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Abstract—The sharing economy has made great inroads with
services like Uber or Airbnb enabling people to share their
unused resources with those needing them. The computing
world, however, despite its abundance of excess computational
resources has remained largely unaffected by this trend, save
for few examples like SETI@home. We present DeCloud, a
decentralized market framework bringing the sharing economy
to on-demand computing where the offering of pay-as-you-go
services will not be limited to large companies, but ad hoc clouds
can be spontaneously formed on the edge of the network. We
design incentive compatible double auction mechanism targeted
specifically for distributed ledger trust model instead of relying on
third-party auctioneer. DeCloud incorporates innovative match-
ing heuristic capable of coping with the level of heterogeneity
inherent for large-scale open systems. Evaluating DeCloud on
Google cluster-usage data, we demonstrate that the system has
a near-optimal performance from an economic point of view,
additionally enhanced by the flexibility of matching.

I. INTRODUCTION

The sharing economy has made great inroads, as the exam-
ples of services like Uber or Airbnb demonstrate. They act as
middlemen enabling people to share their resources (e.g., car,
house) with the others. While the sharing economy has made
a significant impact with real-world resources, provisioning
of compute-on-demand resources, however, has remained an
oligopoly of a few large companies. We believe that the time
is now ripe for what might be called decloudification: creating
efficient mechanisms for wide-scale sharing of computational
resources (both managed and crowdsourced) between a wider
array of providers and customers. We base this claim on
the following observations. First, cloud computing is shifting
toward edge computing, wherein cloud compute servers are
augmented and assisted by additional resources located in the
proximity of end-users [1], [2]. This trend is partly driven by
new applications, such as Internet of Things (IoT) generating
massive amounts of data, which require aggregation or filtering
at the edge before being forwarded to a remote cloud. Many
other applications, especially augmented reality (AR), have
very stringent latency requirements, thus necessitating local
processing. Second, in addition to the edge computing facili-
ties installed by the operators, user-owned devices (computers,
laptops, even phones) house significant compute capability
which remains mostly underutilized [3], [4]. This capacity is
located at the edge of the network, exactly where the new
applications would require and could benefit from it. Finally,

there is a trend towards establishing an open infrastructure
for edge computing, where any motivated entity complying
to common standards and practices can become an edge
service provider (ESP), offering its computational capacity for
running third-party applications close to the end-users and data
producers, e.g., [5]–[7].

Our observations are backed by the emergence of new
platforms, such as iExec [8], Sonm [9], and Golem [10].
They provide crowdsourcing capabilities without centralized
brokerage, relying on smart contract [11] as a means to
establish an agreement and to secure financial transaction.
However, the design of an efficient market for decentralized
open infrastructures remains largely unaddressed, and in this
paper, we are motivated to tackle this challenge. We present
DeCloud, a fully decentralized computational resource sharing
framework backed by dominant strategy incentive compatible
(DSIC) double auction [12], [13]. Incentive compatible auc-
tions are also called truthful since both buyers and sellers are
motivated to expose their true valuations and costs of goods
to the auctioneer as sealed bids. Being a dominant strategy,
truthful bidding leads to a maximum utility (payoff) for partic-
ipants, greatly simplifying the behavior of the trading parties
and reducing chances for market manipulation. However, in
a distributed environment where an auctioneer is not present
as a single entity, running a DSIC auction presents a certain
challenge (mainly because of sealed bids), that we address
with our proposed two-phase bid exposure protocol.

Fig. 1 gives an intuitive overview of DeCloud. There
are two major stakeholders in the system, clients requesting
computational resources, and providers, offering them. Tech-
nically, by submitting a request client expresses a wish that
someone possessing hardware with certain characteristics will
run client’s container or VM1 for an agreed period of time,
whereas provider by posting an offer undertakes to execute
such containers. DeCloud computes a near-optimal match
(regarding economics and computational resources) between
requests and offers. The market is built on top of a distributed
ledger supported by smart contracts, which provides an ex-
ecution environment for our auction mechanism. To protect
clients from potentially malicious providers, DeCloud lever-

1For convenience, in the rest of this paper, we refer to containers as the units
that clients submit for execution since they are more lightweight and became
de facto standard in the applications based on the microservices architecture.
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Fig. 1: DeCloud overview.

ages recent trends, namely, trusted execution environments
(TEEs), which make opportunistic ad hoc edge clouds feasible
to implement securely on a large scale.

In this paper, we make the following contributions: i) De-
velopment of DSIC double auction mechanism with a bidding
language explicitly designed for matching highly heteroge-
neous resources with diverse requests. ii) Addressing practical
issues of running auction with sealed bids on the blockchain by
our two-phase bid exposure protocol, iii) evaluation of truth-
ful mechanism design impact on the economic performance,
getting from 70% to over 85% of optimal welfare, depending
on the market situation.

The rest of this paper is organized as follows. Section II
presents the overview and motivation behind DeCloud. Sec-
tion III describes the operation of DeCloud. Section IV con-
centrates on a description of theoretical model of the market
we implement. Section V evaluates economic performance of
DeCloud. In Section VI, we discuss alternative design choices
and the impact of near-future technologies. The related work
is the topic of Section VII, and Section VIII concludes the
paper.

II. DECLOUD OVERVIEW

Fig. 1 shows the participants of the system, clients and
providers, interacting via distributed ledger. The latter is the
central component of the system, responsible for the auction
algorithm execution and storing the results, and next, we give
a brief introduction to the underlying technology, focusing on
blockchain enhanced by smart contracts.

A. Distributed Ledger in DeCloud

Basically, a blockchain is an ordered sequence of records,
which are referred to as blocks. Each block contains a ref-
erence to the previous one, proof-of-work (PoW), timestamp
and usually transaction information as a useful payload. The
content of the block is cryptographically secured by PoW
making blockchains secure by design. In practice, blockchain
exists as a peer-to-peer network of participants, called miners,
which take responsibility for generation and validation of new
blocks according to a shared protocol standard. The security

of a blockchain may be compromised only if the majority of
network enters collusion; hence, blockchains achieve decen-
tralized consensus and are considered to have high Byzantine
fault tolerance [14]. One of the best-known examples of
distributed ledger based on blockchain2 is Bitcoin [16].

With Ethereum [17], blockchain was extended with working
implementation of smart contracts, conceived much earlier by
Nick Szabo [11] as “building blocks for digital economy”.
Smart contracts provide secure code execution on blockchain
network and are ideal for the creation of dynamic online mar-
kets without a central authority. They expose methods like any
program, which may be invoked by submitting transactions to
the network. A miner receiving the call executes the code of
contract and records changes to the blockchain state caused
by the execution. The execution is verified by the rest of the
miner network, and only if it is correct, the state changes are
globally accepted.

The auction algorithm in DeCloud is executed by miners
and collectively verified similarly to the code execution of
smart contracts. The allocation results, i.e., computed map-
pings between clients and providers are stored in cryptographi-
cally secured blocks along with payment transactions, forming
the blockchain. Participants submit bids in the same way as
signed transactions are sent in any other blockchain-based pro-
tocol. There are public blockchains where any participant can
join, and private, where only authorized miners are accepted.
In DeCloud, both scenarios are viable: some mid-scale or even
large cloud providers can have private blockchains, trading in
DeCloud to balance the load and optimize machine running
costs; general consumers can run the system publicly.

The main challenge of running DeCloud on top of dis-
tributed ledger is the openness of the current protocols sup-
porting smart contracts. In such systems, the content of all
transactions is public, and therefore visible to anyone con-
nected to the overlay network as a miner or just an observer.
One of the conditions to ensure truthfulness is that in DeCloud
participants must not see each other bids before the allocation
is computed. Submitting offers and requests as sealed bids
prevent clients from manipulating the allocation result by
tweaking their requirements and obsoletes strategies typical
for ascending auctions. Motivated by the above considerations,
we devise our own two-phase bid expose protocol and detail
it in Section III.

Blockchain related technologies are rapidly developing, and
there are upcoming systems promising anonymity of partic-
ipants along with other improvements, such as low energy
consumption and high transaction throughput. We discuss
the relevance and impact of those near-future innovations on
DeCloud in Section VI.

B. The Market Design

In DeCloud, both buyers and sellers submit their requests
and offers to the market, specifying valuations and costs, re-
spectively. Such market organization is called double auction,

2Distributed ledger is not necessarily blockchain-based, e.g., there are
cryptotokens such as Ripple [15] that use different technical solution.



and McAfee [18] has shown that for double auction with
more that one buyer and seller incentive compatible (truthful)
mechanism exists. Moreover, truthful bidding is the dominant
strategy, so McAfee’s mechanism is DSIC; therefore rational
participants get the best utility bidding their privately known
valuations and costs. Truthfulness reduces chances for pricing
manipulation and eliminates the need to develop complex
bidding strategies. McAfee’s mechanism assumes single type
of goods and equal number of buyers and sellers. Our setting
is much more complicated: we do not have discrete types of
goods since the number of possible hardware configurations
providers can offer is practically unlimited. We also do not
expect one-to-one matchings between participants to happen
very often. Given the above considerations, in Section IV we
develop our own DSIC mechanism developing the ideas of
McAfee’s work further and give the formal definitions of the
concepts presented above.

From an economic perspective, our mechanism approxi-
mates social welfare maximization, which is equivalent to
giving the goods to the buyers who value them most, buying
those goods from the sellers which have the lowest prices.
However, the maximum welfare in DSIC double auction is
not principally achievable as a consequence of trade reduction
procedure needed to guarantee DSIC property. We devise an
innovative technique to minimize welfare losses, and as our
evaluation in Section V shows, we obtain from 70% to over
85% of the optimal welfare.

C. Extensible Bidding Language

The resources in DeCloud are much more heterogeneous
than in usual cloud computing. Providers can offer an ex-
uberant variety of hardware configurations, and there might
be clients interested in a very particular setup. Therefore, we
avoid the well-known approach of grouping physical machines
(PMs) into categories (e.g., by performance) but instead de-
velop a bidding language flexible enough to express needs (or
capabilities) of the participants precisely. Described in detail,
requests might have sometimes relatively low chances to find
an exact match, and we solve this problem by devising a
matching mechanism which while achieving high quality of
the match, allows the clients to assert diverse kinds of tradeoffs
they are willing to take. We enhance the expressive power of
our bidding language by treating generic properties essential
for edge computing, such as network latency or physical
location, also as a specific resource. We describe the details
in Section IV-B.

D. Privacy of the Client

In cloud and crowdsourced systems [10], [19], providers of
PMs have been protected from malicious clients by isolated
environments like virtual machines (VMs) or containeriza-
tion software such as Docker [20]. However, a client’s code
and confidential data are potentially accessible to malicious
providers with root level access to PMs. Large cloud providers
have contracts with customers, but in a crowdsourced system,
legal agreements cannot be assumed. Moreover, sensitive

private data might be accessible by a potentially malicious
provider.

DeCloud leverages trusted execution environment (TEE)
to ensure client’s privacy and security requirements. TEEs
have become practical since the introduction of Software
Guard eXtensions (SGX) by Intel [21] and have been adopted
by ARM and AMD processors offering similar functionality
as TrustZone technology [22]. SGX provides full hardware-
based isolation in encrypted enclaves, which even a local
operating system cannot access. There have been examples
of Docker containers running securely inside SGX enclaves,
e.g., SCONE [23]. Clients with lenient privacy requirements
can use DeCloud without resorting to TEEs.

E. System Applicability

In this paper, we focus on matching computational demands
in cloud and edge computing scenarios. As discussed above,
this is an important and active area in the near future, and we
consider it to be an excellent example of what DeCloud can
do. Any cloud provider, from large to small, can join DeCloud
and benefit from its optimized allocation of resources.

DeCloud is not restricted to cloud computing, and as a
decentralized framework, it has the aptitude to be extended for
matching other kinds of supply and demand in different walks
of business. Many large companies, such as Uber or Airbnb,
are based on the business model of acting as a trusted inter-
mediary between suppliers (e.g., drivers or homeowners) and
clients (e.g., passengers or travelers) in what are essentially
using crowdsourced resources. There is a potential for systems
like DeCloud to take over the role of the trusted intermediary
in these kinds of services, removing the entity in the middle.

III. TWO-PHASE BID EXPOSURE PROTOCOL

We describe the operation of DeCloud as a two-phase bid
exposure protocol, with the main objective to ensure sealed
bids while utilizing a transparent distributed ledger. It is worth
noting that it is possible to implement DeCloud as a smart
contract and run it on top of existing systems, such as [24] or
[25]. The main reason for describing DeCloud as a separate
protocol is the clarity and preserving the generality at a
sufficiently high level.

Fig. 2 shows the workflow of the protocol. There is a
participant (either a client or a provider), miner A that gets
a block, and the rest of the miners on a blockchain network.
The green line in Fig. 2 separates the flow into two phases:
the bidding phase with sealed bids and the execution phase of
allocation computation and agreement.

A. Sealed Bids

The participants send bids to the network signed by their
private keys. Bids are submitted in the same way as trans-
actions are posted to any other blockchain system, with one
exception. To ensure non-disclosure, participants encrypt them
entirely with temporary keys prior to submission.

The miner that gets the block computes the PoW solution
for the block. At this moment, the block consists of encrypted
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data chunks. Upon generating the PoW solution, the miner
shares the block with the rest of the network. The shared part
is only the first part of an actual block, containing a reference
to the previous block, PoW solution, and encrypted bids. We
call it the preamble of the block. Participants and other miners
receive the preamble and validate the PoW solution. If a
valid preamble contains their bid, participants broadcast their
temporary keys to the network. Now, the bids are disclosed,
and the set of participants to be matched in the current round
is known.

B. Allocation and Agreement

In the allocation phase, the miner decrypts the contents
of the block and computes the allocation matching providers
with clients. When the allocation is ready, the miner sends an
allocation suggestion to the rest of the network. The allocation
suggestion together with the set of temporary keys forms the
body of a block. Upon receiving the block body, miners can
compare the set of temporary keys with their own and conclude
whether the miner had excluded anyone from the allocation.
They also verify the accuracy of the allocation algorithm
execution, and in the case everything is correct, miners accept
the block.

The clients can accept or reject suggested allocation. This
step is necessary because the clients do not choose the
providers and resources, but instead, they are given the best
possible match. There is a reputational penalty for successive

TABLE I: Notation

Symbol Description Symbol Description
i ∈ N set of clients j ∈M set of providers
µ ∈ Υ set of miners β ∈ B set of blocks
t ∈ T arbitrary time k ∈ K resource type
tr ∈ T timestamp of request to ∈ T timestamp of offer

Kr ∈ K
resource types of
request r Ko ∈ K

resource types of
offer o

Xβ allocation in block β wβ welfare in block β
r ∈ Ri request of client i posted at time t
o ∈ Oj offer of provider j posted at time t
Rβi all requests of client i accepted in block β
Oβj all offers of provider j accepted in block β
vr true valuation of client i for its request r
co true cost of provider j for its offer o
br bid or reported valuation of client i for its request r
bo bid or reported cost of provider j for its offer o
p clearing price
pr payment of the client for request r
πo revenue provider j receives from o
ur (uo) utility of the client i (provider j) for its request r (offer o)
xβ
(r,o)

indicates whether r and o are matched in block β

ϕβ
(r,o)

fraction of o allocated to r in block β
K(r,o) common resources of o and r, Kr ∩Ko
t−r (t+r ) start (end) time of r
t−o (t+o ) start (end) time of o
`r(`o) location parameter of request r (offer o)
dr duration for which container of r must be up and running
ρ(r,k) amount of the resource of type k that the request r needs

σ(r,k)
significance (or weight) of the resource of type k
for the request r

ρ(o,k) amount of the resource of type k that the offer o contains

rejections of matches. We choose not to give the providers
the possibility to reject clients, although they may set a
threshold for the reputation of the clients that they accept.
Participants enter the agreement using a smart contract. This
gives additional flexibility as these contracts can be executed
on the same or a different blockchain system.3 Clients respond
by calling accept method of a smart contract and initiate
the agreement with the provider. The smart contract checks
that the allocation was generated, it is contained in the block
that client references, and client’s ID is associated with the
particular provider. The smart contract enters the phase of
agreement. A client not willing to accept an allocation calls
the deny method of the contract. Such action will notify the
provider that it needs to resubmit its offer to the network.
Participants, whose bids were refused, can resubmit their bids.

IV. THE DOUBLE AUCTION IN DECLOUD

We devise a double auction mechanism A, which is: DSIC,
strongly budget balanced (BB), and individually rational (IR).
Formally, there are N clients and M providers. We use index
i ∈ [1, N ] for clients, and j ∈ [1,M ] for providers. A client
submits a request r at time t which goes into block β. Request
r stands for single container client i needs to run. We define
a request r of client i as follows:

r :=< tr, [ρ(r,k)], [σ(r,k)], t
−
r , t

+
r , dr, br, `r >, (1)

where ρ(r,k) is the needed resource of type k ∈ K, and σ(r,k)

is the significance of that resource (see Section IV-B). The

3Smart contracts cannot access mutable off-chain data because the execution
must be deterministic. However, there are approaches removing that limitation,
namely, the oracles, such as [26]. Additionally, interlegders, e.g., [27] promise
to facilitate cross-chain communication.



time period for when the client needs the resources is given
by t−r and t+r . It is not necessary for the container to run
from t−r to t+r ; an additional parameter duration dr specifies
for how long the container must be continuously executed. In
case dr = t+r − t−r , the container must be run from t−r to t+r .
The client reports its bid br in its request; in DSIC auction
it is equal to its private valuation vr, e.g., monetary value,
for this request. The request is tagged with the location `r,
which is the location where the client would prefer to run its
edge service. This might be either geo-location or a network
address.

Likewise, provider submits its offer(s) o which represents
a computational device with amount ρ(o,k) of the resource of
type k ∈ Ko. A container can be matched with a single device
and devices are capable of running multiple containers. Each
offer o has associated t−o and t+o parameters, indicating when
the offered device is available. We define offer o as follows:

o :=< to, [ρ(o,k)], t
−
o , t

+
o , bo, `o >, (2)

where `o is the location of the provider and co is the cost of the
provider corresponding to this offer. The provider publishes
its bid bo in its offer, which we later prove to be equal to
its privately known cost co. In DSIC auction, br = vr, and
bo = co, respectively.

There is set of miners µ ∈ Υ that generates blocks β ∈ B.
Let Rβ and Oβ denote all requests and offers accepted in
block β. We define the matching between requests and offers
by a binary matrix Xβ = [xβ(r,o)] where r ∈ Rβ and o ∈ Oβ

and xβ(r,o) = 1 states that offer o and request r are matched.
The allocation over the entire lifespan of the system is then:
X =

⋃
β∈B Xβ . Table I summarizes our notation.

A. Welfare

Most common optimization targets for economic perfor-
mance are revenue and welfare. Optimizing for revenue pur-
sues the benefit of the seller, but as we want to motivate clients
and providers equally, we opt for welfare optimization. For
a double auction, welfare is the difference between the total
value of the buyers and total cost of the sellers [28]. Each
client i has a valuation vr for its request r, and each provider
j has a cost co for its offer o. If r and o are matched in the
block β, the resulting welfare is w(r,o) = vr−ϕβ(r,o)co, where
ϕβ(r,o) is the resource fraction of o allocated to r. The total
welfare of participants matched in block β equals to:

wβ(Xβ)=
∑
r∈Rβ

∑
o∈Oβ

vrx
β
(r,o)−

∑
o∈Oβ

∑
r∈Rβ

xβ(r,o)ϕ
β
(r,o)co. (3)

As each block is considered independently, we can formu-
late our problem as welfare-maximization for each block:

max
∑
r∈Rβ

∑
o∈Oβ

vrx
β
(r,o) −

∑
o∈Oβ

∑
r∈Rβ

xβ(r,o)ϕ
β
(r,o)co (4)

subject to:∑
o∈Oβ

xβ(r,o) 6 1 , ∀r (5)

ϕβ(r,o) =
dr

t+o − t−o
1

|K(r,o)|
∑

k∈K(r,o)

ρ(r,k)

ρ(o,k)
∀r, ∀o (6)

∑
r∈Rβ

ϕβ(r,o,k) 6 1, ∀o,∀k (7)

ρ(r,k)x
β
(r,o) 6 ρ(o,k), ∀o,∀r, ∀k (8)

vr > ϕβ(r,o)co, ∀r, ∀o (9)

xβ(r,o)t
−
o 6 xβ(r,o)t

−
r , ∀r, ∀o (10)

xβ(r,o)t
+
o > xβ(r,o)t

+
r , ∀r, ∀o (11)

vr > 0, vr ∈ R, ∀r (12)
co > 0, co ∈ R, ∀o (13)

xβ(r,o) ∈ {0, 1} (14)

Our objective (4) states the goal of our problem as maxi-
mization of the welfare for block β. Const. (5) ensures that
a request is matched to at most one provider’s bid while
(6) defines the fraction of resources when a request r is
assigned to offer o. Const. (7) is necessary for the feasibility
of resource allocation: fraction of resources of each resource
type allocated by each provider for its offer can be at most
1. Similarly, Const. (8) ensures that if o is allocated for r,
o has sufficient quantity of resource ρ to serve r. Const. (9)
ensures that the valuation of the client is greater than the cost
of allocated resources. We ensure temporal constraints by (10)
and (11). Valuation and cost can only be non-negative rational
numbers (12) and (13). Finally, (14) indicates that our decision
variables are binary integers. Since transactions are included
in blocks nondeterministically, total welfare of the system is:

w(X) =
∑

(Xβ ,β)∈(X,B)

wβ(Xβ) (15)

The task of optimizing welfare of the entire system is then
reduced to finding an optimal allocation X∗β for each block in
terms of welfare:

X∗ = {∀β, Xβ | arg max
Xβ

wβ(Xβ)} (16)

w∗(X∗) =
∑

(X∗β ,β)∈(X∗,B)

wβ(X∗β). (17)

Since maximization of (17) will not render a DSIC mech-
anism, we use it for the evaluation of economic performance.

B. DeCloud Matching Heuristic

DeCloud exhibits a high degree of heterogeneity in supply
and demand. We define a bidding language for clients to
characterize required resources for their tasks and specify
weights to indicate their importance. Let σ(r,k) represent the
significance of a resource of type k for a client. The client
may assert that the resource is strictly required by setting
σ(r,k) = 1, and 0 < σ(r,k) < 1 otherwise. A resource type
k can represent a broad range of resources, e.g., latency,
reputation, the presence of SGX.

Normally, a similarity measure like the dot product [29]
could be used to determine the allocation, but it does not work
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well when clients can specify weights for their requests. We
solve this by augmenting geometric distance with the concept
of field, where providers exert a gravity-like force. Formally,
we define the quality of match between r and o as:

q(r,o) =
∑

k∈(Kr∩Ko)

σ(r,k)

ρ′(o,k)

|ρ′(o,k) − ρ
′
(r,k)|2 + 1

(18)

where ρ′(o,k) and ρ′(r,k) are normalized ρ(o,k) and ρ(r,k). For
normalization, we take the maximum value of the resource
from offers or requests of the current block as a maximum
of the scale and zero as a minimum. Using (18), we rank
all offers for a particular request with at least one common
resource, i.e., |Kr ∩Ko| > 0.

C. The Auction Mechanism

Before proceeding with the description ofA, it is convenient
to look at McAfee’s work [18], which presents DSIC mecha-
nism for a double auction with more than one buyer and seller
pair. In McAfee’s auction, single units of identical goods are
traded, so we use v as unit valuation and c as unit cost. The
mechanism sorts buyers by their valuation in descending order
and sellers in ascending order by cost. The last pair in which
buyer has higher (or equal) valuation than seller’s cost has
the break-even index z. If there are more pairs than z and
p = (vz+1 + cz+1)/2 ∈ [cz, vz], then every participant trades
at price p, see Fig. 3a. If the latter condition does not hold,
buyers pay vz , and sellers receive payment of cz , as shown
in Fig. 3b. To preserve DSIC property, the pair z has to be
excluded from the trade, hence the procedure is referred to as
trade reduction.

As it is clear from Fig. 3b, in the case of trade reduction
McAfee’s auction is not strongly4 budget balanced (BB) since
buyers pay more than sellers receive. This situation is desirable
if the difference between payments and revenues is used as a
reward of the auctioneer. However, in our setting, this is not the
case because miners responsible for the algorithm execution
are rewarded by cryptotokens emission. Fortunately, Segal-
Halevi et al. [30] present strongly BB version of McAfee’s
mechanism achieved by slight modification of payment rule,
which we also use and describe in more detail later.

4In strongly BB auction sellers receive as much as buyers pay and there
is no profit left for the auctioneer. McAfee’s mechanism is BB since buyers
pay more than sellers receive, but it is not strongly BB.
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Both [30] and [18] apply to the single type of goods, but
goods are not discretized by type in DeCloud. Moreover, the
characteristics of goods are not public in the bidding phase,
so clients cannot target them explicitly. We solve this issue
by resorting to the concept of single-minded [31] bidders.
In the context of DeCloud, we consider clients as single-
minded since they are interested in either winning the best
approximation of the good specified in their bid (that they can
also afford) or remaining unallocated at all.

Given the above considerations, we start computing the
allocation by grouping together offers and requests according
to quality of match heuristics (18). This grouping results in
clusters, and each cluster contains set of offers and set of
requests, such that any offer in the set satisfies certain quality
of match criteria for each member of the cluster’s request set.

Within a single cluster, offers and requests are likely to
differ by their characteristics. Hence, for ranking them by
their costs and valuations as in McAfee mechanism, we
apply normalization to obtain the valuation/cost per unit of
resource. Since offers and requests are for different time
periods, we divide costs and valuations by corresponding
timespans: co

t+o −t−o
and vr

dr
. To find the valuation and cost

per unit resource, we define a set of common resource types
KCL = (∪r∈CLKr) ∩ (∪o∈CLKo) in a cluster CL for all
requests and offers. We compute the virtual maximum of the
cluster by taking the maximum for each resource type that
some o ∈ CL has: MCL = {∀k ∈ KCL | ρk = max

o
(ρ(o,k))}.

By treating each resource type as a vector component, we can
compute a norm ‖MCL‖2. Using the norm together with the
magnitude of the resource vector of the offer ρo, we calculate
the fraction of the virtual maximum that the offer corresponds
to: νo = ‖ρo‖2

‖MCL‖2 . The normalized cost is ĉo = co
νo(t+o −t−o )

,
which is the cost of virtual maximum scaled down by time
and up by a fraction of resources that the offer has.

For the requests we need to take into account critical
resources, e.g., if a container uses 100% of CPU, no other
request can be allocated to the offer at the same time irrespec-
tive of the amount of other available resources. Logically, the
sender of such request should pay 100% of clearing price. We
define the set of critical resource types KCR such as CPU,
memory, and disk, and add to KCR resource types that are
declared in all requests of CL: KCR = KCR ∪ (∩r∈CLKr).



Next, we find the maximal percentage of critical resource
usage by request r as follows: νCR = max(∀k ∈ KCR :
ρ(r,k)

ρk∈MCL ). The resource fraction of MCL that request r uses
is the greatest of critical resource usage and overall utiliza-
tion: νr = max(νCR,

‖ρr‖2
‖MCL‖2 ). Finally, normalized valuation

equals v̂r = vr
νrdr

. To determine the payment for request r, we
scale unit price:

pr = νrp. (19)

To minimize the adverse effect of trade reduction and
improve chances that there are more than a single pair of
participants engaging in trade, we group clusters in mini-
auctions according to their price range. Fig. 4 illustrates the
idea of a mini-auction. In our setting, there is no 1-to-1
matching of buyers and sellers, but multiple buyers can be
mapped to a single seller. We use separate indices z and
z′ for the last request and offer having v̂z > ĉz′ . By price
compatibility we mean that for clusters a and b the following
conditions will hold: v̂z,a > ĉz′,b and v̂z,b > ĉz′,a.

In determining the price, we follow [30], with two major
cases, as shown in Fig. 4. Formally, the price is:

p = min(v̂z, ĉz′+1). (20)

When there is no offer z′ + 1, we assume ĉz′+1 = ∞.
Request rz or offer oz′+1 determining the price is always
excluded from trade since allocated participants cannot affect
the price. Since we allow multiple requests (and offers) from
a single client (provider), not only rz and oz′+1, but also all
other requests belonging to the same client (provider) will be
excluded from the same mini-auction.

D. Incentive Compatibility

Formally, the auction is incentive compatible (truthful) if
utilities of the client and provider are maximized when partic-
ipants bid their true valuation, i.e., br = vr and bo = co. The
utility of a client from an accepted request r is ur = vr − pr,
and uo = πo−co of provider for offer o, where pr is payment
of a client, and πo is revenue of the provider: πo =

∑
r∈o pr.

If a participant is not allocated, we assume its utility to be
zero and, consequently, payment is also zero in such case.

The proof of incentive compatibility mainly follows [18],
[30]. The payment (revenue) rule is monotonic since increas-
ing the reported valuation br (or decreasing reported cost bo)
only increases the chances of participants to get allocated. The
determined price is also threshold: reporting a valuation below
(or cost above) will lead to losing the allocation. The price
never depends on the reported valuation or cost of allocated
participants. Untruthful bidding has the following impact on
client’s utility:

1) Client with index smaller than z overbids: br > vr. If
pr > vr, then its utility will be negative (ur < 0), as it
wins at price exceeding vr. If pr ≤ vr, then utility stays
the same as in the case of truthful bidding.

2) Client with index smaller than z underbids: br < vr. If
pr > br, then the client’s utility will be zero (ur = 0), as
it loses the auction. In case of truthful reporting, given

vr > p, the client’s utility is greater than zero: ur > 0.
If pr ≤ br, utility remains unaffected.

3) For client with index z not determining the payment, the
reasoning is similar as in previous two cases.

4) Client with index z determining the payment: underbid-
ding will not improve the payoff since client will be
excluded as if reporting truthfully. If client wins as a
result of overbidding, there will be some client x with
bx ≥ vr, resulting in ur ≤ 0.

5) Client with index > z losing the allocation: the reasoning
is the same as in 4 above.

When bidding br 6= vr the buyer gets ur = vr−pr ≥ br−pr,
thus optimal strategy is to bid br = vr. The reasoning for
providers is symmetric.

However, due to not having 1-to-1 correspondence between
requests and offers, there is a possibility to game the system.
There is an offer h′ in Fig. 4, that is not allocated because
there are not enough requests. The provider would benefit from
reporting bo < co, because then h′ might become the first offer
in cluster 3 and thus get allocated, making uo > 0. A similar
strategy works for requests in case there are not enough offers
to allocate all clients. When low on demand, the solution is to
distribute existing requests evenly among offers and exclude
redundant offers randomly. We also apply random exclusion
of requests in case of a supply shortage. These measures lower
welfare but are required to preserve incentive compatibility.

Cloud auctions are challenging for proving truthfulness,
since not only economic parameters are subject to manip-
ulation, but also requirements and submission times of buy
and sell orders [32]. We show that participants cannot im-
prove their utilities by reporting parameters untruthfully. As
for submission times, tr and to, we solve ranking ties by
choosing request or offer with lower submission time, thus
tr ≤ tr′ ⇒ ur ≥ ur′ and to ≤ to′ ⇒ uo ≥ uo′ ,
and there is no incentive in delaying the submission. If any
of the requirements, [ρ(r,k)], [σ(r,k)], t

−
r , t

+
r , dr, `r, is reported

untruthfully in request r′, then r′ will be allocated to some
offer o′, resulting in q(r,o′) ≤ q(r,o) by (18). Thus reporting r′

is equivalent of bidding for the wrong good in another kind of
an auction, so this contradicts rationality of the buyer. On the
provider side, the hardware characteristics are reported by the
system software. Participants can only decrease their utility by
reporting untruthfully any part of an order; thus A is DSIC,
assuming IR, that we define and prove next.

E. Individual Rationality

To be incentive compatible, our mechanism needs to satisfy
IR, which means that buyers never pay more than they bid
and sellers receive no less than they ask. According to (20)
for clients we have two cases:

1) v̂z < ĉz′+1 ⇒ p = v̂z . By (19), pr = νrv̂z ≤ v̂r =
νrvr ⇒ pr ≤ vr, since v̂z ≤ v̂r and νr ≤ 1.

2) v̂z > ĉz′+1 ⇒ p = ĉz′+1. The reasoning from the point
above applies since the payment will be less than v̂z .

Providers are not guaranteed to be fully allocated. Thus



Algorithm 1 Double auction allocation

Inputs: Offers Oβ and requests Rβ

Outputs: Matching between offers and requests
clusters ← {∅}
for r ∈ Rβ do

feasible ← filter Oβ by constraints of r
feasible ← rank feasible by q(r,o) descending
bestr ← top from feasible
UPDATECLUSTERS(clusters, r, bestr)

for cluster ∈ clusters do
allocate r, o ∈ cluster greedily
determine v̂z, ĉz′+1 for cluster

auctions ←CREATEMINIAUCTIONS(clusters)
while auctions 6= ∅ do

auction ←top from auctions by welfare
PERFORMTRADEREDUCTION(auction)
remove r, o ∈ auction from ∀a ∈ auctions
remove auction from auctions

return {o ∈ Oβ : oassigned 6= ∅}

Algorithm 2 Update clusters procedure

procedure UPDATECLUSTERS(clusters, r, bestr)
if @ c ∈ clusters : coffers = bestr then

clusters ← {clusters ∪
<offers: bestr, requests: r>}

subsets ← {c ∈ clusters | coffers⊆ bestr}
supersets ← {c ∈ clusters | bestr ⊆coffers}
for subset ∈ subsets do

subsetrequests ← {subsetrequests ∪ r}
for superset ∈ supersets do

subsetrequests ← {subsetrequests ∪
supersetrequests}

for c ∈ clusters : coffers 6= bestr do
intersection ← {coffers ∩ bestr}
if |intersection| > 1 then

x ← x ∈ clusters : xoffers = intersection
if x = ∅ then

clusters ← {clusters ∪
new <offers : intersection,

requests : r ∪ crequests>}
else

xrequests ← { xrequests ∪ r}

we compute unit price based on the revenue they receive from
the allocated fraction, and show that under this unit price their
revenue would be at least as big as their cost in the case of
full allocation and trading resources equal toMCL (assuming
νz = νo = 1). There are same two cases as for clients:

1) v̂z < ĉz′+1 ⇒ p = v̂z = νzvz ≥ ĉo = νoco = co, since
v̂z ≥ ĉo.

2) v̂z > ĉz′+1 ⇒ p = ĉz′+1 = νz′+1cz′+1 ≥ ĉo = νoco =
co, since ĉz′+1 ≥ ĉo.

We have shown that A is IR for both clients and providers.

Algorithm 3 Create mini-auctions procedure

procedure CREATEMINIAUCTIONS(clusters)
roots ← find minimun nonoverlapping ranges of

[v̂z , ĉz] from ∀ clusters
for c ∈ clusters do

for root ∈ roots do
if c not compatible with root then

continue
for node ∈ preorder(root) do

if node is leaf and compatible(c,node) then
append c to node

if not compatible(c,node) then
if compatible(c,parentof(node)) then

append c to parentof(node)
for root ∈ roots do

for leaf ∈ postorder(root) do
yield path to root as miniauction

Algorithm 4 Perform trade reduction procedure

procedure PERFORMTRADEREDUCTION(auction)
p← select minimun of v̂z , ĉz′+1 from

∀ cluster ∈ auction
if p = v̂z then

exclude requests of i, which submitted z
else

exclude offers of j, which submitted z′ + 1

for cluster ∈ auction do
if exist unallocated r, o ∈cluster,

having v̂r ≥ p, ĉo ≤ p then
randomize the allocation of cluster

compute payments and revenues using price p

F. Allocation Algorithm

We now describe our allocation algorithm, shown as Al-
gorithm 1. We follow the steps defined in Section IV-C,
guaranteeing incentive compatibility and minimizing adverse
effects of trade reduction. Despite the seeming complexity, the
main task of the algorithm is to arrange requests and offers like
in the pattern displayed in Fig. 4. First, we form clusters (see
Algorithm 2). The purpose of clustering is to group together
as many requests as possible with the same set of best offers
according to our quality of match heuristics (18). While form-
ing clusters, we also filter out offers incompatible by temporal
or resource constraints, fit requests and offers together by
matching greatest normalized valuation v̂r with lowest cost
ĉo, and determine z, z′, and z′ + 1 indices. To minimize the
effect of trade reduction, we group clusters into mini-auctions
(see Algorithm 3). Grouping is performed by building trees
of clusters, where a child cluster is compatible by price with
its parent. We use clusters with minimal incompatible price
ranges as the roots of a forest; the problem to find those
is equivalent of finding non-overlapping maximum weights
intervals, which can be solved by dynamic programming in
polynomial time.

After forming the mini-auctions, the price can be deter-
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Fig. 5: Performance of DeCloud against a non-truthful benchmark and the effect of flexibility on user satisfaction and welfare.

mined. In case there are excessive requests and offers, that
have v̂ > p and ĉ < p, we randomize the allocation to preserve
truthfulness. We use a pseudorandom approach, using evidence
of a block as a random seed so that randomization is also
verifiable. After the unit price is defined, the trade reduction
procedure is performed in the Algorithm 4.

V. PERFORMANCE EVALUATION

First, we evaluate the performance of DeCloud by assess-
ing how DSIC design affects the welfare of the system, as
defined in (3). We use Google Cluster Data (CPU, RAM,
and Disk) [33] to generate client requests realistically. For
physical capabilities of providers (processing cores, memory,
disk etc.) along with pricing data, we use data from Amazon
EC2 M5 instance types [34]. We set providers’ resources in
a range between 2–16 CPU cores and 8–64 GB RAM. The
valuation of each request is calculated as a cost of its best
match offer multiplied by a random uniform coefficient in
the range of [0.5, 2]. Our benchmark is a double auction
using a similar algorithm, but without trade reduction and
pseudorandomization, thus producing the best possible welfare
under greedy allocation while being non-truthful. First, we
consider a scenario with inflexible requests, i.e., the client gets
always 100% of requested resources.

Figure 5a shows welfare for the benchmark and DeCloud,
and Figure 5b – the ratio between them with the increasing
number of requests. We also plot the Loess curves to show the
trend in welfare and the welfare ratio. Even in the worst case,
DeCloud achieves 75% of the welfare of the benchmark with
up to 85% in larger systems. This slight decrease in welfare
is the tradeoff we have to pay for a DSIC auction.

Figure 5c shows the percentage of reduced trades. Similarly
to the case of welfare, DeCloud benefits from increasing
market size, resulting in a smaller fraction of excluded trades.

Due to a grouping of clusters into mini-auctions, the amount
of excluded trades stays below 5%, dropping to 0.5% in large
systems.

Second, we evaluate the effect of flexibility on the clients’
satisfaction and welfare. For this evaluation, we generated sets
of offers and requests distributions with various degrees of
Kullback-Leibler divergence, e.g., when clients want mostly
8 cores CPUs, the majority of offered CPUs have only 2
cores, and so on. The similarity axis of Figures 5d, 5e, 5f
is calculated as 1−KLD(Rβ , Oβ), where KLD is Kullback-
Leibler divergence regarding resources. The satisfaction is
defined as a fraction of allocated requests, one being the
maximum. Figures 5d and 5e show the positive effect of
flexible matching on the satisfaction of clients, while Figure 5f
on the welfare. As Figure 5d suggests, 80% flexibility results
in stably higher satisfaction, being a decent improvement.

The results are encouraging since even in the worst case,
DeCloud only loses 5% of the trades while achieving 75%
of the optimal welfare. In larger systems, reduced trades drop
to 0.5%, and the welfare climbs to 85% of the non-truthful
benchmark. Given that the key contribution of DeCloud is a
truthful, decentralized auction, we consider these small per-
formance tradeoffs acceptable, given the potential of DeCloud
for enabling more efficient use of existing resources.

VI. DISCUSSION

We now discuss practical issues related to DeCloud.
Ethereum has been blamed for high costs of contracts ex-
ecution. We believe that competition with other solutions,
such as [25], will result in much lower costs. Running code
verifiably on blockchain has been reasonably criticized for low
throughput, but the problem is getting addressed in recently
conceived systems, namely, Plasma [35] and TrueBit [36]. We
consider running DeCloud as an Ethereum Plasma sidechain
as a reasonable option.



Our system suffers from what is known as a verifier
dilemma, pointed out in TrueBit. The problem arises when
miners do not have an incentive to validate proof-of-work
because of its complexity. Fortunately, authors of TrueBit
present a solution5 that we may also incorporate. Another
aspect of TrueBit is formal verification of computation which
was performed by peers. In our case, such a verification
appears to be overkill since DeCloud is designed to run
mostly containerized service applications, whereas TrueBit –
to provide scalability to smart contracts. Instead, we consider
that either incorporating reputation system or linking DeCloud
to an existing one [37]–[39] would be sufficient in most cases.

Systems such as Strain [40] for running an anonymous
auctions on blockchains or even more general framework for
crowdsourcing ZebraLancer [41] are of particular interest to
us. By introducing our two-phase bid expose protocol (Section
III) we are clearly on the accountability side in anonymity vs.
accountability dispute. Our bias is motivated by: i) possibility
to link participants to reputation systems, either built-in or
third-party, ii) ability of clients and providers to infer their
valuations from historical prices, iii) simplicity of implementa-
tion. Nevertheless, there are no technical restrictions for either
running our auction mechanism on top of aforementioned
systems or utilizing techniques from [42], [43] in the scenario
emphasizing anonymity and secrecy of the historical data.

High energy consumption required by proof-of-work (PoW)
has plagued the blockchain platforms. Fortunately, the nu-
merous green solutions have been presented, of which, e.g.,
proof-of-stake [44] based Casper [45] will soon replace energy
wasteful PoW of Ethereum. For us, systems like Sawtooth [46]
are of particular interest, since they replace cryptographic
computations of PoW by practically any useful computation.

Because of the workflow for processing the sealed bids
and allocation correctness verification, the allocations will be
computed in rounds which correspond to the generation of
blocks by miners. Since the generation of blocks is non-
deterministic, participants are practically agnostic of rounds
and the system will have an online appearance to users (with
some observed delay).

VII. RELATED WORK

One of the earliest crowdsourced distributed computing
platforms is BOINC [19], which was conceived as a gen-
eralization of SETI@home computing framework. BOINC
remains highly specialized semi-centralized system, and it is
not directly comparable with DeCloud. The new generation
of all-purpose crowdsourcing computation platforms such as
iExec [8], Sonm [9], and Golem [10] are mainly inspired
by Ethereum [24] and convenience of cryptotokens as an
economic incentive. We see the common deficiency of these
three projects in their approach to the market design. At
present, iExec and Sonm offer marketplaces where resources
can be manually (or programmatically) chosen. However, we

5The main idea of TrueBit is that instead of collective verification there
are challengers in the system which verify computation performed by other
peers selectively.

believe that to enable large-scale operation, an automated
matching system guaranteeing certain economic performance
and fairness would be highly beneficial. ClassAd matching
language that iExec uses has similarity with our approach.
However, it lacks the ability to prioritize requested resources
by weights.

Single-sided cloud auction models in [32], [47] have de-
sirable properties being truthful, combinatorial, and online.
However, their design is oriented towards centralized auction,
thus being inapplicable to our scenario. The double auction de-
scribed in [48] is not incentive compatible while [49] relies on
broker architecture. [50] concentrates on negotiations scheme
for elastic demand, leaving the challenges which DeCloud
particularly addresses out of scope. Our idea of clustering bids
is close to auction design presented in [51], [52], while due
to differences in underlying goods the mechanism design we
present is substantially different.

Recently, there were few cases of auction mechanisms
designed specifically for the purposes of edge computing.
Tasiopoulos et al. [53] build the market taking into account
the cellular structure of an underlying network, using Vickrey-
English-Dutch auction as a foundation. In their work, the
market is split into cells, and latency is the decisive factor.
In contrast, DeCloud offers more flexibility, since clients may
emphasize any parameters, not only latency, and allocation
is performed from the entire scope of the market, not just
particular cell. Our approach allows a higher variety of appli-
cations to utilize DeCloud, including those initially intended
for execution in a cloud environment. Jiao et al. [54] build
an edge auction with a particular purpose: offloading PoW
mining tasks by mobile blockchain clients. Because of narrow
specialization [54] is not generally applicable. Kiani et al. [55]
suggest a hierarchical approach to edge resources and devise
a revenue-maximizing auction. Contrary to DeCloud, their
mechanism is not DSIC, thus potentially being subject to price
manipulation attempts.

VIII. CONCLUSION

Our key contribution is the design of DeCloud, a secure,
decentralized and truthful auctioning mechanism that is an
essential building block of upcoming open edge computing
infrastructures. Our solution is inspired by a distributed trust
model that smart contracts can offer, enabling to create a se-
cure sealed bids auction without having a trusted auctioneer as
a specific entity. In terms of economic performance, DeCloud
achieves between 85% and 75% of its non-truthful benchmark
depending on the exact market conditions and losing only be-
tween 5% and 0.5% of trades due to the reduction mechanism.
In our future work, we plan to run DeCloud on the Ethereum
Plasma sidechain or utilize TrueBit’s scalable smart contracts.
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