Poster Presentation

MobiCom’18, October 29-November 2, 2018, New Delhi, India

Poster: Redesigning MPTCP for Edge Clouds

Nitinder Mohan

University of Helsinki, Finland

Otto Waltari
University of Helsinki, Finland

ABSTRACT

Edge clouds are an attractive platform to support latency-
sensitive applications by providing computations on servers
deployed close to end-users. These servers aim to employ
MPTCP to leverage multiple connections including wire-
less over a public network. In this paper, we show that the
default MPTCP design does not adequately support reliabil-
ity in these environments, which makes it unfit for use in
edge clouds. We propose RAMPTCP, an extension to MPTCP
which focuses on adding reliability over network paths.

ACM Reference Format:

Nitinder Mohan, Tanya Shreedhar, Aleksandr Zavodovski, Otto
Waltari, Jussi Kangasharju, and Sanjit K. Kaul. 2018. Poster: Re-
designing MPTCP for Edge Clouds. In The 24th Annual International
Conference on Mobile Computing and Networking (MobiCom ’18),
October 29-November 2, 2018, New Delhi, India. ACM, New York, NY,
USA, 3 pages. https://doi.org/10.1145/3241539.3267738

1 INTRODUCTION

Cloud computing has emerged as a de-facto paradigm for
hosting a variety of compute-dependent applications and ser-
vices. Even though the cloud is composed of controlled and
managed inter-network of distributed data centers, the end-
client connection to the cloud is usually via a congested pub-
lic network. Time-critical and data-dependent applications
such as Internet-of-Things (IoT), augmented/virtual reality
etc. are heavily impacted due to delays and re-transmissions
caused by the local network and are unable to fully benefit
from the low compute time offered by cloud.

Recently, researchers have proposed edge clouds [2, 6]
which aim to decouple network delay from computation
time by deploying compute servers close to the users. The
edge servers are equipped with a myriad of network inter-
faces (such as Ethernet, WiFi, cellular, etc.) to support all

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

MobiCom ’18, October 29-November 2, 2018, New Delhi, India

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5903-0/18/10.
https://doi.org/10.1145/3241539.3267738

Tanya Shreedhar
IIT Delhi

Jussi Kangasharju
University of Helsinki, Finland

675

Aleksandr Zavodovski
University of Helsinki, Finland

Sanjit K. Kaul
IIT Delhi

possible connectivity use-cases over any existing (public
or managed) network [1]. For ease of interoperability with
the cloud, edge cloud aim to support existing cloud-based
applications such as live VM/container migration, etc. [9].
However, such applications were designed considering data-
center networks and are incapable of overcoming frequent
network delays, congestion and failures; which are highly
probable in edge cloud environment.

To provide robustness in edge networks, researchers have
considered utilizing Multipath TCP (MPTCP) on edge servers
[3]. MPTCP is a standardized extension to TCP that allows
devices to simultaneously leverage multiple available net-
works (cellular, WiFi) to form parallel TCP connections be-
tween end-hosts. Due to several benefits offered by MPTCP
such as increased robustness, bandwidth aggregation and
seamless handovers; researchers have highly advocated its
usage in mobile environments [7]. However unlike typical
mobile to cloud network interaction, where only the client
is equipped with congestion prone wireless NIC, an edge-to-
edge or mobile-to-edge connection is dominated by wireless
networks at both ends of the communication.

In this paper, we show via real network experiments that
default MPTCP prioritizes path utilization over reliability
leading to significantly high packet delays and retransmis-
sions, thereby rendering it unsuitable for edge networks. We
propose Receiver-Assisted MPTCP (RAMPTCP) as a reliability-
first extension to MPTCP. RAMPTCP focuses on mitigating
recovery time from probable packet losses and delays by
incorporating both sender and receiver-side last-hop MAC
characteristics. Being a work-in-progress, we discuss several
design aspects of RAMPTCP and show from our prelimi-
nary evaluation the possible gains in network reliability it
achieves over default MPTCP.

2 MPTCP AT THE EDGE

2.1 MPTCP in a nutshell

Unlike regular TCP, MPTCP builds connections over two
hosts and not two interfaces. It adds an abstraction control
layer atop TCP which is responsible for actively manag-
ing packets injected into each connection. The protocol is
composed of three modular control blocks: path manager,

https://doi.org/10.1145/3241539.3267738
https://doi.org/10.1145/3241539.3267738

Poster Presentation

x10
9r 7
10 Flow 1
. 85F * Flow 2
[0)
O
E 8t - e
o}
c
975} ‘:’\
c %107
(0] 7.8
‘% 7t 7.7
7.6
De5) o
6 ‘1 X 14 14.5I
12 13 14 15
Time (secs)

Figure 1: Default MPTCP operation over two subflows
when flow 2 experiences packet errors from ¢;. MPTCP
keeps scheduling new packets to flow 2 resulting in
heavy retransmissions over both subflows until RTT
of flow 1 exceeds that of flow 2 at ¢,.

scheduler and congestion control. Lets consider a VM migra-
tion scenario between two edge servers both equipped with
two wireless NICs on both ends. Assuming that both edge
servers support MPTCP, the path manager is responsible for
establishing and managing subflows! between the hosts over
available NICs. Once TCP subflows between the machines
are established, the scheduler injects application packets into
each connection while prioritizing network path with lower
sender-perceived TCP smoothed round-trip time (SRTT). Fur-
ther, unknowing to underlying TCP, MPTCP adds its end-
to-end congestion control and packet sequencing to support
out-of-order delivery of packets over heterogeneous paths.

2.2 Sender vs the Network

MPTCP architecture is designed to be sender-centric wherein
the sender host is primarily responsible for network deci-
sions (packet injection, rate control) based on sender-perceived
path information (read SRTT). MPTCP’s reliance on sender-
focused decisions disables it to timely account for packet
delays and losses on the receiver-side last mile which, as mo-
tivated in Section 1, is highly prevalent in today’s network.
To show the impact of MPTCP’s behavior, we set up a
real edge-to-edge communication experiment discussed in
Section 2.1. Both servers are equipped with two 802.11g NICs
and support latest default MPTCP v0.94. Figure 1 shows
per-flow sequence number of packets over time. We inject
path errors on B2 associated with flow 2 starting #; with 0.2
probability, which triggers increased TCP retransmissions on
affected path due to retransmission timeouts (RTO). However,
MPTCP keeps injecting new packets on affected flow 2 even
after encountering errors, until the delay is reflected in its

1We use the term TCP connection and subflow interchangeably

676

MobiCom’18, October 29-November 2, 2018, New Delhi, India

Data

A U
Seq: 1

= Path 1 Seq; 1

- B1:v \«'))

A1 B2:A\ B1

SACK
E (()) 3 E
| N\) | & >
iR =
Data Path 2

Figure 2: RAMPTCP in action.

TCP SRTT (at t;). After t; all lost packets are retransmitted
on unaffected flow 1. We found that MPTCP injected 43%
new packets on flow 2, of which 74% had to be re-transmitted.
Such heavy re-transmissions lead to large receive buffers,
re-ordering delays and bandwidth wastage.

3 RECEIVER-ASSISTED MPTCP

We focus on redesigning MPTCP to incorporate network
reliability and reduce time delays due to retransmissions and
packet reordering in congestion-prone networks. Receiver-
Assisted MPTCP (RAMPTCP) is an extension to MPTCP
which enables the sender to consider receiver-side last-mile
characteristics in its control decisions actively. We draw
RAMPTCP design motivation from TCP congestion control
where timely knowledge of receiver’s congestion window is
pivotal for sender rate control decisions. In experiment above,
we observe that the sender continually receives ACKs on
either subflow despite packet losses on one flow. RAMPTCP
facilitates the receiver to report several local last-hop metrics
by leveraging reverse-path ACKs to sender. As RAMPTCP
is a work-in-progress, in the following sections we discuss
several "possible" design aspects to incorporate receiver char-
acteristics effectively.

3.1 System design

Figure 2 portrays the experiment scenario discussed in Sec-
tion 2.2 where receiver-side last hop (B2) is error-prone due
to channel interference. Therefore, all packets sent on path
2 is dropped at B2’s access point. RAMPTCP enables the
receiver to report back last-hop metrics such as path loss,
channel utilization, SNR, queue length, channel interference,
etc. to the sender via modified MPTCP ACK. This informa-
tion effectively captures any packet delays/losses at receiver
last-hop and is readily available in default Linux kernel. The
receiver embeds the selected characteristics along with their
unique MPTCP path ID in all ACKs (for any path) to ensure
its delivery. The sender leverages received path information
and augments it with local path characteristics and SRTT
to estimate packet delays at sub-network level. Essentially,

Poster Presentation

15 r ——
- MPTCP e
é i / —Flow 1]

5- -
= Flow 2
2 15 — T
< RAMPTCP ——]
2 10f
o
= 5-
£ LA .

0o 1 2 3 5 6 7 8 9 10

4
Time (secs)

Figure 3: Per-flow throughput comparison between
MPTCP and RAMPTCP for topology in Figure ?? when
interference on B1 affects flow 1 from 2-5s

RAMPTCP breaks down overall SRTT in
SRTT = Tsender + Teore + Treceivers

i.e., time delay at sender last-hop, core network and receiver
last-hop respectively. To estimate Tsenger and Treceiver, RA-
MPTCP can utilize similar principles as sender-side MAC-
aware methodologies [5, 8] and is thereby able to estimate
time delay in core network. By computing per-segment de-
lay for each subflow, RAMPTCP can enforce several control
decisions for affected flow quickly, a few of which are listed
below.

Scheduler: limit packet injections, out-of-order injection
for heterogeneous delays, packet duplication.

Congestion control: lower/increase TCP send rate.

Path manager: boycott subflow usage, utilize subflow using
the best combination of last-hop links.

3.2 Preliminary Results

To evaluate the effectiveness of RAMPTCP, we implement
the topology shown in Figure 2 in the ns3 network simulator.
Both source and destination are equipped with two 802.11g
NICs associated to their respective APs on orthogonal chan-
nels. The source is aware of receiver channel utilization, SNR
and path loss %. Figure 3 shows per-flow throughput achieved
on both subflows when flow 1 encounters high packet loss
due to WiFi interference on the B1 interface from 2-5s. In
its preliminary stage, we design RAMPTCP to simply mark
a subflow active/inactive based on channel interference and
signal strength threshold. While MPTCP relies on RTO’s to
invoke congestion control, RAMPTCP avoids possible packet
losses by marking flow 1 "inactive" based on reverse-path in-
formation from the destination for the affected time. Overall,
RAMPTCP achieves ~ 58% reduction in retransmissions and
~ 19% increase in application goodput.

4 DISCUSSION AND FUTURE WORK

We design RAMPTCP to be backward compatible with MP-
TCP and therefore support existing machines and network

677

MobiCom’18, October 29-November 2, 2018, New Delhi, India

middleboxes. In this section, we discuss several open prob-
lems in future work on RAMPTCP and possible solutions.
I. Reporting receiver path characteristics: As shown in
our evaluation, considering receiver last-hop characteristics
in network decisions enables RAMPTCP to adapt to network
instabilities quickly. In our current approach, we relay the
required characteristics through ACKs. Incorporating this
approach in Linux kernel would require extending MPTCP
Data Sequence Signal (DSS) packet with an additional four
octet block [4]. Even though the approach easily enables
RAMPTCP to function, it also limits its compatibility with
Performance Enhancing Proxies (PEP) and middlebox inclu-
sive networks which block any TCP extensions. In future,
we plan to consider the limited yet existing "Options" field in
TCP packet. One can employ an effective encoding algorithm
at sender and receiver to compress required information into
restricted space. Further, we also plan to analyze the effects of
increased ACK sizes on end-to-end MPTCP communication.
II. Effectiveness of RAMPTCP control decisions In Sec-
tion 3.1, we enumerated several control decisions that can be
undertaken by RAMPTCP to ensure reliability upon detect-
ing path delays. As such decisions can directly affect system
performance, they must be bounded by certain minimum
requirements. First, RAMPTCP must avoid switching states
too frequently due to intermittent path delays. Second, as
mandated by MPTCP, RAMPTCP must always perform bet-
ter than single path TCP, and lastly, RAMPTCP must ensure
required Quality-of-Service by avoiding complete loss of
service on highly heterogeneous/error prone paths.

In future work, we plan to develop a utility function which
incorporates all last-hop metrics to denote "path-health”
which predicts the probability of successful packet delivery.

REFERENCES

[1] CISCO. CISCO edge server data spec sheet.
com/c/en/us/products/collateral/routers/829-industrial-router/
datasheet-c78-734981.pdf", 2018.

[2] Ahmed et al. A survey on mobile edge computing. In Intelligent Systems
and Control (ISCO), 2016.

[3] Chaufournier et al. Fast transparent virtual machine migration in
distributed edge clouds. In Symposium on Edge Computing, 2017.

[4] Handley et al. Tcp extensions for multipath operation with multiple
addresses. 2013.

[5] Limetal. Cross-layer path management in multi-path transport protocol
for mobile devices. In IEEE INFOCOM 2014, 2014.

[6] Mohan et al. Edge-fog cloud: A distributed cloud for internet of things
computations. In Cloudification of the Internet of Things, 2016.

[7] Paasch et al. Exploring mobile/wifi handover with multipath tcp. In
ACM SIGCOMM workshop on Cellular networks, 2012.

[8] Shreedhar et al. Qaware: A cross-layer approach to mptcp scheduling.
In IFIP Networking 2018, 2018.

[9] Silvestro and Mohan et al. Mute: Multi-tier edge networks. EuroSys
workshop on CrossCloud. ACM, 2018.

"WWWw.cisco.

www.cisco.com/c/en/us/products/collateral/routers/829-industrial-router/datasheet-c78-734981.pdf
www.cisco.com/c/en/us/products/collateral/routers/829-industrial-router/datasheet-c78-734981.pdf
www.cisco.com/c/en/us/products/collateral/routers/829-industrial-router/datasheet-c78-734981.pdf

	Abstract
	1 Introduction
	2 MPTCP at the edge
	2.1 MPTCP in a nutshell
	2.2 Sender vs the Network

	3 Receiver-assisted MPTCP
	3.1 System design
	3.2 Preliminary Results

	4 Discussion and Future Work
	References

