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ABSTRACT
Edge computing has received significant attention from both aca-
demic and industrial research circles. The paradigm aims to decen-
tralize the existing cloud infrastructure by incorporating resources
co-located alongside its client. Researchers have also proposed so-
lutions for a fully decentralized crowdsourced compute paradigm
enabled by Distributed Ledger Technologies (DLTs). This paper
investigates the rationale behind DLTs over crowdsourced resource
marketplaces to support the requirements of latency-critical applica-
tions targeted by edge computing. We develop a fully configurable
NEtworked Blockchain emULAtor, or NEBULA, to scrutinize the
internal performance bottlenecks of DLTs. We evaluate two block-
chain categories – proof-based (popularly used in Bitcoin, Ethereum)
and hybrid consensus and find that the enabling factor of DLTs –
scale – is also its primary latency contributor. We show that, in
reality, the latency overheads due to DLT operation far exceed the
operational requirements of edge applications.

CCS CONCEPTS
• Networks → Public Internet; Network measurement; Cloud
computing; • Computing methodologies → Real-time simula-
tion; Distributed simulation; • Computer systems organiza-
tion → Peer-to-peer architectures.
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1 INTRODUCTION
The growth of cloud computing in the early 2000s ushered in a new
revolution for Internet-backed application services. Application
providers could now utilize seemingly unlimited compute capabili-
ties to match the demand on-the-go – thanks to the highly managed
and overly provisioned datacenter silos set up by cloud operators.
However, the recent growing interest in next-generation applica-
tions such as IoT, AR/VR, etc. [44] has revealed several performance
gaps in the current cloud computing setup. The next-gen applica-
tions are mission-critical and must operate within strict latency
bounds (mostly within 100 ms) [52, 58] – which cannot be satisfied
by the cloud due to its remote (and numbered) deployment.

To this end, edge computing has emerged as a compelling so-
lution for such applications [53, 64, 65]. The paradigm aims to
decentralize cloud computing by utilizing resources deployed in
physical proximity to the users [3]. The computing paradigm is
backed by industry and academia alike, both proposing solutions
for infrastructure deployments fitting their needs. While existing
cloud providers, ISPs, etc. are advocating for deploying edge servers
within their managed facilities [33], unmanaged approaches such as
fully decentralized crowdsourced marketplaces are simultaneously
gaining popularity [40]. While the majority of works in edge com-
puting have focused on how to enable the paradigm through novel
networking protocols [47, 54, 55, 66] or designing applications that
can best utilize compute capacity near end-users [8, 18, 28], un-
derstanding what “edge” is has somehow lost relevance. Recent
measurement studies have found that the datacenter networks and
deployment has drastically expanded during the last decade, and
latencies within the WAN connecting users with cloud is quite
low [20, 22, 23]. As a result, there is no clear contender for a “text-
book” edge infrastructure as future deployments can (potentially)
benefit from unmanaged crowdsourced resources (in terms of la-
tency) and servers in managed environments (in terms of reliabil-
ity/availability). We believe that edge computing must embrace all
possible compute opportunities since its full potential can only be
reached if the infrastructure is dense and readily available.

To support such a “collective” compute fabric, researchers have
turned to Distributed Ledger Technologies (DLTs) as an enabling
technology [60]. Over the past decade, DLTs (and its subclass block-
chain) have matured – enabling several commercial-grade systems
through cryptocurrencies [29] and smart contracts [72]. However,
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Table 1: Categorizing Distributed Ledger Technology (DLT) platforms

the applicability of DLTs for decentralized crowdsourced edge com-
puting from a practical perspective is still a relatively unexplored
topic. Conceptually, DLTs can easily enable several sophisticated
operations desired by the crowdsourced edge. For example, smart
contracts can support task scheduling [42] and resource matching
[78], while users can be incentivized to participate through cryp-
tocurrencies. As a result, the majority of research in this space treat
DLTs as a “one-size-fits-all” black box that seamlessly supports the
operations desired by edge computing. Furthermore, existing work
in this space completely ignores (or significantly misrepresents)
the additional latencies due to DLT operations within their solu-
tions. This lapse in insight is further fuelled by the significant lack
of studies investigating (or measuring) the networking overheads
of DLTs at scale. We argue (and later show) that with increasing
infrastructure and participant scale, DLTs act more as a bottleneck
than enablers for low latency promises of edge computing.

In this paper, we investigate the suitability of DLTs (specifically,
blockchains) for addressing the latency requirements of applica-
tions over decentralized edge computing. We first identify the key
components in crowdsourced marketplaces that necessarily require
blockchains for operation. Further, we shed light on the internals
of different DLTs, particularly focusing on networking. We develop
a NEtworked Blockchain emULAtor – NEBULA – that allows us to
scrutinize the realistic operation of different DLTs in a controlled
testbed. Through extensive experimentations over different pa-
rameters (e.g., network size, density, latency, block rates, etc.), we
investigate the applicability of two popular blockchains – proof-
based (e.g., Bitcoin, Ethereum) and hybrid consensus (e.g., EOS) –
for supporting latencies of edge-enabled applications. We realize
that the primary success parameter of DLTs – i.e., scale – is also
their biggest performance bottleneck. Our aim with this work is
not to deter research in this area but to provide a reality-check for
future studies. We make NEBULA available for public use at [27].

2 CHAINING THE EDGE
With smart contracts, DLTs have become general-purpose replicated
state machines [88] and can now enable decentralized applications,
such as electronic voting [49], data provenance [61], or item shar-
ing [15]. As a subclass of DLTs, blockchains maintain the distributed
ledger by batching transactions into immutable blocks, each block
referencing its parent (Figure 1). Peers can participate in the block-
chain in a variety of ways. For example, participation can be public

Block 3Block 1 Block 2

Block 0

Block 1 Block 2 Block 3 Block 4 Block 5

SB w/ 1 confirmation
= Stale block

SB w/ 
2 conf.

SB w/ 
3 conf.

Shared parent Main chain w/ bids & auction Stale fork

Figure 1: Stale blocks (SB) and confirmed SB in DLT.

or private (based on read access), permissionless, or permissioned
(based on consensus participation) [37].

2.1 Understanding Blockchains
Table 1 shows the four broad categories of DLTs1 used today. Proof-
based blockchains (PoX) are most popular as they enable cryp-
tocurrencies like Bitcoin [56], Ethereum [81], etc., to operate in
public-permissionless mode. New blocks in PoX are proposed via a
distributed lottery, e.g., proof-of-work (PoW) [56], proof-of-stake
(PoS) [63], proof-of-retrievability (PoR) [51] etc. The lottery winner
(or miner) includes a zero-knowledge proof of their win within a
new block, which the peers verify. Occasionally, two miners can
mine a block referencing the same parent – resulting in a fork
(see Figure 1). The participants eventually reach an agreement on
transaction history through mechanisms such as longest chain,
GHOST [71], etc. (green chain in Figure 1). Transactions in forks
outside the main chain, a.k.a. stale blocks (orange chain), are dis-
regarded and implicitly invalidated. To reduce the probability of
stale forks and counter potential attacks like selfish-mining, double-
spending, etc., [32, 48], participants can wait for additional confir-
mations before accepting a block. Note that despite these measures,
blocks may still become stale if overtaken by a longer fork. Such
blocks are referred to as confirmed stale blocks. On the other hand,
general stale blocks are blocks outside of the main blockchain with
at least one confirmation – the block itself. Such (transient) forks
are a common occurrence in PoX blockchains and differ from occa-
sional hard forks caused due to software updates [39]. Hard forks
are not of interest to this study as they are rare and deliberate
events outside of regular blockchain operations.

1We use “DLTs” and “blockchains” interchangeably for the sake of simplicity.
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In contrast to PoX, blockchains utilizing traditional byzantine
fault tolerant (BFT) protocols (e.g., Hyperledger Indy [77]) necessi-
tate identifiable peers and permissioned access. BFT blockchains
reach consensus after every block – sacrificing fault tolerance for
scalability. Hybrid or committee-based blockchains improve upon
these shortcomings by allowing peers to vote for delegates responsi-
ble for proposing blocks in fixed rounds. Delegates reach consensus
using protocols like BFT (Cosmos [43]), pipelined BFT (EOS [14]),
etc., with slightly relaxed finality. DAG-based DLTs depart from
regular chain architectures, allowing blocks (SPECTRE [70]) or
transactions (IOTA [76]) to reference multiple parents. To restore
a consistent transaction history, the resulting partial ordering is
then transformed into a total order algorithmically. However, such
approaches lack maturity and cannot achieve similar performance
as chain-based DLTs.

2.2 Blockchains for Resource Marketplaces
While researchers have employed blockchains for several dimen-
sions of edge computing, its most popular use is to enable decen-
tralized crowdsourced marketplaces [1, 42, 57, 78, 82, 86, 87]. Such
marketplaces aim to facilitate a pervasive platform that integrates
bothmanaged and unmanaged resources at the edge. Figure 2 shows
the internals of such a marketplace. Resource providers, including
large organizations (ISPs, city admin) and individual operators, of-
fer their hardware for an asking price. These resources are sought
after by clients/developers to deploy their applications. The glue
between the two parties is the blockchain that acts both as a decen-
tralized auctioneer and as a payment portal. The blockchain can be
supported by entities with dedicated resources (governments, etc.)
or the community at large.

Several components are required for enabling such a market-
place to operate over blockchains, highlighted in blue. The auction
protocol allows providers to advertise their hardware (as offers)
and clients to “bid” for resources (as requests). The content of bids
varies for different approaches [13, 86] but primarily includes re-
source valuation, costs, SLAs, etc. The matching algorithm is then
responsible for finding optimal pairings between offers and re-
quests, e.g., achieving maximum economic, QoS or runtime perfor-
mance [73, 86]. Each match is treated as a new transaction, which is

bundled with other matches and published as a block. Once bidders
come to a conclusion on the best match, the resource provisioning
allocates resources to the winning client for the agreed duration.
To minimize overheads, provisioning can take place off-chain [46].

Since such a marketplace can include selfish actors, verification
of final results to SLA in the original bid becomes necessary [78].
Operations like log verification [9], correctness checking [11], etc.,
can be carried out by incentivized external entities off-chain [75].
In case the verification indicates a dispute, the aggrieved party
can initiate the resolution process over smart contracts, which may
result in monetary or reputational punishments. While all com-
ponents in Figure 2 are integral for enabling crowdsourced edge
marketplaces over blockchains, only auctioning and matching oper-
ations are critically dependent on blockchains. Therefore, the wait
time for gathering bids and matching them will strongly depend
on underlying blockchain performance.

2.3 Blockchains as Plug-and-Play?
The majority of research encouraging an alliance between edge
and blockchains has focused on “edge” as it provides more room
for novel research solutions [38, 73]. Most of these approaches
consider existing blockchain technologies as plug-and-play “black-
boxes” [42, 86, 87]. The impact of potential overheads within block-
chains on overall performance is either not considered or usually
dismissed as out-of-scope.

We argue that using DLTs to support edge computing is analo-
gous to finding the right tool to hammer a nail. The utilities and
trade-offs of each DLT variant differ significantly and must be
taken into consideration when proposing solutions reliant on the
technology [37]. Considering a DLT is a distributed networked
system, its notable performance metrics are end-to-end latency and
throughput, in other words, “time taken to mine and confirm a new
block to the chain”. Parameters, such as consensus mechanism and
block sizes, can significantly affect these metrics at scale. However,
similar to traditional networks, optimizing for both high through-
put, and low latency is difficult (and almost contradictory) in DLTs.
For example, Rainblock [59] plugs a performance bottleneck in
Ethereum, allowing the technology to achieve ≈20K transactions
per second. However, the solution packs 480× transactions in each
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block which increases the block size from 40-60 KB to 24 MB –
resulting in a significant jump in propagation latency. On the other
hand, next-generation applications care for both throughput and
latency, with the latter being stricter of the two (most apps must
operate under 100 ms) [52]. While many simulators and models
evaluating different protocols for blockchains have been proposed
in the past [5, 32, 68], the potential bottlenecks due to networking
have remained largely unexplored in the literature. We attempt to
bridge this gap by developing a configurable blockchain emulator
called NEBULA , which allows us to investigate different blockchain
technologies at scale.

3 BLOCKCHAINS UNDER MICROSCOPE
Figure 3 shows the internals of our Java-based NEtworked Block-
chain emULAtor – NEBULA. We model blockchains as a network of
virtualized peers that communicate via simple message-passing of
Protobuf [2] over TCP. Each peer runs on a separate thread, allow-
ing us to emulate 𝑛 nodes on𝑚 coordinator machines (𝑛 >> 𝑚).
One coordinator generates a network topology based on parameters
such as the number of nodes, bandwidth, density and latency of the
links, etc. Additionally, we also allow replicating networks from
synthetic (e.g., random, scale-free [4]) and realistic (e.g., CAIDA
AS [36], user-cloud connections [26]) datasets. Nodes in the graph
are split between coordinator machines depending on their comput-
ing capabilities. The underlying network is modeled as TCP connec-
tions with application-level delays. The nodes are then instructed
to establish interconnections to mimic the specified topology and
collaborate as a blockchain. NEBULA is available publicly at [27].

In this work, we evaluate proof-based (PoX) and hybrid block-
chain approaches (DPoS-BFT). While PoX is most popular, DPoS-
BFT is the most promising performance-wise [7, 12]. For PoX, em-
ulated peers create blocks randomly and concurrently at a con-
figurable rate. For DPoS-BFT, NEBULA selects a subset of BPs that
generate blocks at a constant rate in a round-robin fashion. The
consensus protocol is pipelined BFT, where a block is published
only if 2/3 BPs verify the block. Consensus protocols in NEBULA are
implemented as Protobuf message definitions allowing for easy
extensions, e.g., Tendermint [17], with minimal overhead. The em-
ulator also allows fine-tuning several other performance-affecting
parameters, e.g., transaction rate, size, and fee, block verification
time, number of confirmations, etc., to name a few.

Correctness.We emulate four popular PoX blockchains, specifi-
cally Bitcoin [24], Ethereum [5], Dogecoin, and Litecoin [32], with
similar block rates and propagation delays as their real-world coun-
terparts. We generate up to 10K blocks over multiple iterations
and compare the total stale blocks to previous real-world measure-
ments [5, 24, 32]. As noted in §2.1, generated stale blocks is a factor
of consensus protocol and network latencies, and thus is an accurate
representation of blockchain behavior. Figure 4a showcases that it
is possible to emulate real-world blockchains in controlled settings
through NEBULA . The slight deviation in accuracy is likely due to
our lack of knowledge about other internal parameters of these
blockchains. To address this, we compare NEBULA to a blockchain
simulator [32]. Figure 4b shows that in similar networks with equal
parameter settings, our emulations closely follow the simulations
with a minimal error of 8.7%. Compared to the simulator, NEBULA
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Figure 4: NEBULA correctness to (a) Ethereum, Bitcoin, Doge-
coin & Litecoin, and (b) blockchain simulator.

is more fine-grained as it exposes additional configuration param-
eters and opens up the future potential for hardware-in-the-loop
experiments.

3.1 Dissecting Blockchain Performance
We now attempt to empirically understand the possibility of em-
ploying blockchains for edge computing, especially for the model
use-case of decentralized resource marketplaces (§2.2). Among all
components, potential bottlenecks in blockchain’s performance
directly impact auction and matching stages as new auctions can
only be entertained once existing ones are dealt with. In such an
architecture, resource bids are sent to the auction protocol in the
blockchain as traditional transactions that are added to a pool of un-
matched bids. Thematching is completed during block creation, and
the block is finalized in accordance with the underlying consensus
protocol (e.g., PoW, DPoS, etc.). The final block includes a pairwise
match between all included transactions. The block – thus, the
auction – is accepted by the clients once additional blocks extend
it and confirm it as per the protocol. We use confirmation latency
as our primary performance metric, i.e., the time elapsed between
receiving resource bids and confirming the block that contains the
match of those bids. Additionally, we measure the percentage of
stale blocks and investigate their impact on consistency, efficiency,
and fault-tolerance of auctions executed on the chain.
Setup Configuration.We conducted our experiments on a com-
pute cluster of 15 Linux-based VMs, totaling ≈60 CPU cores. All
VMs are interconnected by 1 Gbps Ethernet. We emulate three dis-
tinct blockchain network sizes for our experiments: small, medium,
and large. Small and medium are scale-free networks of 100 and
500 nodes, respectively, with topology similar to Ethereum [80].
The small network follows Gaussian latency distribution with a
mean latency of 10 ms (representative of a smart city [69]). Con-
figurations of the medium and large network are inspired from
user-to-cloud latencies and traversal measurements in [21]. The av-
erage end-to-end propagation delay in the medium network is set to
63 ms, similar to user to data center latencies in the study. Our large
network is a topology of 2700 ASes residing between end-users
and the cloud. Considering these ASes are the best contenders for
potential edge server deployments, the network topology reflects
an edge infrastructure spanning multiple organizations. Due to
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the comparatively high block rates of our experiments, individual
blocks are smaller and contain only a few transactions – allowing
us to focus on the accuracy of our latency measurements without
exhausting bandwidth limits. We conduct multiple iterations for
each experiment, generating up to 30K blocks per iteration.

Proof-based Blockchains (PoX). We first evaluate the suitability
of PoX blockchains for supporting edgemarketplace tasks. Figure 5a
shows how an increase in the frequency of blockchain-backed auc-
tions (translating to increasing block rate) affects overall transac-
tion latency. The dashed horizontal lines are the limits of the fitted
Weibull functions. At first glance, it appears that PoX blockchains
can effectively support high-frequency auctions at the edge, as
the latency decreases to an asymptotic limit with increasing block
rate. Naturally, as the block generation rate rises, the waiting time
for transactions to be included in the next block approaches zero,
and the remaining latency is primarily due to network propagation.
However, higher rates lead to higher concurrency in block creations
and, thus, increased stale block percentages (see Figure 5c). More
stale blocks in the chain not only imply wastage of computational
resources but also a possibility of invalid auctions – as the same
bid can be included in multiple concurrent blocks.

The number of confirmed stale blocks in PoX can be reduced
by waiting for additional confirmations (see §2.1). As expected,
Figure 5b shows that stale block percentages decrease exponen-
tially if more confirmations are required before accepting the block.
However, the additional wait time for confirmations also results in
an increase in overall latency. Note that the confirmations do not
affect general stale blocks in PoX (denoted by stale blocks with one
confirmation in Figures 5b and 5c). Moreover, the trade-off between
latency and stale blocks increases with network size (see Figure 5c).
We find that for larger networks (>2K nodes), even with the most
lenient settings, PoX blockchains add ≈ 500 ms overhead to edge
marketplace operation (see Figure 5a) – far exceeding the 60-100
ms desired threshold [52].

Hybrid Blockchains (DPoS-BFT). By design, delegated proof-of-
stake with BFT (DPoS-BFT) avoids waiting for additional confirma-
tions by centralizing consensus to a subset of block producers (BP).
BPs are elected by the network through stake-based voting [79].
Figure 6 shows the transaction latency of DPoS-BFT at different

block rates and network sizes. Here, we restrict the consensus to
21 BPs (default in EOS [14]) and show the results when BPs are the
best or the worst connected nodes in the network.

Similar to PoX, transaction latency in DPoS-BFT is primarily
influenced by network sizes (see Figure 6). While optimal BP selec-
tion can reduce latencies in large networks, it has a negligible effect
in smaller networks. Our result, however, indicates that in small
networks, DPoS-BFTs can support < 100 ms latencies at high block
rates – showing some promise for edge-based applications. How-
ever, while DPoS-BFT ensures that only one BP proposes blocks
at any given time, stale blocks can still occur in the chain. The pri-
mary contributor is network propagation delay, as BP responsibility
changes between nodes at the end of each round. Therefore, preven-
tive mechanisms, like increasing the time allocated for the last block
per BP, are still needed in DPoS-BFT – which will result in addi-
tional latencies. Furthermore, as noted in Table 1, the fault-tolerance
of DPoS-BFT is lower than PoX, and the blockchain security can be
attacked with 33% BP control (which is quite possible in relatively
small networks). Nevertheless, in terms of performance, a local
DPoS-BFT blockchain seems to be most promising for our use-case.

4 DISCUSSION
Our results show that it is largely unclear if blockchains can be pro-
ponents for crowdsourced edge computing. While the performance
differs for different consensus technologies, achieving the coveted
60-100 ms end-to-end latency [52] is usually not possible for block-
chains spanning large networks. Additionally, one must sacrifice
between latency (confirmations) or processing cycles when dealing
with stale blocks. Due to stale forks, expensive roll-back mecha-
nisms [16] would still be required in edge marketplaces to avoid
monetary losses. Here, two things must be noted to appreciate our
results. First, while we discuss our results in context to edge comput-
ing requirements, our experiment design is fairly generic, and our
results are also relevant for understanding blockchain networking
bottlenecks. Second, the transaction latency in §3.1 does not include
the processing overhead of the auction/matching protocol itself,
which is also known to be significant [30]. We do not empirically
explore alternate blockchains like DAGs in this work since recent
measurements report their confirmation latencies to last several
minutes [35] – making them unsuitable for edge.
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Despite its popularity in literature [42, 86], propagating and
confirming local edge transactions through a global blockchain
network within stringent latency bounds is an uphill battle. While
recent developments such as ZK- or Optimistic-rollups [34] attempt
to improve scalability, adding consensus from a global network to
the critical path of an edge transaction is a massive operational
overhead. In small networks, DLTs show some promise for decen-
tralized computing (Figures 5a and 6). However, restricting the size
of the network is tough in reality. One possible way is through
fully-permissioned DLTs, e.g., HotStuff [85], which restricts par-
ticipation to only a few pre-approved nodes (likely to be under
the same management – city administration, industry, etc.). While
several factors favor such a deployment in the future, the primary
benefits of DLTs (trust, privacy, openness) are no longer present in
such gated participation policies.

Another solution would be to collocate DLTs alongside edge
networks. Figure 7 shows a fragmented (a.k.a. sharded) blockchain
which localizes data and task operation to different edge markets
distributed across geography. Still, each sharded blockchain cannot
be permissionless in nature, as access needs to be restricted within
geography. Localized blockchain markets are lazily synchronized
by a global interledger [31, 67]. Applications can operate in local
markets and are administered globally via the interledger. Such
a blockchain can concurrently support highly frequent localized
tasks and occasional global operations with minimal latency over-
head. Interestingly, the approach of blockchain sharding describes
a hybrid centralization solution. While general membership is re-
tained to smaller regions using a “centralized” third party (i.e., city
admin, interledger), some decentralization in control/accountability
is retained by individual members who need not necessarily trust
each other. Still, significant research effort is required to understand
the trade-offs in such a blockchain architecture, especially for tasks
over multiple shards and potential double-spends [67].
Practical relevance of blockchains & crowdsourcing. Irrespec-
tive of the technical challenges in supporting edge marketplaces
over DLTs, the relevance of both these domains, in reality, remains
to be seen. In the past 5-6 years, the interest and knowledge about
blockchains in the general public have increased significantly as
cryptocurrencies like Bitcoin and Ethereum, are now accepted as
legitimate tenders [10, 45]. Crowds are more open to participat-
ing as miners of new DLTs to invest early as coin holders. Even
without reward mechanisms, crowdsourcing as a concept is now
more accepted, as evident from the 1200% surge in Folding@Home
contributors in 2020 [19]. On the other hand, cloud providers, such
as Amazon and Google, are dominating the computing market
and are investing significantly to expand their network reach glob-
ally [21]. Many have also established specialized servers within

ISP facilities – allowing them to reduce latencies while retaining
network control [50]. Interestingly, many cloud players also have
a significant presence in the edge as manufacturers and operators
of smartphones, smart devices, etc. By incorporating “user-owned-
but-manufacturer-operated” hardware with existing cloud network,
these organizations have the unique opportunity to build a hybrid
crowdsourced infrastructure without involving blockchains. On
the other hand, efforts to dethrone the stronghold of cloud provid-
ers and usher in the era of decentralized computing are strongly
backed by independent investors. For example, “Internet computer”,
a blockchain-based non-proprietary compute fabric from Dfinity
raised $195M [74] and was launched earlier this year [25].

Security. Our results show that blockchains can only support la-
tencies for edge tasks in smaller networks (typically implying lower
node counts), which directly inhibits its own paradigm of success –
strength-in-numbers. By restricting the network size, inherent ben-
efits of DLTs, e.g., security, privacy and trust, start to crumble and
avenues for novel attack vectors open up while existing security
loopholes are further magnified [6]. For example, 51% attacks over
PoX are now realistically achievable [32], and DPoS blockchains,
which are already vulnerable to malicious cartels influencing its vot-
ing procedure [83], are prone to complete takeovers. Permissioned
blockchains under a central authority might overcome several such
security challenges, but they come at the cost of trust and privacy.

Other Applications. Despite potential drawbacks in latency, other
edge computing use cases not reliant on network delay should be
mentioned [84]. Here, decentralized storage systems [62], weather
sensors [41], or certain smart home/city applications [52] (i.e., bus
timetables, smart parking meters) have been proposed in the past.
While these applications are located outside of edge latency fea-
sibility zones [52], they could still benefit from higher bandwidth
and localized traffic as promised by edge computing. Due to the
decentralized and distributed nature of edge in general, building
a self-sufficient ecosystem on top of a secure and trustless DLT
platform is undoubtedly enticing.

5 CONCLUSION
In this paper, we investigated the rationale behind crowdsourced
edge computing backed by distributed ledgers. We identified pop-
ular approaches in crowdsourced marketplace research that rely
on blockchain for operation. We designed the generic, scalable
and configurable blockchain emulator NEBULA to shed light on the
internal overheads of proof-based and hybrid blockchain technolo-
gies. We highlight several research directions which might make
DLTs fit for the edge, albeit with potential limitations, such as
sharded interledgers. In conclusion, we believe that there are several
challenges to be tackled for enabling distributed edge over block-
chains. Future research in this direction must not blindly offload
performance-critical functionality to be handled by DLTs.
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