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Abstract—Multipath TCP (MPTCP) allows applications to
transparently use all available network interfaces by creating
a TCP subflow per interface. One critical component of MPTCP
is the scheduler that decides which subflow to use for each
packet. Existing schedulers typically use estimates of end-to-end
path properties, such as delay and bandwidth, for making the
scheduling decisions. In this paper, we show that these scheduling
decisions can be significantly improved by including readily
available local information from the device driver queues to the
decision-making process. We propose QAware, a novel cross-layer
approach for MPTCP scheduling. QAware combines end-to-end
delay estimates with local queue buffer occupancy information
and allows for a better and faster adaptation to the network
conditions. This results in more efficient use of the available
resources and considerable gains in aggregate throughput. We
present the design of QAware and evaluate its performance
through simulations, and also through real experiments, com-
paring it to existing schedulers. Our results show that QAware
performs significantly better than other available approaches for
all use-cases and applications.

I. INTRODUCTION

Multipath TCP (MPTCP) is a recently-standardized ex-
tension to TCP that allows devices with multiple network
interfaces, e.g., smartphones with WiFi and LTE, to seamlessly
form multiple parallel connections to exploit the full network
capacity. MPTCP offers increased robustness and resilience,
as well as seamless handovers and it has been proposed to be
also used in datacenters [23], opportunistic networks [24], etc.
There is both an open source implementation for Linux [21],
and companies, such as Apple, have incorporated MPTCP into
their products and have made the APIs open to application
developers [2].

Figure 1 shows the network stack of MPTCP-compliant
machine. Applications utilizing MPTCP can send their data
over multiple TCP subflows, where each subflow is associated
with a unique network interface. TCP packets scheduled over
a subflow wait in the device driver queue of the corresponding
network interface before they are transmitted by the network
interface card (NIC). The choice of network path for sending
application data is made by the MPTCP scheduler block and
depends on the scheduling policy.

Scheduling between the multiple connections is an ob-
vious research problem and recently multiple propos-
als [8], [9], [15], [17] have emerged to improve the default
MPTCP scheduler [20]. Typically, these schedulers use a
transport layer estimate of the end-to-end bandwidth/delay (for
example, the smoothed round-trip time) for each TCP subflow
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Figure 1: An illustration of MPTCP-compliant machine and
how its subflows interact with their corresponding network
interface queues.

as an input to the scheduling policy that decides on how
application data must be assigned to the multiple subflows.

In this paper, we propose a novel scheduler for MPTCP,
QAware, which departs from the previous proposals in a
fundamental way. While we also use the end-to-end delay
estimates, like current schedulers, QAware additionally con-
siders the number of packets in the device driver queue of
the sender. This modification is motivated by our findings,
which we discuss further in Section III. The key motivation,
as we will demonstrate, is that as a particular flow is used
more, its end-to-end delay increases gradually, making it less
attractive to use. However, the traditional, purely end-to-end-
based estimation, reacts very slowly to these changes.

Additionally, utilizing queue occupancy information allows
QAware to use all available subflows optimally, especially
when their properties are highly heterogeneous. Existing pro-
posals like [8], [17], [30], treat the flows as separate entities
and typically do not fully use all the flows. QAware optimizes
transmission over all the flows and gets a significantly higher
aggregate throughput, with no loss of performance in any
situation.

The contributions of this paper are:

(a) We propose QAware, which is a novel cross-layer ap-
proach to scheduling packets across all available MPTCP
subflows. The design is motivated by our experimental
findings that combining local device driver queue occu-
pancy with the traditional end-to-end delay measurements
yield far superior performance.

(b) We model available MPTCP subflows as multiple parallel
service facilities that can service data provided by an ap-
plication. This enables us to leverage queueing theoretical
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Figure 2: (a) Loading (Mbps) at the subflows and (b) their
RTT(s). The paths taken by the subflows and the network are
shown in Figure 3.

insights to create a scheduling policy that combines end-
to-end delays and device driver queue occupancy.

(c) Our simulations and real-world experimentation over a
wide range of applications compare QAware with the
default MPTCP scheduler [20], ECF [17], DAPS [15], and
BLEST [8].

Rest of the paper is organized as follows. We discuss
the relevant background and related works in Section II.
Section III motivates the need for a cross-layer approach to
scheduling. In Section IV, we describe the scheduling policy
used by QAware. Section V provides implementation details
of QAware in latest MPTCP v0.93. Section VI provides an
overview of our evaluation methodology. Sections VII and VIII
quantify the performance of QAware using extensive simula-
tions and real-world experiments, respectively. We conclude
in Section IX.

II. BACKGROUND AND RELATED WORK

The default MPTCP scheduler (minSRTT) allocates traffic
on the fastest subflow (one that has the smallest smoothed
RTT) with available congestion window at each packet arrival.
Several researchers have proposed improvements to the default
minSRTT scheduler. Most approaches leverage the difference
in RTT of the subflows [3], [11]. Others have also considered
additional TCP-layer parameters such as SSThresh, congestion
window, selective ACK and receiver buffer size along with
RTT [6], [18], [19].

In [30], the authors introduce an additional sender queue to
schedule packets on a subflow even when it is unavailable. De-
lay Aware Packet Scheduler (DAPS) [15] generates a schedule
for sending future segments over subflows based on their RTT
ratios. However, this makes DAPS unable to react promptly
to network changes due to pre-computed long schedules.
Blocking-Estimation-based MPTCP Scheduler (BLEST) [8]
aims to reduce head-of-line blocking by waiting for the faster
subflow despite the availability of space in congestion window
of the slower subflow. ECF [17] follows a similar principle as
that of BLEST, but while BLEST aims to reduce out-of-order
delivery assuming that the send buffer is a bottleneck, ECF
aims to minimize completion time.
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Figure 3: Topology used in experiments and simulations.

Researchers have also proposed schedulers that improve
MPTCP performance for specific application use-cases. De-
coupled Multipath Scheduler (DEMS) [9] aims to reduce
fixed-size file’s delivery time over MPTCP by estimating avail-
able bandwidth on subflows. However, the authors rely on ex-
act knowledge of data chunk boundary for efficient scheduling.
In [7] authors leverage application layer information for flow
scheduling decisions to provide delay-resilient video streaming
in MPTCP. MP-DASH [10] exploits path information from
streaming client to improve DASH video delivery. [26] labels
WiFi subflow as active/inactive for data transmission based
on a minimum desired signal strength. However, unlike other
cross-layer approaches which optimize specific application
performance over MPTCP, QAware taps into lower layer
information to improve performance for all MPTCP traffic.
Furthermore, as shown later in the paper, QAware’s unique
design of leveraging hardware queue occupancy enables it to
swiftly adapt to varying network conditions and co-existent
network applications sharing bottleneck paths.

III. MOTIVATING USE OF CROSS-LAYER INFORMATION

Figures 2(a) and 2(b) respectively show loading (bits offered
per second) and the corresponding estimates of round-trip
times (RTT) of two available subflows by the default MPTCP
scheduler, minSRTT. They were obtained from controlled
testbed experiments and show how the scheduler optimizes
over two available TCP subflows that use non-interfering end-
to-end paths. The network topology used in the experiment
is shown in Figure 3. The last-mile links were WiFi using
802.11g and the rest were 1 Gbps Ethernet. Neither flow
dropped any packets during the length of the experiment.

In the experiment, the default scheduler only utilizes ~ 60%
of available aggregated bandwidth. Observe (Figure 2(a)) that
the default scheduler, more often than not, prefers to send
packets on one flow over the other. However, this by itself
is not responsible for the low utilization of the available
bandwidth. The reason, we argue, is that the default scheduler
loads a flow deemed to be the best amongst available flows for
undesirably long intervals. This is because the scheduler uses
only the SRTT of the flows, which is a delayed end-to-end
transport layer measurement, for its scheduling decisions.

Consider the RTT of flow 1 in Figure 2(b). The RTT
captures in a lagged manner the impact of scheduling decision
on the subflow. The consistently high values (see interval
12s to 14s in the figure) correspond to an earlier interval of
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Figure 4: Queueing abstraction of an end-to-end MPTCP
connection with two subflows.

time when the subflow was being assigned packets by the
scheduler while it was heavily loaded. That is, the device
queue corresponding to the subflow had previously many
packets queued at the NIC.

The sharp dip in values (around time 14s in the figure)
captures the transition from when the flow stopped being
assigned packets due to high RTT to when it was again
assigned packets. These assigned packets arrive at a rather
lightly loaded flow and see much smaller RTT, which causes
the dip. The small RTT that follows the dip corresponds to
packets being assigned to the flow while it was still lightly
loaded. As the subflow continues to be assigned packets, the
same is reflected, albeit in a delayed manner, in increasing
RTT (seconds 16 to 18 in Figure 2(b)) that eventually peaks
as it did during 12 — 14 seconds. By the time the resulting
large RTT makes the scheduler switch to the other flow, the
scheduler has already spent an undesirably long time injecting
packets to a loaded subflow.

In summary, the scheduling decisions that lead to high
device queue occupancy and increase in RTT were made using
values of RTT that corresponded to an earlier interval when
the flow was less loaded. So while a device queue (local to
the MPTCP sender and used by the MPTCP flow) is loaded
with packets, MPTCP scheduler remains oblivious to the same.
Instead, it waits to be informed via a delayed end-to-end RTT
based feedback mechanism. In the process, it loses out on
many opportunities of scheduling packets to the other better
flow; one that is lightly loaded.

The above observations motivate QAware. It uses the oc-
cupancy of the device queues together with RTT estimates to
use all available flows more efficiently.

IV. QAWARE SCHEDULER

We consider a simplified queue-theoretic abstraction to
capture the essentials of the scheduling problem, with the
goal of maximizing end-to-end throughput. Specifically, we
model each subflow by a service facility. Figure 4 illustrates
the abstraction for an MPTCP end-fo-end connection that uses

two TCP flows. The abstraction allows us to apply results from
analysis of multi-queue systems [25].

In our queueing abstraction, packets generated by an appli-
cation arrive into a queue that models the TCP send buffer
(Figure 1). Packets in this queue are assigned to one of the
available service facilities in a first-come-first-serve (FCFS)
manner. Each facility consists of a finite queue and a server.
Packets inside a facility are serviced in an FCFS manner.

The queue in a service facility is the device driver queue
(Figure 1) that is used by the TCP subflow corresponding to
the facility. The server includes the source host NIC, access
network used by the subflow, intermittent nodes in the core
and the destination host (all layers of the TCP/IP stack).

When a packet is assigned to a service facility, it may find
other packets waiting for service in the facility’s queue. This
packet must wait for all the other waiting packets to finish
service before it enters the server of the facility. The total
time a packet spends in a facility, often referred to as its system
time, includes the time it waits in the facility’s queue and the
time it spends getting service.

Origins of the QAware scheduler: Many analytical works on
queueing systems have looked at scheduling customer/packet
arrivals to parallel service facilities [25], [27]-[29]. For many
general arrival processes and service time distributions, when
all servers are stochastically identical, the optimal policy
is to choose a service facility with a minimum number of
packets in its queue [25], [27], [29], that is it minimizes the
average packet system time. For the case of non-identical
servers, a scheduling policy that assigns a packet to a service
facility that minimizes the conditional expected system time
of the packet, conditioned on the knowledge of the number
of packets waiting for service in the facility, shows good
performance [25]. Our QAware scheduler uses the policy in
an MPTCP setting.

Consider K service facilities indexed 1,..., K. Let facility
k have a service rate of uy. The two facilities in Figure 4
have service rates of p; and po. Let ng(t) be the number of
packets waiting for service in facility k& at time ¢. The policy
assigns a packet to a service facility k* given by

ng(t) +1
Pk '

k* = arg mkin (D
Note that 1/py is the expected service time of a packet in
facility k. Thus, the conditional waiting time of a packet that
enters such a facility is ny(t)/ux, which is the sum of the
expected service times of the ny(t) packets currently waiting
for service in the facility. In addition, we add the term 1/, to
nk(t)/uk, to include the expected service time of the packet
to be scheduled. Thus, the expression being minimized in (1)
is the conditional expected system time of a packet if it were
to be assigned to facility k.

Adapting scheduling policy (1) to multiple end-to-end TCP
subflows: The number ny () of packets in the queue of service
facility k is the number of packets waiting in the device driver
queue of the corresponding subflow k and can be obtained.



However, we must estimate the average service time 1/py of
subflow k.

Consider the i packet arrival. Let ¢ be the time the packet
is assigned to a subflow. Let ¢{ be the time that a TCP ACK
acknowledges receipt of the packet. The round-trip time of
the packet is RTT; =t —¢;. Note that this includes the time
packet waits in the device driver queue of its assigned subflow
before it starts service and the time it spends in service. This is
the system time of the packet. Let W;! be the time the packet
1 waits in the queue. This time can be calculated locally at the
MPTCP sender. The time X; that the packet spends in service
begins when the packet enters the NIC for transmission and
ends when a TCP ACK for the packet is received. Given W,
and RTT;, we have X; = RTT; — W,. The estimate of the
service time is updated on receipt of a TCP ACK. Let S be
the current estimate of the average service time of facility k.
On receipt of a TCP ACK for packet ¢, we update

Sk = aSp + (1 — )X, )

where 0 < a < 1 applies appropriate weights to the last
estimate of the average and the current service time. We use
o = 0.8 in this work which is also the smoothing factor for
TCP congestion control > . The corresponding estimate of the
service rate is 1/ S'k At time t, QAware schedules to the TCP
subflow k* that satisfies

k* = arg mkin (nk(t) + 1)Sk. 3)

Finally, _note that since Xi/\: RTT; — W;, we have Sk =
RTT — W, where RTT and W are the exponentially weighted
moving averages, with coefficient «, of packet round-trip
times and device driver queue waiting times, respectively, for
the subflow k. In our real implementation, summarized in
(Algorithm 1), we use RTT estimates that are readily available
for each subflow and we calculate an approximation of W
based on information available from device driver queues.

V. IMPLEMENTATION

We implement QAware as a modular scheduler using
MPTCP v0.93 based on Linux kernel v4.9.60 [12]. The code
is available at [22].

As shown in Section IV, QAware’s functioning depends
on the current estimate of network interface (NIC) queue
occupancy. Conventionally, the NIC queues were either im-
plemented within the hardware itself or as part of the driver;
which made NIC queues invisible to the Kernel and its
occupancy extremely hard to estimate. However, since Linux
Kernel > v3.3.0, several NIC queue management protocols,
known as Byte Queue Limits (BQL), have been introduced
as part of the Kernel code to resolve starvation and latency at
the NIC [14]. The BQL algorithms push queueing abstractions

IFor simplicity of exposition we ignore the time a TCP ACK may have to
wait in a queue before being sent to the TCP layer.

2We examined for other values of a which did not impact the overall
performance of QAware.

Algorithm 1 QAware Algorithm

1: Inputs:
Available Subflows SFe {1,...,n}
2: Initialize at packet arrival Pj:
minService < OXFFFFFFFF
selectedSubflow < NONE

3: //The function below will return best subflow for packet Py
4: for each subflow €SF do

5: ng < queueSize (subflow)

6: if ni # 0 then

7: At + sampling time

8: Apackets < packets dequeued in At
0 | | Wi [1(Ankeny,

10: else

11: | Wi+« 0

12: (illd if .

13: | W aW + (1 — )Wy

14: | Sk =[RTT - W]
15: TSy = (ng +1)Sk
16: if 'S, < minService then

17: minService <« TSk

18: selectedSubflow < subflow
19: end if

20: end for

from hardware drivers to specific data structures which can be
accessed from within the Kernel °.

Our implementation closely follows the Algorithm 1. We
first tap the network device address mapped to MPTCP socket
via struct dst_entry to access DQL* as follows:

dgl = netdev_get_tx_gueue (dst—>dev)->dqgl

We further utilize DQL entry to estimate current NIC
(netdevice) queue occupancy of each MPTCP subflow.

gSize = {dgl->num_gueued -
dgl->num_completed}

Here, num_queued and num_completed refer to the to-
tal number of bytes queued in the network device and number
of bytes successfully transmitted by the device respectively.

Apart from NIC queue estimates, we utilize the smoothed
mean RTT estimates in microseconds via srtt__us accessible
through struct tcp_sock. We ensure that our implemen-
tation is in line with guidelines mentioned in RFC 6182 [13].

VI. EVALUATION METHODOLOGY

In following sections, we evaluate QAware’s performance
through an extensive set of simulations and real-world ex-
periments. We model our evaluation methodology to mimic
real MPTCP network configurations and application use-cases.
In majority of our evaluation, we model a realistic network
scenario (as illustrated in Figure 3) wherein a client leverages
two distinct network paths to connect to a distant server.

3Currently, only PCle-based ethernet drivers support BQL [5]. However,
a significant effort is being made from the Linux developer community to
support broader list of NICs, including wireless NIC’s [4].

4In Linux, BQL is implemented as Dynamic Queue Limit (DQL).
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Figure 5: Throughput achieved by minSRTT, ECF and QAware
schedulers for different CBR rates.

For simulations, we implement QAware on ns-3 network
simulator. We compare QAware with default minSRTT and
Earliest Completion First (ECF) [17] scheduler for constant bit
rate (CBR), file downloads, and web browsing workloads. The
simulations help us zoom into the workings of the schedulers
and allow us to evaluate QAware over a variety of workloads
and network path configurations. Our evaluation setup and
results are described in Section VII.

We further examine and validate the performance gains
obtained by QAware in simulated environments via real
network experiments. We utilize our Kernel implementation
summarized in Section V. The experiments were performed in
a university data center and consider a variety of workloads
such as video streaming, web file downloads, etc. We compare
QAware with several state-of-the-art schedulers such as min-
SRTT, Delay Aware Packet Scheduler (DAPS) [15], Blocking
Estimation based scheduler (BLEST) [8], and ECF [17]. The
details of our experiments and consequent results are discussed
in Section VIII. All our results throughout evaluation are
averaged over multiple runs.

VII. SIMULATION SETUP AND RESULTS

We simulated network topologies of the kind shown in
Figure 3. For all simulations, the links between the access
points and the backbone switch and between the backbone
switch and the server were modeled as wired links with rate
30 Mbps and 50 Mbps respectively. The client is connected to
the two access points over wireless links with physical layer
(PHY) rates in the range 6—12 Mbps. These two wireless links
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Figure 6: Per-flow throughput, device driver queue occupancy,
and SRTT behavior as a function of time. These correspond
to the throughputs in Figure 5(a) and a CBR rate of 12 Mbps.

provided the two network paths over which application data
was sent. Both subflows use independent congestion control.

We simulated the following applications: 1) constant bit rate
(CBR) data from low to high rates, ii) file transfer for sizes
of 10 — 30 MB, iii) web browsing of top 10 out of the US
Alexa-100 websites, and iv) CBR with one of the paths being
shared by UDP traffic. For the applications, we simulated the
following network configurations: i) both wireless links have
the same rate, ii) one link is much faster than the other, and
iii) one link drops TCP packets. Comparisons of QAware with
ECF and minSRTT> demonstrate the benefits that are accrued
by QAware because it optimally utilizes both network paths.

A. Constant Bit Rate Traffic

Access paths with no packet errors: Figure 5(a) shows the
TCP throughputs obtained by the schedulers for increasing
CBR rates. Each wireless link was configured with a PHY
rate of 6 Mbps. This results in homogeneous network paths.
On average, QAware achieves percentage throughput gains of
about 40% over the rest. Further, note that all schedulers use
both subflows. However, unlike the others, QAware utilizes
both the subflows almost equally for the entire simulation
time for all the CBR loads. To better understand their be-
haviors, consider Figure 6, which shows for each scheduler
and subflow, the variation of throughput, device driver queue
occupancy, and smoothed RTT, as a function of time, for a

SIn simulation, the scheduler assigns packets over independent TCP
streams. We do not incorporate other MPTCP functionality such as re-
transmission handler and path manager.
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Figure 7: Per-flow throughput comparison for different CBR
rates where subflow F1 experiences a packet drop rate of 1072,

2 second interval. The CBR rate was set at 12 Mbps. From
the subflow throughputs and queue occupancy, it is clear that
QAware uses both subflows almost simultaneously. ECF uses
just one subflow for most of the interval, and while minSRTT
uses both flows during the interval, it switches between them
very infrequently. Both minSRTT and ECF rely on the delayed
feedback provided by SRTT and so end up scheduling packets
to one subflow for longer intervals than QAware. Essentially,
they switch flows when SRTT of the subflow in use exceeds
that of the other subflow. In addition, ECF, by design, declines
scheduling opportunities to a subflow with a larger RTT and
prefers to wait for faster subflows. This explains the reason for
using one flow for a longer duration than minSRTT scheduler.
In minSRTT and ECF, subflows experience swings in SRTT.
The SRTT increases linearly while it is the subflow of choice.
This increase eventually makes the subflow less desirable than
the other and the scheduler switches to the other flow, which,
due to the current low occupancy in the corresponding device
queue, experiences low SRTT.®

Figure 5(b) shows throughputs obtained by the CBR ap-
plication when the PHY rate of one of the wireless links is 6
Mbps and the other is 12 Mbps. While all schedulers utilize the
subflow using the 12 Mbps link equally, QAware also utilizes
the subflow mapped on the 6 Mbps link. On average, QAware
achieves throughput gains of about 50% over the rest.

Access paths with packet errors: Figure 7 shows the
throughput obtained when one subflow suffers a packet loss
rate of about 10~2. Both wireless links have PHY rates of
6 Mbps. Upon detecting packet loss, the congestion window
of the subflow decreases based on TCP congestion avoidance
algorithm, which limits the number of packets that can be
sent on that subflow. Even in this situation, QAware is able
to exploit both subflows better and achieves about 32% and
15% improvement over minSRTT and ECF respectively. For
the case when the wireless links are 12 Mbps and 6 Mbps with
an error on the slower link, the corresponding gains are 53%
and 6% (figure not shown due to space limitations). Note that
since ECF is biased toward using the faster path, it performs
almost as well as QAware when the error-free path has a faster

6Qur observations with respect to QAware and minSRTT for three homo-
geneous paths are similar. We skip them due to lack of space.
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Figure 9: Download completion time for 10 websites from top
U.S. Alexa-100 websites.

wireless link. On the other hand, while minSRTT uses the
error-prone path better than ECF, it is unable to make good
use of the error-free path as the other two schedulers.

B. Fixed Size File Transfer

Figure 8 shows the download completion time achieved
by the three schedulers for five different file sizes ranging
from 10MB to 30MB. Both wireless links were set to a
PHY rate of 6 Mbps. Observe that QAware obtains the least
download time for all the file sizes. This is explained by its
ability to effectively utilize both the subflows for data transfer.
The performance gap increases proportionally with file size.
Overall, QAware achieves 35% and 30% reduction in average
download time over minSRTT and ECF respectively.

C. Web-browsing

To simulate web browsing, we deployed objects of 10 out of
top U.S. Alexa-100 websites, which are summarized in Table
L, in our simulated server. The client consecutively downloaded
relevant objects of each website from the server at a variable
rate between 10Mbps to 30Mbps chosen in a probabilistic
manner. We compared scheduler performance for when both
wireless links are 6 Mbps and when one of the links is 12

Website ‘ News Tech Radio  Shopping  Finance
#Objects 202 67 66.2 522 39.7
Size (KB) | 3821.2 21522 2453 1000.7 1988.1
Website ‘ Wiki Market  Social Movie Travel
#Object 28 49 69 39 21
Size (KB) | 6012  2032.8  1700.2 845.7 2000.4

Table I: Web objects for traffic generation
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Mbps. QAware achieves a significant reduction in download
completion time for both configurations, specifically up to
35% for the former (see Figure 9) and up to 28% for the latter
(figure not shown due to space limitations). On the other hand,
ECF and minSRTT perform similarly.

D. Multiple Applications

In current computing environments, end hosts typically run
multiple applications which must share the interfaces available
at the host for network transfers. An ideal MPTCP scheduler
must be able to efficiently adapt to bandwidth competition on
bottleneck links in such coexisting environment. To evaluate
the impact of such sharing on the schedulers, we used the
following setup. The PHY rates of the wireless links were set
to 9 and 6 Mbps. A CBR application generated data for a
10 second interval and used both the MPTCP subflows. The
results are shown in Figure 10.

Starting at 4 seconds, we introduced traffic from a UDP
application that used the network path with the 9 Mbps
wireless link. The greyed area in the figure denotes the time
duration when both MPTCP and UDP applications were active
at the client. The UDP traffic lasted for 4 seconds. Before the
start of the UDP traffic, only QAware scheduler was utilizing
both available subflows. Once the UDP application starts, the
device queue of the 9 Mbps wireless link saturates. QAware,
however, quickly adapts to it and reduces the traffic being sent
on the corresponding subflow. All the while, it keeps utilizing
the subflow over the slower wireless link. On the other hand,
both minSRTT and ECF need to wait for several RTT updates
for the impact of UDP traffic on queue wait times to get
reflected in the SRTT of the subflow. Lastly, unlike the other
schedulers, QAware is also quick to detect the availability of
the subflow after the 8 second mark, which is when the UDP
application stops its transfer. Overall, QAware leads to gains
of about 40% over minSRTT and about 50% over ECF.

VIII. REAL-WORLD SETUP AND EXPERIMENTS

We next examine QAware’s performance in real network
environments. Figure 11 shows our test network topology
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Figure 11: Real network testbed in university datacenter.

in University of Helsinki data center. We assign two simi-
lar machines with 16 core AMD Opteron processor, 8 GB
DDR2 RAM running Ubuntu 16.04 LTS with latest stable
MPTCP implementation (version 0.93, based on Linux kernel
v4.9.60 [12]) as client and server. The implementation uses
default congestion control algorithm (coupled OLIA). Both
machines are interconnected via two separate Gigabit Ethernet
interfaces. One Ethernet connection is routed through internal
University of Helsinki network and therefore encounters back-
ground traffic from University staff. It has an end-to-end RTT
of >1ms. The other connection is over Top-of-Rack (ToR)
switch with RTT <Ims.

We compare QAware with the following schedulers: i) min-
SRTT, ii) Delay Aware Packet Scheduler (DAPS) [15]
iii) Blocking Estimation based Scheduler (BLEST) [8], and
iv) Earliest Completion First (ECF) [17]” 8. We first compare
scheduler performance for application generating bulk traffic.
This workload provides a qualitative validation of the results
we obtained in Section VII. We further present scheduler per-
formance for DASH video streaming and web file downloads.
We used the Linux Traffic Control system (#c) in combination
with a Hierarchical Token Bucket (HTB) packet scheduler
using Statistical Fair Queuing (SFQ) for network shaping.
In between runs, we flushed out the TCP cache to ensure
that each run is independent of the next. All our results are
averaged over ten runs.

A. Bulk Traffic

In this section, we compare QAware’s performance with
other schedulers for high application transfer rate over both
subflows. We performed experiments with different settings
of delays along the two paths. The setting includes i) default
path delays (< 1ms and > 1ms), ii) delay shaping to introduce
40ms of delay along one path and 80ms along the other, and
iii) 40ms along one path and 160ms along the other. Path
bandwidths corresponding to the different delays are stated in
Table II(a).

"For DAPS and BLEST, we use the implementation at https:/bitbucket.
org/blest_mptcp/nicta_mptcp. For ECF, we use the implementation at http:
/lcs.umass.edu/~ylim/mptcp_ecf

8DAPS, BLEST, and ECF are implemented on MPTCP v0.89 whereas the
default minSRTT and QAware are based on MPTCP v0.93. We could not
implement QAware on MPTCP v0.89 as it is based on Linux v3.18 which
does not support BQL. Please see [12] for exact changes between the two
versions.
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Figure 12: Bulk Traffic throughputs for different access path
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Figure 13: Average bitrate in video streaming for different path
bandwidths.

Figure 12(a) compares average throughput obtained by
different schedulers for default path delays. QAware achieves
more than 45% increase in throughput compared to DAPS,
BLEST and ECF. QAware also provides an improvement of
37% over the default minSRTT scheduler. Interestingly, the
minSRTT scheduler outperforms DAPS, BLEST, and ECF
in the experiment. We attribute minSRTT’s efficiency to two
reasons. Firstly, DAPS, BLEST and ECF schedulers have been
designed to improve MPTCP performance for heterogeneous
delays along available network paths. In fact, BLEST and ECF
even go as far as not sending an available packet on a slower
subflow and wait for the faster subflow to become available.
When subflows witness similar delays (as in the current case),
the default scheduler places more packets on each path as
opposed to DAPS, BLEST, and ECF. Secondly, based on latest
MPTCP kernel, minSRTT enjoys several code improvements
and optimizations.

For when the path delays are 40 and 80ms, QAware yields
an average throughput of 310 Mbps which is an improvement
of about 10% over the default scheduler and DAPS and 5%
over ECF and BLEST (shown in Figure 12(b)). As presented
in Figure 12(c), all schedulers perform quite similar to each
other as all try to fully utilize the lower delay subflow when
path delays are 40 and 160ms. In this case, QAware still
manages to achieve an improvement of about 7% over the
default scheduler and DAPS, and about 4% over BLEST and
ECF.

B. Video Streaming

Streaming is a dominant Internet use case and is widely
adopted by content providers such as Netflix and YouTube [1].
We set up a DASH server and host Big Buck Bunny, available
from a public dataset, on it [16]. We configured the streaming

Delay (ms) 1 40 80 160
Bandwidth (Mbps) 950 600 300 200

(a) Configurations for Bulk Traffic Experiments

Bandwidth (Mbps) 2.4 2 1.6
Delay (ms) 10 20 30

(b) Configurations for Video Streaming Experiments

Table II: II(a) shows bandwidth achieved by delay throttling
on a 1Gbps Ethernet interface whereas II(b) presents values
after both bandwidth and delay shaping

server to provide five representations of the video from 240p
to 1080p (same as most content providers). We re-encoded
each representation in at least three different bitrates with
overall available bit rates from 128Kbps to 3.8Mbps using
H.264/MPEG-4 AVC codec. The streaming client employs
an Adaptive Bit Rate (ABR) algorithm to download video
segments according to the available network bandwidth. We
throttled our testbed bandwidth to match the bitrates of DASH
encodings. Table II(b) shows the average delay measured
at client-side for each bandwidth configuration. We evaluate
and compare QAware’s performance with other schedulers for
when the two subflows i) have bandwidths of 2 Mbps, ii) have
bandwidths of 2 Mbps and 1.6 Mbps, and iii) have bandwidths
of 2.4 Mbps and 1.6 Mbps.

From Figure 13, we observe that QAware improves the
performance of streaming applications in all network condi-
tions. The performance improvement is more significant in
scenarios where the path bandwidths are similar (8% and 5%
with respect to default and 10% and 6% with respect to ECF,
in Figures 13(a) and 13(b) respectively) as QAware utilizes
available paths more efficiently than other schedulers. DAPS
consistently gives the worst performance out of all schedulers
due to its strong dependence on RTT ratio of two subflows.

C. Web File Download

We now evaluate QAware’s performance for simple web
downloads using curl. We set up an HTTP server using Apache
2.2.22 and hosted varying file sizes of range 128KB to S00MB.
We eliminate application connection time by only considering
the transport-level time in overall download completion time
observed at the client. Figure 14 presents the average com-

[minSRTTIMDAPS IIBLESTLIECFLIQAware]

Normalized
Completion Time

10MB 100MB 500MB

128KB 512KB 1MB

Figure 14: Normalized download completion time for different
file sizes (smaller is better).



pletion time normalized to the maximum achieved value by
scheduler for a given file size.

For small web transfers (<1MB) all schedulers perform
quite similar to each other (it took 0.002s to download a
128 KB file by QAware vs. 0.003s by minSRTT). This is
because for small data transfers, the bandwidth of the primary
subflow is more than capable of single shot transmission
and thus MPTCP rarely switches to the secondary subflow.
Therefore, until the performance of primary subflow degrades
during transfer, the choice of the scheduler does not affect the
performance for small files. The default and DAPS scheduler
achieve lower completion time for medium file sizes (=10/100
MB) in comparison to BLEST and ECF. This is likely because
BLEST and ECF add additional delays by waiting for the
faster subflow to become available. For large files (500 MB),
BLEST and ECF utilize faster subflow more efficiently than
default and DAPS, thus achieving a lower completion time.
QAware always outperforms other schedulers and realizes up
to 20% decrease in completion time for medium file sizes
(0.709s by QAware vs. 0.895s by ECF for 100 MB file) and
30% for large file downloads (3.46s by QAware vs. 4.93s by
minSRTT for 500 MB).

IX. CONCLUSION

We proposed, QAware, a novel cross-layer MPTCP sched-
uler that combines hardware device queue occupancy and
TCP RTT for efficient scheduling decisions. We detailed its
design and implementation. We evaluated QAware using an
extensive set of simulations and real network experiments
for various network configurations and applications such as
bulk data transfers, web browsing, web file downloads, and
video streaming. Comparisons with various state-of-the-art
schedulers such as DAPS, BLEST, and ECF were used to
demonstrate the efficacy of QAware. It outperformed other
schedulers in all network configurations and workloads we
tested. Further, we show that QAware quickly adapts to co-
existing applications and sudden variations in network condi-
tions. We have open-sourced QAware’s implementation as a
modular scheduler for latest stable MPTCP Linux release.
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