5] W. Shi et al., “Edge computing: Vision and challenges,” IEEE internet
of things journal, vol. 3, no. 5, pp. 637-646, 2016.

[6] T. Taleb et al., “On multi-access edge computing: A survey of the
emerging 5¢g network edge cloud architecture and orchestration,” IEEE
Communications Surveys & Tutorials, 2017.

[7]

[8]
[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]

(18]

[19]

[20]

[21]
[22]
(23]
[24]
[25]
[26]
[27]
[28]

[29]
[30]

[31]
(32]

[33]
[34]

(35]
[36]

(37]
[38]

[39]

[40]

[41]

[42]

M. Satyanarayanan et al., “The case for vm-based cloudlets in mobile
computing,” IEEE pervasive Computing, no. 4, pp. 14-23, 2009.
Amazon, “CloudFront,” https://aws.amazon.com/cloudfront/, 2020.

M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

RIPE NCC., “RIPE Atlas,” "https://atlas.ripe.net/”, 2020.

L. Corneo et al., “(how much) can edge computing change
network latency?” 2021. [Online]. Available: https://mediatum.ub.tum.
de/1609139

A. Li et al., “Cloudcmp: Comparing public cloud providers,” in ACM
IMC 2010.

N. Mohan et al., “Pruning edge research with latency shears,” in ACM
HotNets 2020.

L. Corneo et al., “Surrounded by the Clouds,” in The Web Conference
2021, ser. WWW °21, 2021.

P. Krishnan et al., “The cache location problem,” IEEE/ACM transac-
tions on networking, vol. 8, no. 5, pp. 568-582, 2000.

L. Qiu et al., “On the placement of web server replicas,” in [EEE
INFOCOM 2001.

B. Frank et al., “Pushing cdn-isp collaboration to the limit,” ACM
SIGCOMM CCR, vol. 43, no. 3, pp. 34-44, 2013.

I. Benkacem et al., “Optimal vnfs placement in cdn slicing over multi-
cloud environment,” IEEE Journal on Selected Areas in Communica-
tions, vol. 36, no. 3, pp. 616-627, 2018.

H. Wei et al., “A new cache placement strategy for wireless internet of
things,” Journal of Internet Technology, vol. 20, no. 3, 2019.

J. Liu et al., “Cache placement in fog-rans: From centralized to dis-
tributed algorithms,” IEEE Transactions on Wireless Communications,
vol. 16, no. 11, pp. 7039-7051, 2017.

P. Radoslavov et al., “Topology-informed internet replica placement,”
Computer Communications, vol. 25, no. 4, pp. 384-392, 2002.

L. Wang et al., “Service entity placement for social virtual reality
applications in edge computing,” in /EEE INFOCOM 2018.

J. Xu et al., “Joint service caching and task offloading for mobile edge
computing in dense networks,” in IEEE INFOCOM 2018.

B. Gao et al., “Winning at the starting line: Joint network selection and
service placement for mobile edge computing,” in INFOCOM 2019.
CAIDA, “CAIDA Archipalego (Ark) project,” “https://www.caida.org/
projects/ark/”, 2020.

H. V. Madhyastha et al., “iplane: An information plane for distributed
services,” in USENIX OSDI 2006.

A. Davis et al., “Edgecomputing: Extending enterprise applications to
the edge of the internet,” in ACM WWW 2004.

V. Bajpai et al., “Lessons learned from using the ripe atlas platform for
measurement research,” ACM SIGCOMM CCR, vol. 45, no. 3, 2015.
RIPE NCC., “Probe tags,” "https://atlas.ripe.net/docs/probe-tags/”, 2020.
CloudHarmony, “Transparency for the cloud,” “https://cloudharmony.
com/”, 2020.

H. V. Madhyastha et al., “A structural approach to latency prediction,”
in ACM IMC 2006.

K. Keys, “Internet-scale ip alias resolution techniques,” ACM SIGCOMM
CCR, vol. 40, no. 1, 2010.

E. Katz-Bassett et al., “Reverse traceroute.” in NSDI, 2010.

A. W. Services, “AWS Global Infrastructure Map,” "https://aws.amazon.
com/about-aws/global-infrastructure/”.

Google, “Google Cloud,” https://cloud.google.com, 2019.

Microsoft, “Microsoft Azure,” https://azure.microsoft.com/en-us/global-
infrastructure/locations/, 2019.

Google, “Google Direct Peering,” https://cloud.google.com/network-
connectivity/docs/direct-peering”, 2020.

T. Arnold et al., “Cloud provider connectivity in the flat internet,” in
ACM IMC 2020, 2020, p. 230-246.

L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, pp. 35-41, 1977. [Online]. Available:
http://www.jstor.org/stable/3033543

L. Wang et al., “Pro-diluvian: Understanding scoped-flooding for content
discovery in information-centric networking,” in ACM ICN 2015.

U. Brandes, “A faster algorithm for betweenness centrality,” The
Journal of Mathematical Sociology, vol. 25, no. 2, pp. 163-177, 2001.
[Online]. Available: https://doi.org/10.1080/0022250X.2001.9990249

T. Arnold et al., “Beating BGP is Harder than we Thought,” in ACM
HotNets 2019.

