MUTE: MUIti-Tier Edge networks

A. Silvestro *T N. Mohan **
NEC Laboratories Europe, Germany

Abstract

Several Internet-of-Things (IoT) based use-cases require an
increased amount of computation resources with extremely
low latency. Cloud-based services may fail to provide such
requirement given the high latency required to access their
facilities. Therefore, an increasing number of resources are
being deployed at the network “edge” as Edge Clouds.

However, as the modeling of edge network is still in its
early stages, the existing solutions for service placement
and resource utilization are found to be quite inefficient.
In this paper, we model a multi-tier edge network and pro-
pose a service placement algorithm, Mute. In our evaluation,
performed on real network topologies, we show that Mute
achieves 66% reduction in network cost and 50% reduction
in service placement when compared to state-of-the-art so-
lutions.

Keywords Edge clouds, in-network services, service func-
tion chains, edge service placement

1. Introduction

In recent years, several application use-cases, requiring high
data availability and quick computation, such as Internet-
of-Things (IoT), vehicular networks, etc. have proliferated
to a great extent. Such applications require computational
resources that can handle highly variable data with strin-
gent completion time requirements. The traditional central-
ized cloud model is unable to support these use cases due to
possibly high network delays encountered while offloading
data to the location of cloud data centers. Researchers have
proposed decoupling the traditional cloud model to several
smaller computation resources installed closer to data gener-
ators [1]. Due to their proximity to the network “edge”, these
collections of resources are termed as Edge cloud [2].

* Joint first authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CrossCloud’18, April 23, 2018, Porto, Portugal.

Copyright © 2018 ACM 978-1-4503-5653-4. .. $15.00.
http://dx.doi.org/10.1145/3195870.3195871

J. Kangasharju *
University of Helsinki, Finland ¥

F. Schneider! X.Fu®t

University of Goettingen, Germany -

i Core

iEdge Platform B}

.......... e

Figure 1: Service Function Chains (SFC) over Edge Cloud

In the past, several edge cloud models have been pro-
posed [3-6] to decouple network delay from computation
time in concrete deployments. Telecom operators have also
adopted such models, for instance, models such as Mobile
Edge Computing (MEC) enable edge servers and cellular
base stations to be operated simultaneously [7]. Recently,
significant improvements in MEC have enabled Mobile Net-
work Operators (MNO) to integrate 5G telecommunication
in the cloud platform itself [2]. However, at this stage, only
proprietary edge services can be deployed by MNOs MEC
instances, and the platforms are not open to third-party
providers. Other research proposals have considered open-
to-all edge cloud instances to be composed of possible com-
munity driven compute resources which drastically increase
the density and variability of the edge. For instance, Mohan
et al. [8] present a model where the edge cloud is composed
of a combination of voluntary compute resources such as
mobile phones, workstations, etc. and managed micro-cloud
instances such as mini-datacenters.

Existing service/task placement and resource selection al-
gorithms attempt to map multiple services on a set of ho-
mogeneous cloud resources with a consistent network delay
from the clients [9]. Figure 1 shows an end-to-end Service
Function Chaining (SFC) deployment on the edge. However,
the significant heterogeneity of the edge resources, regard-
ing processing capability and network distribution, necessi-
tates re-designing such placement algorithms, to make them
match better with edge computing environments.

In this paper, we provide the following contributions.

1) We define a use case scenario for the Edge where
Edge Platform Providers open their infrastructure to third-
party Service Providers as shown in Figure 2. Building on
the success of other open systems, with the Internet and Web
being prime examples, we conjecture that a similarly open
approach will enable edge computing to flourish. Existing
solutions, such as auctioning strategies [10] can be used to
allow platform providers to run their systems for profit.

2) We define a model of multi-tier edge network in
which edge resources are logically clustered into distinct
tiers, based on their characteristics such as processing ca-
pabilities, network delay from the client, etc. (shown in Fig-
ure 2). This characterization enables Edge Service Providers,
to efficiently manage their governed edge resources, and to
find more solutions optimized for multi-tier scenarios.

3) We design Mute, a placement algorithm which lever-
ages multi-tier edge architecture to find an edge server which
best supports the needs of a requested service.

4) We perform an extensive set of simulations using real
network topologies [11]. We show that the Mute algorithm
achieves 66% reduction in network cost, when compared to
state-of-the-art non-edge aware placement algorithms. Ad-
ditionally, Mute leverages the multi-tier structure to achieve
the service placement up to 50% faster, when compared to
non-tier aware placement algorithms.

The rest of the paper is organized as follows. We discuss
the architecture and stakeholders in an edge network in Sec-
tion 2 and present Multi-Tier Edge architecture and Mute al-
gorithm in Section 3. Section 4 evaluates Mute with state-of-
the-art algorithms on realistic topologies. Section 5 presents
related work and use-cases of proposed edge architecture.
We conclude our paper in Section 6.

2. Architecture & Stakeholders

In Figure 1, we show the architecture and the stakeholders
of an edge cloud. We envision a model where several edge
platforms co-exist on the network. An end-to-end connec-
tion is established between the client and the cloud platform.
Multiple services can be deployed on the edge servers which
can enrich client’s connection with the cloud (e.g., video
transcoder, web proxy, etc.). The resulting Service Function
Chain (SFC) is routed through deployed services which can
either be placed on servers co-located in the same facility or
in different platforms and location. Based on the ownership
of resources, the edge cloud model has three primary stake-
holders: Clients, Edge Service Providers (ESP) and Cloud
Service Providers (shown in Figure 2).

Clients establish the connection with a Cloud Server (CS)
in a Cloud Platform (CP). The clients and/or cloud can
request to include virtualized services deployed at the edge
via SFC. The client can have either an active or a passive
role in the SFC traffic steering depending if the SFC is
transparently enforced [12], for instance by the network

{

(= ~

FEIE =) ()

[?s [es e] 3 Edge Service

= E, Provider

2 Z l
FEE =]
\\"))

o
s @) -
@@ @ 3 5N | Cloud Service
L °z)] Provider l
N\ S

Figure 2: Multi-tier Edge Architecture & Stakeholders

operator, or is explicitly defined by the client or the server
[13, 14].

Cloud Service Providers (CSPs) consolidates several CS
deployed on a CP. Individual CSs are grouped together in
data centers (DCs) facilities, which are distributed at various
locations in the network [15]. Upon arrival of a connection
request from a client, the CSP reroutes the request to one of
the available CSs in the CP.

Edge Service Providers (ESPs) act as an intermediate en-
tity between clients and CSPs. An ESP hosts several compu-
tation and storage capable Edge Servers (ES) federated into
Edge Data Centers (Edge DCs). Unlike the cloud DCs, the
Edge DCs are spread over a broader geographic region and
have a significantly lower latency to connect to a client in
proximate location.

3. Edge Platform Modelling and Deployment

The edge cloud model discussed in Section 2 considers the
interaction between the involved stakeholders. In this sec-
tion, we discuss the techniques by which the ESPs can model
its governed Edge Platform and select the best ES to deploy
requested service functions.

3.1 Multi-Tier Edge

Past state-of-the-art research has proposed grouping ESs
in an EP wherein all servers have similar characteristics
[5]. The ESP can then employ a selection algorithm which
”picks” the best ES capable of supporting the processing and
number of users! required by the requested service.

We propose multi-tier edge platform, which further cat-
egorizes resources within a platform in fiers depending on
their network delay from the edge. Figure 2 illustrates plat-
form’s architecture. The properties of the ESs in resulting
architecture varies from tier-to-tier.

'We denote the number of users that can be supported by a server as its
bandwidth throughout the paper.

I) Network Delay: the network delay to the edge is the
primary attribute for classifying ES in tiers. The tiers which
are closer to the network edge are composed of ESs with
lower network delay to clients than higher tiers. However,
the network delay of ES to end-client is location-dependent;
e.g. Tier 1 ESs in New York and California will have the least
network delay to clients located in their proximate locations
but will have a very high delay for the other’s location.

II) Bandwidth and Processing Power: edge servers in
lower tiers have limited processing capability and can only
support a restricted number of users simultaneously. How-
ever, their proximity to the network edge makes them desir-
able to deploy virtualized services. Tiers closer to the cloud
are composed of ESs with higher processing capability.

III) Number of Servers: lower tiers are characterized by
a greater number of small edge servers, that show limited
resource capability. On the other hand, tiers which are closer
to the cloud, have a small number of more powerful servers.

3.2 Network Structure & Model Definition

Here we formulate the problem of placing services on an
Edge Platform (£ P). Figure 3 shows the network architec-
ture of a multi-tier Edge Platform composed of three ES with
different bandwidth and processing capability. Each server
has a network connection to the client and the cloud plat-
form of a certain weight. The EP is composed of multi-
ple Edge Servers (ES) of different attributes, i.e. EST =
ESy,...,ES, where EST denotes set of all ES physical
machines. As discussed in Section 3.1, the Edge Service
Provider (ESP) categorize E.S into tiers t = t1,...,t,
wherein each ES in EST € t . The resulting ES are
grouped in n tiers as:

ES" ={ES},ES}' |, ES}y...,ES"}

where
EST = ES'UES?U...UES"

The Edge tier ES' lies closest to clients C =
C1,Cs,...,Cy, and the last tier ES™ is closer to the
end server/cloud. Each ES physical machine has a

1
1
Device ID: 1 1
Tier ID: 1 {1
S Processing: 3 ¢ [O(o,,l
P74 b Budvian 25 | g,

S 1 S
0““‘\0 1 J
| Device ID: 2 1
Tier ID: 1 4 1D,

[=2 L ~LConn(D
conn(S:2) Processing: 4 i| (<.Cp) _
Do I Bandwidth: 20 =6 Cloud Platform
' Tier 1

Client

Device ID: 3
I! Tier ID: 2
JProcessing: 6

Bandwidth: 30

Edge Platform

Figure 3: Multi-Tier Edge Network Architecture

maximum resource utilization denoted by ESP™°¢ =
ESY,ESY, ..., ESP and maximum bandwidth as ES®* =
ESbw ESbw ... ESP™. As shown in Figure 1, ES in
lower tiers have smaller processing and bandwidth capabil-
ity but also have a significantly lower network cost to clients.

3.3 Placing Services on the Edge

Let S = S1...,S5,, denote the set of 'm’ services to be
placed on EST. The service providers want to enrich the
experience of their clients and overall end-to-end connec-
tions by deploying services on ES closest to the client. We
define services to have different processing requirements (in
terms of the number of CPU-cycles) required for their ex-
ecution denoted as SP"°¢ = SV, S¥ ... SP . Similarly, ac-
cording to the Service Level Agreement (SLA), each ser-
vice must support a bandwidth quota denoted as S** =
Shw Sbw . Sbw,

Furthermore, every Edge server E'S has an associated
cost for deploying service S; on physical machine (PM)
E'S; per unit time denoted as c;;. The cost is dependent on
ES’s capability (regarding processing and networking) for
running the service and the tier-level it belongs.

EST® ={ES{,ESS,...,ES:} ES deployment cost
The resulting pricing model assigns more cost to low tier
ESs due to their limited processing capabilities and lower
network delays.

We denote variable x to indicate whether a service S; is
deployed on the edge server £.ST}.

1, if S; deployed on ESj.
Tij = .
! 0, otherwise.

Considering the placement requirements, the deployment
algorithm can optimize the following attributes, i) the net-
working delay between client and the service, and ii) oper-
ational cost of deploying a service on ES with certain pro-
cessing capability.

3.3.1 Minimizing Operational Cost

As discussed in Section 3.1, a low tier ES is likely to have a
higher cost of deployment compared to a higher tier server.
The operational cost for deploying service S on the Edge
Platform E'ST can be formulated as

n proc
Si

C(\) = ZZWES;xij (1)

i=1 j=1 J

subject to

0<ZZE§WC<1 2)

dwmy=1 VieS=85,...,5 3)
J

The deployment algorithm minimizes Equation 1 to opti-
mize total cost of processing a virtualized service on an ES.
The constraint in Equation 2 ensures that the ES has enough
processing capability to host the requested. Equation 3 guar-
antees deployment of all requested services.

3.3.2 Minimizing Network Delay

Considering that the requested service is to be deployed
on an ES member of an EP (shown in Figure 3), the
resulting end-to-end connection between client and cloud
will be composed of the nodes client, ES and cloud.
We denote network link between client to Edge Server
(ES;) hosting the service and ES to the cloud as de-
noted as deonn(c, E£S;) and deonn(ES;, cloud) respec-
tively. The end-to-end network cost can be denoted as

N(Sj) = Z[dconn(cv Esz) + dconn(ESifla ESz)+

dconn (ESM cloud)] Lij
subject to

> Stva;; < ESY Vi€ ES=ES,...,ES, 4

(2

day=1 VieS=5,...,5, (5)
J

The network optimizing deployment algorithm mini-
mizes network cost presented in Equation 3.3.2. The con-
straint in Equation 5 ensures that the selected ES is able to
support the bandwidth by the service.

The algorithm can be further modified to minimize only
the network cost between client and the Edge Server. i.e.

m

N(S59) = (deonn(c; ESy)) w5 ©)

3.4 Tier-based Optimization

The processing and network optimizing algorithms iterate
over the entire search space (read Edge Platform) to find the
ES satisfying the requirements. As discussed in Section 1,
an EP can be composed of hundreds of ESs. The algorithms
discussed above imposes significantly large compute time to
find the optimal solution.

In Algorithm 1 we present the pseudo-code of Mute. It
exploits the multi-tier edge to find a server with optimal
network cost to edge and near-optimal processing cost.

The algorithm exploits the network cost trend of the tiers,
i.e., the Edge servers in lower tiers have a lower network cost

Algorithm 1 Mute

1: Inputs:
Total number of tiers
tierse {tieri,...,tier,} Available Edge
servers in tiers ESTE {ESTier1 U ... UESTyiern }
EST** € {EST}%,1,...,ESTSY, .,
ESTP™¢ e {ESTY S, ... EST o0}

2: Initialize:
selectedServer < NONE

3: //This function returns Edge Server E'S for deploying Service
S
4: foreach t € tiers do
5. | ifESTY™ > S® and ESTY"*° > SP"°° then
6: lowestNetworkCost +— oo
7: for each ES € EST; do
8: if ESP7°° > S* and EST?"%° > SP"°° then
9: Optimize network cost as Equation 6
10: if networkCost < lowestNetworkCost then
11: lowestNetworkCost <— networkCost
12: selectedServer < ES
13: end if
14: end if
15: end for
16: if selectedServer # NONE then
17: break
18: end if
19: end if
20: end for

to clients than higher tiers. The ESP associates £ ST and

tier
ESTE"? with each tier, which denotes the maximum sup-
ported bandwidth and maximum processing capability of the
tier respectively. The algorithm approximates the location
of the ideal £/S by utilizing tier parameters and prioritizes
lower tiers for placement. It further iteratively searches for
E'S only in the tier whose processing and bandwidth best

satisfy the requirements imposed by the service.

4. Evaluation

In this section, we analyze the performance achieved by
Mute and compare it with the Netw, Proc and EdgeNetw.
Netw and Proc are state-of-the-art placement algorithms,
applied on edge networks whereas EdgeNetw is an iterative-
variant of Mute.

I) Network Optimizing Server Selection (Netw) itera-
tively searches for S with least network cost of deploy-
ment (as modeled in Equation 3.3.2) in an Edge Platform.

IT) Processing Optimizing Server Section (Proc) se-
lects .S with least processing cost of service deployment
(as modeled in Equation 1).

IIT) Edge-Network Optimizing Server Selection (Ed-
geNetw), similarly to Mute, selects the server with least net-
work cost to the client (as modeled in Equation 6). How-
ever, unlike Mute, EdgeNetw is not aware of the multi-tier
structure of the edge network and iteratively searches for the
optimal server in the search space.

160

140 [E=3 Proc Netw

=X EdgeNetw EFH Mute

12047 -

100} % : %

%iii

=

0. [0

o
o o

N B
o O o

Edge Network Delay [ms]

=

7
7

10 2 30 40

Number of Edge Resources (n)

(a) Network Cost Comparison

60 80

Netw

E&A EdgeNetw

Z 2

.
Lo
booer
I I
I
'
L
e - —
H J—

] ” 2

10 20 30 40

60 80 100

Number of Edge Resources (n)

(b) Processing Cost Comparison

Figure 4: Service Deployment Cost Comparison between Proc, Netw, EdgeNetw and Mute algorithms

4.1 Experiment Setup

We implemented Mute and the selection algorithms dis-
cussed above in a custom Python-based simulator. The sim-
ulator considers Edge network graphs based on Rocket Fuel
topologies [11] which also provides per-link delays between
graph nodes. Overall, we generated 61 network graphs with
~ 25 — 115 nodes. Edge networks are generated assign-
ing Edge Servers (e.g., from 10 to 100) on the generated
network graphs, which we assume as underlying network
topology. The network cost between any two E'S's is defined
as the sum of the link’s delay on the shortest path between
such nodes in the underlying network. We provide process-
ing and bandwidth capabilities to each ES in the edge net-
work and cluster them in tiers, as discussed in Section 3.1.
For each network graph, we perform 100 placements, result-
ing in 100 different edge networks. Therefore, we generate
~ 6000 edge networks throughout the experiments. For the
sake of simplicity, we only consider placing a single service
on the network in current evaluation and leave the analysis
of multiple services as future work.

4.2 Results

Figure 4a and 4b present the box plot results of network and
processing cost respectively and capture data distribution
throughout all our experiments. The top and the bottom of
the boxes represent the first and third quartile respectively,
and the red waist represents the median.

Proc, as expected, performs the best in terms of process-
ing cost but has the worst performance for network cost. It
does not represent a practical solution as it always selects an
E'S on tiers that show the least processing cost. £/'S's within

such tiers have significantly higher network delay from the
edge and thus show the worst networking cost.

Netw performs significantly better than Proc and selects
an E'S with much lower networking cost. However, it per-
forms worse than EdgeNetw and Mute. Netw selects an E.S
with the least end-to-end delay which encompasses the de-
lay from the client to the £'S and delay from the ES to the
cloud. The algorithm does not optimize edge placement as
it is unable to make a distinction between servers with sim-
ilar end-to-end network cost but significantly different path
delays between client to the E'S. Considering the median
of the experiment results, EdgeNetw and Mute (which show
similar results) achieve 66% reduction in network cost on
average when compared to Netw. However, as discussed in
Section 3.1, ES's in lower tiers are not processing capable
which reflects in the processing cost achieved by both the
algorithms. Both EdgeNetw and Mute show an increase of
20% in associated processing cost, on average, when com-
pared to Netw.

Additionally, we analyze the average time required by
each algorithm to complete the service placement, the re-
sults of which are shown in Figure 5. As evident from the
figure, Mute completes its placement in ~ 50% lesser time
(37.5% average reduction) when compared to the other al-
gorithms. Mute, unlike the other algorithms, searches over
a significantly reduced problem space as it utilizes £ST®"
and ESTP"¢ to estimate the tier which hosts the optimal
ES. Therefore, the proposed Mute algorithm can discover
the E.S which can support the requirements imposed by
Service Provider while ensuring least network delay to the
client. Furthermore, it efficiently utilizes the multi-tier ar-

— Proc
0.25H — Netw $
EdgeNetw %
_.0.20
» — Mute O
£
—0.15
© Nr
£
=o0.10 4 °

0:05 e

10 20 30 40 60 80 100
Number of Edae Resources (n)

Figure 5: Time Complexity Graph

chitecture of an Edge Platform to achieve a deployment time
significantly lower than the state-of-the-art.

5. Related Work & Use-Cases

An increasing number of application use-cases such as
Internet-of-Things (IoT), industrial automation, Augmented
Reality (AR), smart cities, autonomous transportation sys-
tems, etc., are warranting the need for edge compute clouds
[16-18]. Several other research areas, such as Industry 4.0
utilize edge clouds to provide efficient solutions to several
open questions. For example, researchers have proposed au-
tomated collaborative robots which require time-critical pro-
cessing with extremely low latency (in order of millisec-
onds) to create a safety zone for their operators [3, 19]. Aug-
mented Reality glasses can assist operators in a continuously
varying production environment by performing markerless
object recognition and accurate tracking in a factory. How-
ever, such use-cases can only be fulfilled if the required data
is cached and computed at closely located servers.

State-of-the-art solutions in the fields of virtualization,
Software Defined Networking (SDN) and Network Function
Virtualization (NFV) represents key technologies to deploy
virtualized services at the very edge of the network in a
flexible way and on cheap commodity hardware [2]. In
this paper, we envisioned the case in which clients have
control over which services will be included in their network
path using state-of-the-art Service Function Chaining (SFC)
techniques such as [13, 14]. In an open market of choosing
services, the client can discover specific edge servers which
are hosting the required service by utilizing Domain Name
System (DNS) based techniques [20, 21]. The clients can
significantly enhance their connectivity with the end-server
by using services with very low network delay.

6. Conclusion

In this paper we proposed Mute, a multi-tier edge cloud ar-
chitecture which enables edge cloud providers to efficiently
deploy services at the edge. Mute categorizes edge servers
into groups based on their network delay from the client.
Due to its unique architecture abstraction, Mute can effi-
ciently deploy service function chains on edge servers across
multiple edge platforms. Through our extensive simulation-
based evaluation on RocketFuel topologies, we show that

Mute achieves a significant reduction in edge network delay
and completion time when compared to state-of-the-art.

In our future work, we plan to investigate the impact of
different edge resources clustering strategies on the service
placement.

Acknowledgement

This research work has been partly funded by the joint EU
FP7 Marie Curie Actions CleanSky Project (G.A.: 607584).

References

[1] Decentralized edge clouds. ieee internet computing 2013.

[2] ETSI MEC-IEG004. Mobile-Edge Computing (MEC): Ser-
vice Scenarios.

[3] Mohan et al. Managing Data in Computational Edge Clouds.
In SIGCOMM Workshop, MECOMM’17 .

[4] Hong et al. Mobile Fog: A Programming Model for Large-
scale Applications on the Internet of Things. In SIGCOMM
Workshop on MCC.

[5] Bonomi et al. Fog Computing and its Role in the Internet of
Things. SIGCOMM Workshop Mobile Cloud Computing’12.

[6] Satyanarayanan et al. The case for vm-based cloudlets in
mobile computing. IEEE pervasive Computing, 2009.

[7] Hu et al. Mobile edge computing — A key technology towards
5G. ETSI white paper, 2015.

[8] Mohan et al. Edge-Fog cloud: A distributed cloud for Internet
of Things computations. CIoT 2016.

[9] Xu et al. Multi-objective virtual machine placement in virtu-
alized data center environments. In /EEE GreenCom, 2010.

[10] Prasad et al. Raera: A robust auctioning approach for edge
resource allocation. sigcomm workshop, mecomm’17.

[11] Mahajan et al. Inferring link weights using end-to-end mea-
surements. In ACM SIGCOMM IMW 2002.

[12] Bifulco et al. Ready-to-deploy service function chaining for
mobile networks. In IEEE NetSoft. IEEE, 2016.

[13] Naylor et al. Multi-Context TLS (mcTLS): Enabling Secure
In-Network Functionality in TLS. ACM SIGCOMM, 2015.

[14] Zave et al. Dynamic service chaining with Dysco. SIG-
COMM’17.

[15] Bari et al. Data center network virtualization: A survey. [EEE
Communications Surveys Tutorials, 2013.

[16] Zanella et al. Internet of things for smart cities. loT journal.
[17] CISCO. Fog Computing and IoT (Whitepaper). 2015.
[18] Hong et al. Mobile fog: a programming model for large-scale

applications on the internet of things. In MCC workshop, ACM
SIGCOMM’13.

[19] Robert Bosch GmbH Bosch APAS description. https:
//www.bosch-apas.com/produkte-und-services/
apas-assistant-mobile/.

[20] Silvestro et al. MISE: Mlddleboxes SElection for Multi-
domain SFCs. CAN Workshop, ACM CoNEXT’17.

[21] Silvestro et al. Is today’s DNS the right solution for middle-
boxes selection?. In CrossCloud 17 workshop, ACM EuroSys.

