Annals of Telecommunications (2018) 73:463-474
https://doi.org/10.1007/512243-018-0649-0

@ CrossMark

Placing it right!: optimizing energy, processing, and transport
in Edge-Fog clouds

Nitinder Mohan' © . Jussi Kangasharju’

Received: 8 May 2017 / Accepted: 8 May 2018 / Published online: 28 May 2018
© Institut Mines-Télécom and Springer International Publishing AG, part of Springer Nature 2018

Abstract

In recent years, applications such as Internet-of-Things has proliferated the Internet to a great extent. Such applications
derive data from a significant number of smart sensors sensing information from the environment. Due to an extensive data
footprint, the demand for cloud services to process this data has also increased. However, traditional centralized cloud model
requires offloading data from these sensors over a network which induces significant network delay on these applications.
Several architectural abstractions of cloud, such as Fog and Edge, have been proposed to localize some of the processing
near the sensors and away from the central cloud servers. In this paper, we propose Edge-Fog cloud which distributes task
processing on the participating cloud resources in the network. We develop the Least Processing Cost First (LPCF) method
for assigning the processing tasks to nodes which provide the optimal processing time and near-optimal networking costs. We
further provide an energy-efficient variant of LPCF, i.e., eLPCF algorithm, which optimizes energy usage while calculating
task deployment in Edge-Fog cloud. We evaluate both LPCF and eLPCF in a variety of scenarios and demonstrate its

effectiveness in finding the processing task assignments.

Keywords Cloud computing - Fog computing - Edge computing - Internet-of-Things - Task assignment

1 Introduction

Cloud computing has created a radical shift in application
computation and has evolved to provide low-cost and highly
scalable computing services to its users. The cloud service
providers deploy a network of large data centers spread
across the globe. Applications with high computational
requirements offload its processing tasks to a cloud service
which first distributes the task to one/several server(s) in a
data center after which the results are sent back to the end-user.
However, the time complexity requirements for processing
a job are stringent for some applications more than others.
For example, Internet-of-Things (IoT) domain involves
a large number of smart sensors sensing information from

P Nitinder Mohan
nitinder.mohan @helsinki.fi

Jussi Kangasharju
jussi.kangasharju @helsinki.fi

Department of Computer Science, University of Helsinki,
Helsinki, Finland

the environment and uploading it to a cloud service for pro-
cessing. A recent study by National Cable & Telecommu-
nications Association (NCTA) assumes that close to 50.1
billion IoT devices will be connected to the Internet by
2020 [1]. More often than not, handling computations of
IoT applications on traditional cloud computing models
adds following delays to overall processing. (i) The net-
work delay in offloading required data to a central cloud
impacts the overall completion time of time-critical IoT
applications, and (ii) as the computation is dependent on
data from not one, but multiple end data generators and
sensors, uploading data from all such nodes may induce
network congestion and add to pre-existing network delay.
To decouple the network delay from the computation
time for such data, researchers have proposed bringing the
compute cloud closer to data generators and consumers.
Several models have been proposed which achieve com-
putation at the “network edge”. Fog computing cloud [2]
proposes network devices such as routers to run cloud appli-
cation logic. The objective of Fog cloud is to perform low-
latency computation/aggregation on the data while routing
it to the central cloud for heavier computation [3, 4]. On the
other hand, Edge computing cloud [5] takes inspiration from

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12243-018-0649-0&domain=pdf
http://orcid.org/0000-0001-6198-016X
mailto: nitinder.mohan@helsinki.fi
mailto: jussi.kangasharju@helsinki.fi

464

Ann. Telecommun. (2018) 73:463-474

projects such as SETI@Home and Folding@Home [6, 7],
and proposes a consolidation of human-operated, voluntary
resources such as desktop PCs, tablets, smart phones, and
nano data centers as a cloud. As the resources in Edge cloud
usually lie in one-hop proximity to the IoT sensors; process-
ing the data at the edge can significantly reduce the network
delay [8, 9]. Several other approaches such as Cloudlets,
Mobile Edge Computing (MEC) have also been consid-
ered by the researchers [10—12]. Both MEC and Cloudlets
aim to incorporate computationally capable Edge device to
become part of existing cloud infrastructure. Specifically,
MEC enables the existing cellular infrastructure to sup-
port Edge resources whereas Cloudlets utilize end mobile
devices as light-weight cloud instances at the network edge.

The cloud models mentioned above extend the pre-
existing centralized cloud architecture to include the com-
putational resources at the network edge. Such architectures
significantly rely on placement algorithms to find the “opti-
mal” task placement considers attributes such as processing
requirements, network requirements, and energy consump-
tion. However, we argue that due to the availability of
highly scalable centralized data center, more often than not,
the placement algorithms skew task deployment on cen-
tral cloud and are unable to fully utilize the availability
and potential of Edge computing resources [13]. We fur-
ther argue that due to the semi-dependence of existing Edge
cloud models on a central cloud, the models only utilize the
Edge resources to perform pre-processing tasks at the edge
and rely on a centralized cloud for heavy, computationally
intensive tasks.

In this paper,’ we present a node-oriented, fully decen-
tralized hybrid of Edge and Fog compute cloud model,
Edge-Fog cloud. The Edge-Fog cloud comprises of two lay-
ers of compute-capable resources, namely Edge and Fog,
and the core of the cloud is only responsible for storing data.
Due to its decentralized architecture, the Edge-Fog cloud is
capable of decoupling processing time from network delays
by effectively handling processing close to the data genera-
tors. Edge-Fog cloud offers reliable data storage of raw and

I'This paper is an extended version of a paper with the same title
published at International Conference on Cloudification of Internet
of Things in 2016 [14]. The work proposed a unique solution
to assignment problem which considered network and processing
costs of jobs on the cloud. However, the proposed solution was
unable to incorporate any other cost models which are highly
relevant and motivate real-world deployments of edge clouds. The
novel contributions of the current manuscript focus on energy
dissipation which is real-world highly significant and a pressing
issue, especially in battery-operated resources. This paper leverages
the previously proposed solution and presents an extended algorithm
which also incorporates energy dissipation costs of cloud resources
while computing an assignment. We further implement, evaluate, and
compare our proposed solution to our previous and related work. We
also extend our Edge deployment discussion and analyze the effects of
resource types on overall job deployment.

@ Springer

computed data at the central data store located at the core of
its architecture. Specifically, the contributions we make in
this paper are as follows:

(i) We present Edge-Fog cloud architecture, which is
based on classifying compute resources into Edge
and Fog layers, depending on their capabilities,
ownership, and functionality.

(i) We design task deployment algorithms which assign
tasks on the available nodes in the Edge-Fog cloud
while minimizing the processing time, network costs,
and energy usage per resource. We show that our
algorithms achieve near-optimal networking costs in
polynomial time as opposed to exponential time
complexity achieved by related work.

(iii)) We develop an Edge-Fog cloud simulator and integrate
it with our assignment solvers. We demonstrate and
compare the efficiency of our solvers with its related
works across a range of parameters and simulations.

(iv) We discuss and provide insights regarding the
characteristics of Edge-Fog cloud that will affect its
performance in real-world.

The remainder of the paper is organized as follows. In
Section 2, we describe the Edge-Fog cloud architecture. In
Section 3, we propose our task deployment algorithm which
minimizes several costs. In Sections 4 and 5, we evaluate
and discuss the effectiveness of our algorithm. We discuss
the related work in Section 6. Section 7 concludes the paper.

2 Edge-Fog cloud
2.1 Architecture

In this section, we describe the architecture of the Edge-
Fog cloud. The cloud model is composed of several
computationally capable resources functioning at several
abstraction layers. We organize the resources in abstraction
layers by categorizing them on a certain set of device
attributes such as processing power and network distance
from the client. We explain the Edge-Fog cloud model
through two point-of-view architectures, (i) resource-
oriented view and (ii) network-oriented view as shown
in Figs. 1 and 2, respectively. The Edge-Fog cloud is a
consolidation of three different cloud models comprising of
different resource types.

Edge layer The outermost layer of the cloud is Edge layer.
The Edge is a collection of loosely coupled, voluntary?

2Several incentive/credit mechanisms similar to crypto-currency
mining mechanisms can be employed for devices to volunteer as Edge
resource [15]. However, discussion of such mechanisms is currently
out-of-scope of this paper.

Ann. Telecommun. (2018) 73:463-474

465

Fig.1 Resource-oriented Edge-Fog cloud architecture

and human-operated resources such as desktops, laptops,
nano data centers, and tablets. As shown in Fig. 2, the
Edge layer lies extremely close to the end-clients and data
sources, with Edge resources catering end-users at one/two-
hop distance away. Their proximity to the network edge
makes Edge layer highly desirable to compute and deploy
highly time-sensitive data, in-network service functions, etc.
(16]

Edge resources have varying ranges of computational
capabilities from highly capable devices such as worksta-
tions and nano data centers to less capable such as tablets
or smart phones. Edge devices, however, are extremely
location coupled and have possibility to establish device-
to-device connectivity with other nearby Edge resources.
However, the layer itself is fragmented into several “groups”
according to location availability and connectivity.

Fog layer The next layer after Edge is the Fog computing
layer. Fog is a consolidation of networking devices such
as routers and switches with high computing capabilities
and ability to run cloud application logic on their native
architecture. We envision Fog resources to be manufactured,
managed and deployed by cloud vendors (such as CISCO
[17]). Further, as shown in Fig. 2, the Fog layer also
extends itself to the core of the network, i.e., core routers
and regional switches and ends up forming the networking

backbone of the Edge-Fog architecture. The computational
resources in Fog layer are interconnected with high-
speed, reliable links and are more geographically diverse
connected.

The Edge-front of the Fog layer acts as first point-of-
contact with the rest of the network. The Fog resources are
not only capable of routing data to other suitable Edge/Fog
resources, but also provide computation throughout it.
Compared to the Edge layer, the Fog resources reside farther
from the edge of the network when compared to Edge
layer but significantly closer than a traditional central cloud.
Due to static positioning in the model, the computational
capability of Fog resources far exceeds that of the Edge.
Therefore, these devices can be is used to effectively
handle computationally intensive tasks offloaded by Edge
resources.

Data store Unlike the traditional cloud model, we model
the core of the Edge-Fog cloud to have no computational
capabilities but only to serve as a repository for archiving
all computational data in the cloud. Our reasoning for
detaching computation from central cloud is threefold. First,
the sheer accumulated power of computationally capable
resources in Edge and Fog layers makes it competent to
support any task. Second, as these devices have significantly
lower delay to end-client/data source, the need of routing
data to a central cloud due to processing requirements
disregards the advantages of having Edge and Fog devices
in the first place. Lastly, providing computations on Edge
and Fog resources is more energy-efficient than a tradition
cloud-server [18].

A centralized store provides reliability and easy access to
data by any computing resources in the cloud. Being at the
core of the architecture, the Data Store is accessible by both
Edge and Fog layers and can act as a computational and data
checkpoint for distributed processing undertaken by Edge
and Fog layers [19].

2.2 Benefits of the Edge-Fog cloud

The Edge-Fog cloud offers several benefits:

1. Reduction in network load: The Edge-Fog cloud
provides computation at the edge of the network near

Fig.2 Network-oriented
Edge-Fog cloud architecture

Client /
Data Generator

g
‘g o

Edge Resources

Edge Resources

¥

Fog Resources Core Network

Edge Fog

Central Data
Store

@ Springer

466

Ann. Telecommun. (2018) 73:463-474

(a) Graphical representation of Edge-Fog cloud
comprising of five member resources

JobID:5 @
Processing: 2 |

v 3
Job1D: 2 } -g] JobID:3 |

o
rocessing: 21 A Processing: 51

8, == st oL TR 4 R i b e

(b) Collection of tasks with their computational
dependencies

Fig.3 Task deployment example. Each job in b needs to be deployed on a resource in a

the data generators and end-client. The Edge-Fog cloud
thus reduces the amount of data that flows into the
network thereby decreasing the overall processing time.

2. Context-Aware provisioning: Resources in Edge-Fog
cloud also provide contextual awareness to data
generated by end-sensors. These can be received in
different formats such as environment-based (location,
time), user (activity, interactions with the environment),
and device-based (battery, network strength). The Edge
resources can utilize the pre-existing context or even
add its own to data under process.

3. Native support for mobility: Mobility along with
reliability is a quintessential requirement for many IoT
applications. Edge resources such as smartphones or
laptops can offer native physical and virtual mobility
for supporting such mobile IoT applications.

4. Reliability: As computation in Edge-Fog cloud is
decentralized; the model has no single point of failure.
To provide added reliability in such a system, several
snapshots of an application may be deployed on
the cloud. Furthermore, the Edge-Fog resources can
significantly improve the availability of performance,
secured resource-to-resource interactions, etc.

5. Inter-operability: Both Edge and Fog resources can
be utilized to perform traditional computational and
networking activities such as user-interaction, packet
routing, and switching, at both user and commercial-
scale, respectively. Specific tools can be utilized in
Edge-Fog which can provide self-customization to
these resources in cases when they also need to fulfill
their primitive duties along with cloud computation.

Applications such as connected vehicles, energy moni-
toring, and automated traffic control can highly benefit from
Edge-Fog cloud as most of the tasks in such applications are
distributed and network-constrained.

3 Task deployment on Edge-Fog cloud

The Edge-Fog cloud is a scalable platform for a large num-
ber of interconnected Edge and Fog devices and efficiently

@ Springer

utilize the processing power they offer.> However, as the
resources in the Edge-Fog cloud are governed by their pro-
cessing and network capabilities, deploying tasks on these
devices has an associated cost. A typical task deployment
algorithm must map a job node from the job graph to an
Edge/Fog resource. The cost of deployment is dependent on
both the properties of resources and that of the deployed
task itself. For example, if a job requires more coordina-
tion with its peers for completion, the associated network
cost for completing that job will be higher. In order to pro-
vide a scalable and efficient solution, the task deployment
algorithm for Edge-Fog cloud should find the deployment
snapshot with least possible cost without unduly impacting
the overall completion time of that process.

Figure 3 shows a snapshot of Edge-Fog cloud with
five computing resources. Each resource is defined in the
cloud with its unique device ID and available processing
capability (in number of processing cores).* We use the
notation D; to refer to a device with device ID i. Certain
resources in the Edge-Fog cloud are connected to a network
with certain communication cost denoted by D onn (i, j).
For example, D¢y, (1, 2) refers to network cost between
devices D and D;. Figure 3b shows the job graph deployed
on the Edge-Fog cloud. Every job in the graph is denoted
by a job ID and minimum required processing capability to
complete that job. Further, we assume two-way dependency
between the jobs wherein Job J; and J, are dependent on
each other if there exists a connection between them.’

In this paper, we assume that the number of tasks is equal
to the number of devices on which it must be deployed.
In case of unequal devices and tasks, the deployment
algorithm can equalize the number of nodes in device and
job graphs in the following manner. First, if the number of

3Throughout the paper, we use the terms devices and resources
interchangeably.

“4It must be noted that as a resource may be involved in more than one
task deployments simultaneously, the processing ability of a resource
refers to its currently available processing power prior to next task
deployment

3Tn this paper, we only consider a non-weighted job dependencies and
leave the weighted job graph mapping for future work.

Ann. Telecommun. (2018) 73:463-474

467

jobs in a job graph is more than the number of available
devices, the algorithm may split existing devices into virtual
devices/machines to retain the 1:1 mapping. On the other
hand, if the number of resources is more than the number
of jobs, we ignore the exceeding devices. For the initial
selection of devices, the deployment algorithm can utilize
one of several sorting/selection algorithms such as first
come first served and greedy. Both of the techniques
as mentioned earlier have their in-grain complexities and
difficulties considering an environment comprising of a
diverse set of compute-capable resources [20]. However,
we consider providing a formal solution to the problems
mentioned above to be outside the scope of this paper and
intend to tackle it in our future work.

3.1 Network-Only Cost

Previous works have tried to model task deployment
algorithms which minimize the associated networking
cost [21]. The formal definition of such task assignment
strategies is to find an assignment which places A jobs
on N devices such that the associated network cost is
minimized. For the rest of the paper, we refer to such
algorithms as Network-Only Cost (NOC) algorithms. Let
Deconn (i, j) represent the cost of connectivity between the
devices D; and D; and Jeou, (i, j) denote the dependency
between the jobs J; and J;. Both Doy, and Jeon, are
square matrices of size N' x N. f{i) signifies the constraint
of assigning a particular job to a device. If two mutually
dependent jobs are deployed on two edge resources, they
will incur the network cost pre-existing between the two
resources to achieve completion.

With N devices/jobs, the search space of possible
assignments in NOC is A!. For example, in Fig. 3, the
assignment Dy — Ji; Do — Jy; D3 — J3; Dy — Ja;
Ds — Js5 has network cost 17, whereas, the assignment
Dy — Jy; Dy — Js; D3 — J3; Dy — Ji; Ds — J»
has cost 13. A naive NOC implementation would iteratively
search for the assignment with least possible cost in the
entire search space thus having the worst case complexity of
O(N!). On the other hand, NOC closely resembles the well-
known Quadratic Assignment Problem (QAP) [22]. QAP
generalizes minimal network cost assignment as:

NCpin = Z Jeonn (i, J) * Deopn (f (D), f())) ey
i,jeA
where A is set of all arcs in the graph.

However, QAP is an NP-hard problem, and its solution
can only be approximated by applying constraints. Com-
puting the optimal deployment for a problem space of 30
nodes using QAP may take up to a week on a computational
grid comprising of 2500 machines [23]. Branch-and-bound-
based algorithms such as Gilmore-Lawler Bound (GLB) or

Hungarian bounds can estimate the solution for small-sized
QAP problems. Since the job scheduling on an Edge-Fog
cloud may encompass computing an assignment of hun-
dreds of devices, a more efficient algorithm for finding an
optimal task assignment is needed.

3.2 Least Processing Cost First

As the Edge resources of the Edge-Fog cloud may not be
highly processing-capable, the task assignment algorithm
must also consider the associated processing cost of
deployment. We thus propose Least Processing Cost First
(LPCF), a task assignment solver which first minimizes
processing cost of the assignment and further optimizes the
network cost. LPCF algorithm flow is shown in Fig. 4 and
explained in detail below.

3.2.1 Optimize processing time

LPCF calculates the processing cost associated with each
possible assignment in the search space. The processing cost
minimization function used by LPCF is:

_ Jsize(i) B
PCpin = Z <m) Xij (2

i,jeA

where C denotes the overall cost function; Jyize and D ;.
are matrices of size 1 x N representing the job sizes and the
processing power of involved devices respectively. x;; is a
binary job assignment variable.

Equation 2 is an objective function of Linear Assignment
Problem (LAP) which unlike QAP, is polynomial [24].
Algorithms such as Kuhn-Munkres/Hungarian guarantee
an optimal solution for this problem in on3) (worst
case). At the first step of LPCF, the algorithm will output
job-to-resource deployment which has the least possible
processing cost. For example, the assignment D; — Jp;

Optimize Processing : Optimize Processing :
Time I Energy I

| ! I !
Search Space : Search Space :
Reduction I Reduction I

I I

! I | I

Least Network | Least Network| |
Cost ' Energy [

I I

I I

| Multi-Objective|

: Optimization | !

I

LPCF L __ _eLPCF_ !

Fig.4 LPCF and eLPCF algorithm

@ Springer

468

Ann. Telecommun. (2018) 73:463-474

D> — Jp; D3 — J3; D4 — Ja; D5 — Js in Fig. 3 has the
least processing cost of deployment, i.e., 5.97.

3.2.2 Problem search space reduction

As discussed in Section 2, the Edge and Fog layers in the
Edge-Fog cloud model groups the compute resources on
common attributes including processing capabilities. In this
step of LPCF, the deployment algorithm builds a problem
sub-space (much smaller than original problem space) by
interchanging jobs assigned to resources of equal processing
capabilities and interchanging resources of jobs requiring
similar processing. In doing so, the resulting deployments
retain the associated processing cost to that computed
in the first step. To illustrate, in Fig. 3, the processing
cost computed in first step of LPCF remains the same
if we interchange the jobs deployed on D; and D4 or
interchange the resources computing J, and Js5. Table 1
shows the reduction in problem search space achieved by
LPCF compared to a NOC deployment algorithm.

3.2.3 Selecting assignment with least network cost

In this step, LPCF iteratively computes the network cost
associated with each assignment in the reduced problem
search space and chooses the one with least network cost
following Eq. 1. It should be noted that as the optimal
assignment is updated at each iteration of the exhaustive
search of sub-search space, a branch-and-bound variant of
the algorithm can find the assignment within a time bound
for large search space sizes.

Overall the job deployment computed by LPCF is
assured to have the least associated processing cost and
an almost optimal network cost. Furthermore, LPCF holds
several other advantages over NOC-based algorithms.
The most fundamental of them is that unlike the NOC
assignment, LPCF guarantees an assignment in polynomial
time thus significantly reducing the deployment calculation
time. Moreover, as not all devices in the Edge-Fog cloud are
highly processing capable, LPCF also takes into account the
processing cost of the assignment.

3.3 Energy efficient LPCF

An added benefit of Edge cloud environments over a tradi-
tional centralized cloud is that such cloud platforms mitigate

Table 1 Problem search space reduction in LPCF

Topology size 5 10 15 30 60 100 150

NOC 5! 10! 15! 30! 60! 100! 150!
LPCF 13! >4! >5! >7! >8! >9!

@ Springer

the high energy requirements imposed by large-scale data
centers. Several researchers have shown mobile/edge com-
pute resources achieve a significant reduction in energy
usage without sacrificing on computational power due to
their smaller sizes and efficient power management algo-
rithms [16, 18]. However, such devices are often limited
by their battery capacity and power availability which must
also be considered by a deployment algorithm while placing
tasks for computations.

In this section, we provide an energy-efficient variant
of LPCF algorithm. Energy efficient LPCF (eLPCF)
minimizes the total energy utilized per deployment in Edge-
Fog cloud. We denote total energy usage of a device as
the sum of energy used for processing the task and for
communicating over the network. Formally, the model can
be represented as

Eiotal = Y _LEproc(i) + Enern(i)] 3)
ieN

where,

Eproc(i) = PC(i) % e Vie N 4)

Enetw (i) = NC(@G) xep Vie N o)

Here, NC (i) and PC (i) denote network and processing
cost of resource i in the deployment which has been earlier
formulated in Eqs. 1 and 2, respectively. Both NC (i) and
PC(i) are dependent on the job J being deployed on a
device D;. e, and e, signify networking and processing
cost-to-energy conversion metrics for a device D;, the
values of which are dependent on a resource’s hardware.
For example, e, denotes the energy utilized for transferring
a unit data via NIC. The value of e, thus varies for
chipset-to-chipset and for wired or wireless networking.
Similarly, e, denotes power dissipation of a CPU for
running one CPU-cycle and varies on CPU architecture
and power management algorithms. Generally, e, of certain
edge resources will be significantly lower than fog as mobile
and low powered devices use stringent algorithms to better
handle their power dissipation than workstations [25].

eLPCF is LPCF inspired algorithm which also minimizes
the energy cost along with processing and networking costs
for a deployment. The algorithm stages are depicted in
Fig. 4 and explained in detail below.

3.3.1 Optimize energy due to processing

The first step of eLPCF decouples E;y, into its two
counterparts and computes a deployment which minimizes
E proc as modelled in Eq. 4. E o is a linear function of
P C with resource dependent e,. This transforms the energy
model into a LAP, which is computed similarly as the first

Ann. Telecommun. (2018) 73:463-474

469

step of LPCF. eLPCF does not consider minimization of
E ety in the first step as network energy is dependent on
the task placement which is a QAP. eLPCF utilizes a Kuhn-
Munkres based algorithm which guarantees deployment
with least E ¢ in 0(n3).

3.3.2 Reducing problem space size

eLPCF builds on the assumption of Edge-Fog cloud
consisting of several devices with common processing,
energy and transport properties are executing jobs of similar
processing requirements. eLPCF exploits the resulting
homogeneity in resource’s hardware and the deployed
job graph to build its reduced sub-problem search space
(similar to Step 2 of LPCF). The algorithm uses the same
approach as discussed in Section 3.2.2 and swaps jobs on
devices with same E .. This leads to the formation of
several deployments with varied network dependencies but
maintains the lowest E . as computed in the first step. Itis
to be noted that as E . is a product of processing cost and
ep, deployments ensuring lowest Ej,,. does not, in turn,
ensure lowest processing cost.

3.3.3 Accounting energy due to networking

In this step, eLPCF computes E,, of all deployments
in sub-problem search space based on model in Eq. 5.
The algorithm then does an iterative search of the problem
space and chooses the assignment with least E},.;,, cost. As
mentioned in LPCF algorithm, a branch-and-bound variant
of this step can be deployed which can find the least possible
E; oy cost within a defined time bound.

3.3.4 Multi-objective optimization

The deployment computed by last step of eLPCF ensures
least E e and almost optimal E,.,. However, as total
energy used is heavily dependent on the cost-to-energy
metrics of resources itself (e, and ey,), the resulting
deployment can have induced high processing and network
cost which may severely affect overall completion time
of the application. Moreover, as eLPCF deployment is
based on the initial assignment which minimizes Epyoc,
the resulting sub-problem search space may exclude several
deployments with almost optimal E . and PC.

Therefore, in this step eLPCF combines the optimal
cost deployments computed by LPCF and optimal energy
deployments computed by the previous stage in a new
search space. eLPCF then tries to find the deployment with
optimal E;yq;, PC, and NC with more weight to Eyza;.
With this step, eLPCF ensures that the resulting deployment
not only has optimal energy cost but also does not impact
the application run-time on the cloud.

4 Evaluation

We now evaluate the computation complexity for deploying
jobs on several different Edge-Fog topologies. We have
designed and implemented an Edge-Fog cloud simulator in
Python (simulator code is available at [26]). The simulator
generates a network of Edge and Fog resources and
a job dependence graph based on several user-defined
parameters. Table 2 shows the default parameter values we
use for evaluating Edge-Fog cloud in this paper.

We further implement and integrate LPCF and eLPCF
task assignment solver in the Edge-Fog cloud simulator.
To compare, we measure the performance of LPCEF,
eLPCF, and two variants of NOC task assignment solver,
permutation-based and QAP-based. For the QAP-based
variant of NOC, we use an open-source implementation of
Kuhn-Munkres solver available from QAPLIB [22]. We use
Platypus [27] to implement the multi-objective optimization
function in Python.

4.1 Completion time analysis

We analyze the overall processing time for computing
an assignment by LPCF and NOC algorithms for several
problem sizes. We set the maximum completion time of
computation to one hour. The results are in Table 3.

It is evident from the results that LPCF performs
much better than both NOC-based solvers. For ~ 30
node topology, where both solvers are unable to find an
optimal assignment within the time limit, LPCF computes
its assignment in under a second. For large topologies of

Table 2 Default parameter values of Edge-Fog cloud simulator

Properties Value
Total number of devices/jobs Experiment
specific

60% of total
40% of total

Number of Edge devices
Number of Fog devices

Processing power of Edge resources 2-5
Processing power of Fog resources 7-9
Connection density in Edge layer (0-1) 0.2
Connection density in Fog layer (0-1) 0.6
Connection density between 0.5
Edge and Fog layer (0-1)
Lowest job size in job pool 2
Highest job size in job pool 6
Inter-dependence density between jobs (0-1) 0.2
Processing energy metric (e,) of Edge 30-70
Processing energy metric (e),) of Fog 60-180
Networking energy energy metric (e,,) 50

@ Springer

470

Ann. Telecommun. (2018) 73:463-474

Table 3 Optimal assignment computation time

Topology size = 5 10 15 20 30 40 50 60 100 150
NOC permutation solver 0.068 s 23m20s >1h >1h >1h >1h >1h >1h >1h NA
NOC QAP solver 0.026 s 36.273 s 3m22s 18m38s >1h >1h >1h >1h >1h NA
LPCF 0.0005s 0.002 s 0.044 s 0.073 s 1.9s 13.229s 51.686s 2m36s 12m24s >1h
eLPCF 0.0011s 0.0116s 0.08 s 0.126 s 328s 22.06ls 1Iml4s 3m52s 24m43s >1h

~ 150 nodes, LPCF exceeds the maximum allotted time
for the computing an optimal assignment. The primary
reason for this increased computation time is due to the
large size of the reduced search space size in LPCF. The
current implementation of LPCF iteratively searches for the
optimal assignment in reduced problem space which can
be costly. However, a branch-and-bound variant of LPCF
can significantly reduce the search time thus reducing the
overall computation time.

We also see from the results that eLPCF performs
significantly better than both NOC-based solvers. However,
eLPCF computes its deployment in over ~ 1.5 to 2
times the total time achieved by LPCF. We attribute this
increase in time to eLPCF computation flow also shown
in Fig. 4. Essentially, eLPCF runs two LPCF algorithms in
parallel and then combines their results via multi-objective
optimization. The multi-objective optimization function
combines the search spaces for both parent branches, both of
which have varying completion time of its own. Waiting for
both branches to complete their execution adds significant
delay to overall run-time of eLPCF algorithm.

4.2 Comparative study of associated costs

In this section, we analyze and compare the performance of
NOC, LPCF, and eLPCF algorithms for several attributes. It
must be noted that we do not show the performance patterns
of permutation-based NOC solver as the NOC-QAP solver
consistently outperformed the former. Throughout the rest
of the paper, we refer to NOC-QAP solver as NOC solver.

4000} —nog ,, 3000} 800
LPCF y 25001 5% |
- — Minimum bound 4 k7] 400
2 30007 |~ Maximum bound 4 8 2000 40 45
O x
x 5 1500
g 2000 g
= % 1000
=z

1000

Network cost Figure 5a compares the network cost of task
deployment for different topology sizes between LPCF
and NOC QAP task assignment solver. The minimum and
maximum bounds are obtained by choosing the A/ smallest
and largest link costs in the Edge-Fog cloud resource graph
respectively. It should be noted that the minimum/maximum
cost depicted in the figure might not be a valid assignment
as it does not consider job dependencies. From the figure,
we observe that the task deployment computed by LPCF
has an associated network cost within 10% range of the
optimal value computed by the NOC. The performance of
LPCEF is highly impressive considering that, unlike NOC,
the final deployment computed by LPCF is based upon the
processing optimized assignment. Furthermore, as observed
from Table 3, the NOC solver requires significantly larger
time for calculating a deployment when compared to LPCF.

To level the playing field, we implement a branch-
and-bound variant of NOC solver which approximates the
best-possible solution within a pre-specified time limit. We
then limit the computation time of NOC to that of LPCF
and eLPCF and plot the associated network costs of the
optimal assignments found by these algorithms in Fig. 5b.
We observe that for large topologies, both LPCF and eLPCF
achieves a lower associated network cost when compared to
NOC solver. We further notice that both LPCF and eLPCF
algorithms achieve quite similar performance in network cost
as both algorithms optimize network cost in their search space.

Processing cost Figure Sc compares the associated process-
ing cost of assignments computed by the three solvers. As

—NOC
LPCF
-+ eLPCF|

Processing Cost

5 20 40 60 80 100
Topology Size
(a) Network cost analysis

Fig.5 Edge-Fog cloud network and processing cost analysis

@ Springer

20 40
Topology Size 20 40 60 80 100

(b) Network cost analysis bounded by
LPCF run time

60 80 100
Topology Size

(c) Processing cost analysis

Ann. Telecommun. (2018) 73:463-474

471

unlike NOC, the assignment computed via LPCF is opti-
mized for processing cost, the associated processing cost
of the assignment computed by LPCF is always lower than
that computed by NOC. Interestingly, for all topology sizes,
eLPCF provides an assignment which has ~10% higher
processing cost than LPCF. This is because eLPCF opti-
mizes its deployment on E ., which favors Edge resources
than Fog due to their lower e, metric. As Edge resources
have a lower processing power than Fog, the total processing
cost involved is slightly higher in eLPCF deployment.

Energy cost Figure 6a compares the associated energy cost
of assignment computed by the three solvers. As eLPCF
optimizes the assignment on both processing and network
cost, it achieves ~10% reduction in E;,;,; when compared
to LPCF and NOC-based deployments for all topology
sizes. Figure 6b shows the percentage reduction in energy
cost of Edge and Fog resources in eLPCF deployment when
compared to LPCF. We see an average of 20% energy
reduction in Edge layer and around 8% in Fog. eLPCF
provides efficient energy reduction as resources at the Edge
are more energy constrained than Fog and require better
energy management.

5 Discussion

In this section, we discuss several open questions pertaining
to deployment and workings of Edge-Fog cloud in real
environments.

Q1.

Which node is responsible for running the assign-
ment solver?

Even though the proposed deployment algorithms require
a centralized controller for managing their execution, how-
ever, the actual execution can be distributed and is not
dependent on any single node. One node (resource in Edge-
Fog cloud or an external broker) needs to be able to get
the snapshot of the system state (availability of nodes and

Fig.6 Edge-Fog cloud energy
cost analysis

Energy Cost

©

costs of links). We assume this snapshot to remain con-
sistent throughout deployment calculation which justifies
the low run-time requirement of the prescribed algorithm.
For example in LPCEF, calculating the individual assignment
permutations for processing or networking costs in steps
1 and 3 can be distributed to other nodes or can be per-
formed by the controller. The LPCF algorithm can thus be
executed by any of the nodes in the system, whether an
Edge node or a Fog node. We do not consider the cost of
running the algorithm in our evaluation since the overheads
are similar for all LPCF, eLPCF and NOC (namely obtain-
ing the snapshot and iterating through the permutations).

Q2. How does the ratio between Edge and Fog
resources impact the associated cost of job deploy-
ment?

We try to analyze the effects of Edge/Fog resource ratios
on the overall cost of job deployment. The question is of
utmost importance as several proposed Edge cloud models
consider the architecture to be composed majorly of one
type of computing resources. To find the optimal ratio
between Edge and Fog resources, we vary their proportions
between 20 to 80% out of 100 computing resources in the
cloud. We further measure the impact of their ratios on
processing, network, and energy cost of job deployment
using the eLPCF algorithm. We ensure that the job network
deployed on all the topologies remains consistent. The
results of the analysis are shown in Fig. 7.

From Fig. 7a, we observe that as we increase the number
of Edge resources in the cloud, the processing cost of the
deployment increases linearly. We account this behavior to
the lower processing power of Edge resources as compared
to Fog. As we increase the number of lower-processing
capable resources in the network, the deployed jobs require
a longer time to complete. The effects are slightly different
for associated network cost. In Fig. 7b we notice that
the network cost initially grow with an increase in the
number of Edge resources but after a certain threshold
(around 60%), it starts to decrease. Up till the threshold,
the overall network cost is impacted by the higher cost

x10* 230
LPCR o 25 Fog
2t|--eLPCF 2
£20
©
@
° 15
S
QL
T10F T
- N
o ____‘...r' 5
5 20 40 60 80 100 5 20 40 60 30 00

Topology Size
(b) Energy cost decrease
between Edge and Fog

Topology Size

(a) Energy cost analysis

@ Springer

472

Ann. Telecommun. (2018) 73:463-474

o1

120 3200 16710
@ -
8 00 § 3000 215
ol < 2800 <
P S 2600 g1
o 2 2400 w13
o

60 2200 1.2

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Edge Cover Edge Cover Edge Cover

(a) Processing cost variation

(b) Network cost variation

(c) Energy cost variation

Fig.7 Impact of Edge and Fog resource ratios on processing, network, and energy costs

inter-connections between Edge and Fog layers. Once past
the threshold, the number of Edge resources far exceed
that to Fog which replaces the inter-layer connections with
lower-cost intra-Edge network connections, thus reducing
the overall network cost.

In Fig. 7c, we observe that the energy utilization trend is
somewhat similar to that of the network cost. As we increase
the number of Edge resources, the associated energy used
increases rapidly until it reaches a plateau. As explained in
Section 3.3, the energy utilization is a composition of energy
consumed in processing and networking. As we increase
the number of Edge resources, both the energy consumed in
processing by deploying jobs on lower powered resources
and usage of inter-layer connections impacts the overall
energy usage. After a certain number of Edge resources,
the energy usage stabilizes as even though the energy
due to processing increases, the energy consumed due to
networking decreases due to the utilization of lower-cost
network links.

Q3. How well should the devices in the Edge-Fog cloud
be connected to each other?

As discussed in Section 2, the Edge layer in Edge-Fog has
opportunistic, small-cost connections within itself whereas
the Fog layer has dense network connections. The inter-
layer connections between the Edge and the Fog are much
higher cost and spans multiple hops. We try to find the
optimal connection density of each layer (and inter-layer

340

- Edge
320 —Fog
- \ —-Edge-Fog
8300
(&) N,
x -~
5 280 N ™ -
- I
5 -~
2 260 ~ .
~
240 -~
S~ -~
-~ .
220 =
0.2 0.4 0.6 0.8

Device Connection Probability

Fig. 8 Network cost variation with inter-device connection densities

@ Springer

connections as well) such that the resulting assignment has
low associated network cost. We increase the connection
density of each layer from 20 to 80% and plot the changes
in network cost of assignment computed by LPCF in Fig. 8.

As we increase the connection density of Edge, Fog and
interconnections we see a decrease of ~21, ~9, and ~17%
in network cost, respectively. The inter-layer connections
play a major part in resulting network cost; increasing their
density impacts the overall cost much more. We can infer
that deploying jobs in an Edge-Fog cloud which have well-
connected devices in edge layer and dense connections
between edge and fog layers, the overall cost of deployment
is significantly reduced.

Q4. Do the properties of job graph deployed on the
Edge-Fog cloud also affect the overall cost?

In Fig. 9, we change the interdependence of the job graph
deployed on the Edge-Fog cloud from 10 to 100% and
calculate the network cost associated with the deployment.
We then deploy the job graph on several topology sizes of
Edge-Fog cloud.

The results clearly show that higher dependence between
the jobs result in a higher network cost. This is because
the dependence links between the sub-jobs are mapped
to the links between the devices of the Edge-Fog. Larger
dependence links map to a mesh of device linkages thus

Network Cost

10"

0.2 0.4 0.6 0.8 1
Job Dependence Probability

Fig.9 Effect of job dependence on network cost of assignment

Ann. Telecommun. (2018) 73:463-474

473

leading to an increased network cost. It can also be seen
from the figure that after a particular job dependency value,
the associated network cost of assignment stabilizes. This
is primarily because after a particular job inter-dependence
all heavy links of the device graph are part of the computed
assignment and adding more links does not change the
overall network cost significantly.

6 Related work

Several cloud abstractions have been proposed in the
past which aim to bring the computation power near
the data generators and consumers. Cloudlets [11, 12]
propose a small-scale, localized cloud installed at the edge
of the network along with the centralized cloud and is
based on virtualization technologies. Several other works
have explored combining stable peer-resources as nano
data centers, micro clouds, community clouds, etc., for
compute/storage tasks [28-31].

Several researchers built on the previous architectures
and proposed installing a cloud abstraction of existing
cloud model at the network edge. Following the Fog cloud
characteristics proposed by CISCO [2], Bonomi et al. [32],
and Yannuzzi et al. [3] show that the fog is the appropriate
platform for loosely coupled, computationally intensive IoT-
based applications, such as connected vehicles and smart
cities. Hong et al. [4] provides a programming model and
API for developing applications on the Fog cloud. On the
other hand, unlike installing managed compute resources
as Fog devices to process cloud applications, Lopez
et al. [5] propose a semi-centralized cloud architecture,
Edge cloud, composing of volunteer-based, user-centric
compute resources. Likewise, Ryden et al. [33] proposed a
dispersed cloud, Nebula, which utilizes volunteer resources
for running data-intensive tasks. The authors discuss
the effectiveness of their approach by deploying Map-
reduce jobs on available resources. Our work differs from
all discussed approaches as unlike other architectures,
wherein a central entity schedules and processes several
application tasks; Edge-Fog cloud proposes an entirely
decentralized computing mechanism. Khan et al. [34]
introduced federated, decentralized cloud models composed
of community-driven computation resources but unlike
proposed Edge-Fog cloud, they do not consider operator
managed cloud resources to be part of the architecture.

Researchers have also proposed several deployment
algorithms tackling Edge/Fog models proposed above.
Most of the approaches utilize multi-objective optimization
concepts to minimize network and deployment cost much
similar to ours [35, 36]. Ahvar et al. [36] minimize the
network cost of connectivity between data centers which
are hosting the VMs involved in the computation. On the

other hand, Silva et al. [35] model the VM deployment
problem on Edge clouds as a generalization of the bin-
packing problem and propose greedy heuristics to provide
a near-optimal solution. However, unlike the approaches
discussed above, our proposed LPCF and eLPCF algorithms
re-model the deployment algorithms while optimizing one
of several possible attributes. The algorithms cleverly avoid
optimization of NP-hard problems and ensure a multi-
objective optimized deployment in polynomial time.

Several researchers have proposed to integrate energy-
aware task deployment mechanisms in edge networks.
Authors have proposed placement algorithms which com-
pute a task deployment maintaining low energy require-
ments [37, 38]. However, the works discussed above were
developed while considering a semi-centralized edge cloud
model which focuses towards maintaining energy efficiency
in the central data center. Liu et al. [39] propose an energy
efficient scheduler over distributed grid which incorpo-
rates deadline constraints of tasks. The authors discuss a
scheduler design which places tasks over the grid while con-
sidering several costs. Mao et al. [40] develop a computation
offloading strategy which considers execution cost and its
effect on energy consumption of resources in Mobile Edge
Clouds (MEC). However, to the best of our knowledge,
eLPCF is first-of-its-kind optimization algorithm which
optimizes all major attributes of an Edge resource, i.e.,
processing, transport, and energy usage.

7 Conclusion

In this paper, we proposed the Edge-Fog cloud, a
decentralized cloud model for handling computation-
based, high volume and distributable data such as that
generated by IoT. The model builds on the existing Edge
and Fog cloud approaches and provides data resilience
through a centralized data store. We also provided a
novel task allocation mechanism for Edge-Fog cloud
which significantly reduces the deployment time without
sacrificing the associated cost when compared to related
approaches. We also incorporate the energy requirements of
cloud resources to compute an allocation with least possible
energy footprint. Further, we address several questions
which might impact the real-world implementation of Edge-
Fog cloud.

Funding information This research was funded by the joint EU FP7
Marie Curie Actions Cleansky Project, Contract No. 607584.

References

1. Broadband by the numbers, ‘https://www.ncta.com/broadband-
by-the-numbers’. Accessed: 22 Apr 2015

@ Springer

https://www.ncta.com/broadband-by-the-numbers
https://www.ncta.com/broadband-by-the-numbers

474

Ann. Telecommun. (2018) 73:463-474

10.

11.

12.

13.

14.

15.
16.

17.

18.
19.

20.

21.

22.

23.

. CISCO (2015) Cisco fog computing solutions: unleash the power

of the internet of things (whitepaper). [Online]

. Yannuzzi M et al (2014) Key ingredients in an iot recipe: fog

computing, cloud computing, and more fog computing. In: IEEE
CAMAD

. Hong K et al (2013) Mobile fog: a programming model for large-

scale applications on the internet of things. In: ACM SIGCOMM
workshop on mobile cloud computing

. Garcia Lopez P et al (2015) Edge-centric computing: vision and

challenges. SIGCOMM Comput Commun Rev 45(5):37-42

. Anderson DP et al (2002) Seti@home: an experiment in public-

resource computing. Commun ACM 45(11):56-61

. Beberg AL et al (2009) Folding@home: lessons from eight years

of volunteer distributed computing. In: IEEE IPDPS

. Chandra A, Weissman J, Heintz B (2013) Decentralized edge

clouds. IEEE Internet Comput 17(5):70-73

. Islam S, Grégoire J-C (2012) Giving users an edge: a flexible

cloud model and its application for multimedia. Futur Gener
Comput Syst 28(6):823-832

Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile
edge computing—a key technology towards 5G. ETSI white paper
Verbelen T et al (2012) Cloudlets: bringing the cloud to the mobile
user. In: ACM workshop on mobile cloud computing and services
Satyanarayanan M, Bahl P, Caceres R, Davies N (2009) The case
for VM-based cloudlets in mobile computing. In: IEEE pervasive
computing

Cordero IC, Orgerie A-C, Morin C (2015) GRaNADA: a network-
aware and energy-efficient PaaS cloud architecture. In: IEEE
international conference on green computing and communications
(GreenCom)

Mohan N, Kangasharju J (2016) Edge-fog cloud: a distributed
cloud for internet of things computations. In: Proceedings of CloT.
IEEE

BitCoin Mining Wiki, https://en.bitcoin.it/wiki/Mining

Roman R, Lopez J, Mambo M (2018) Mobile edge computing,
Fog et al.: a survey and analysis of security threats and challenges.
In: Future generation computer systems. Springer

CISCO (2015) Fog computing and the internet of things: extend
the cloud to where the things are (whitepaper). [Online]
UbiSpark project, http://ubispark.cs.helsinki.fi/

Mohan N, Zhou P, Govindaraj K, Kangasharju J (2017) Managing
data in computational edge clouds. In: Proceedings of the
workshop on mobile edge communications (MECOMM ’17).
ACM

Xu J, Fortes JAB (2010) Multi-objective virtual machine
placement in virtualized data center environments. In: Green
computing and communications (GreenCom), 2010 IEEE/ACM
international conference on cyber, physical and social computing
(CPSCom), Hangzhou

Shakshuki E, Haubenwaller AM, Vandikas K (2015) Computa-
tions on the edge in the internet of things. Procedia Comput Sci
52:29-34

A quadratic assignment problem library, http://anjos.mgi.polymtl.
ca/qaplib/. Accessed: 30 Sep 2010

Yurko MC (2010) A parallel computational framework for solving
quadratic assignment problems exactly

@ Springer

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Martello S, Minoux M, Ribeiro C, Laporte G (2011) Surveys in
combinatorial optimization, vol 31. Elsevier, Amsterdam

List of power dissipation for CPUs, en.wikipedia.org/wiki/List_of
CPU_power_dissipation_figures

Edge-Fog simulator and LPCF solver,
nitinder-mohan/EdgeFogSimulator
Platypus: multi-objective optimization in Python, http://platypus.
readthedocs.io/en/latest/index.html

Kurniawan IP, Febiansyah H, Kwon JB (2014) Cost-effective
content delivery networks using clouds and nano data centers. In:
Ubiquitous information technologies and applications. Springer,
pp 417-424

Shi C et al (2012) Serendipity: enabling remote computing among
intermittently connected mobile devices. In: ACM MobiHoc

Li Y, Wang W (2014) Can mobile cloudlets support mobile
applications? In: IEEE INFOCOM 2014 - IEEE conference on
computer communications, pp 1060-1068

Mtibaa A, Harras KA, Fahim A (2013) Towards computational
offloading in mobile device clouds. In: 2013 IEEE 5th interna-
tional conference on cloud computing technology and science,
vol 1, pp 331-338

Bonomi F et al (2014) Fog computing: a platform for internet
of things and analytics. In: Big Data and Internet of Things: a
roadmap for smart environments. Springer, pp 169-186
Anderson T et al (2014) A brief overview of the nebula
future internet architecture. SIGCOMM Comput Commun Rev
44(3):81-86

Khan AM, Navarro L, Sharifi L, Veiga L (2013) Clouds of
small things: provisioning infrastructure-as-a-service from within
community networks. In: IEEE 9th international conference on
wireless and mobile computing, networking and communications
(WiMob), Lyon

Silva P, Perez C, Desprez F (2016) Efficient heuristics for placing
large-scale distributed applications on multiple clouds. In: 16th
IEEE/ACM international symposium on cluster, cloud, and grid
computing, CCGrid

Ahvar E, Ahvar S, Crespi N, Garcia-Alfaro J, Mann ZA (2015)
NACER: a network-aware cost-efficient resource allocation
method for processing-intensive tasks in distributed clouds. In:
IEEE 14th international symposium on network computing and
applications, (NCA)

Gai K et al (2016) Dynamic energy-aware cloudlet-based mobile
cloud computing model for green computing. In: 2016 Elsevier
Journal of Network and Computer Applications, vol 59

Gai K et al (2016) Energy-aware optimal task assignment for
mobile heterogeneous embedded systems in cloud computing. In:
2016 IEEE 3rd international conference on cyber security and
cloud computing (CSCloud)

Liu C, Qin X, Kulkarni S, Wang C, Li S, Manzanares A, Baskiyar
S (2008) Distributed energy-efficient scheduling for data-intensive
applications with deadline constraints on data grids. In: 2008
conference proceedings of the ieee international performance,
computing, and communications conference

Mao Y, Zhang J, Letaief KB Dynamic computation offloading for
mobile-edge computing with energy harvesting devices. IEEE J
Sel Areas Commun

https://github.com/

https://en.bitcoin.it/wiki/Mining
http://ubispark.cs.helsinki.fi/
http://anjos.mgi.polymtl.ca/qaplib/
http://anjos.mgi.polymtl.ca/qaplib/
en.wikipedia.org/wiki/List_of_CPU_power_dissipation_figures
en.wikipedia.org/wiki/List_of_CPU_power_dissipation_figures
https://github.com/nitinder-mohan/EdgeFogSimulator
https://github.com/nitinder-mohan/EdgeFogSimulator
http://platypus.readthedocs.io/en/latest/index.html
http://platypus.readthedocs.io/en/latest/index.html

	Placing it right!: optimizing energy, processing, and transport in Edge-Fog clouds
	Abstract
	Abstract
	Introduction
	Edge-Fog cloud
	Architecture
	Edge layer
	Fog layer
	Data store

	Benefits of the Edge-Fog cloud

	Task deployment on Edge-Fog cloud
	Network-Only Cost
	Least Processing Cost First
	Optimize processing time
	Problem search space reduction
	Selecting assignment with least network cost

	Energy efficient LPCF
	Optimize energy due to processing
	Reducing problem space size
	Accounting energy due to networking
	Multi-objective optimization

	Evaluation
	Completion time analysis
	Comparative study of associated costs
	Network cost
	Processing cost
	Energy cost

	Discussion
	Related work
	Conclusion
	Funding information
	References

