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ABSTRACT
Edge computing provides an attractive platform for bringing data
and processing closer to users in networked environments. Sev-
eral edge proposals aim to place the edge servers at a couple hop
distance from the client to ensure lowest possible compute and
network delay. An attractive edge server placement is to co-locate
it with existing (cellular) base stations to avoid additional infrastruc-
ture establishment costs. However, determining the exact locations
for edge servers is an important question that must be resolved
for optimal placement. In this paper, we present Anveshak1 , a
framework that solves the problem of placing edge servers in a
geographical topology and provides the optimal solution for edge
providers. Our proposed solution considers both end-user appli-
cation requirements as well as deployment and operating costs
incurred by edge platform providers. The placement optimization
metric of Anveshak considers the request pattern of users and ex-
isting user-established edge servers. In our evaluation based on
real datasets, we show that Anveshak achieves 67% increase in user
satisfaction while maintaining high server utilization.
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1 INTRODUCTION
Novel applications, such as the Internet of Things (IoT) and aug-
mented and virtual reality, have exponentially increased the amount
of data generated and transported over the network. To mitigate
the response time and handle large-scale data analysis closer to
the users and data generators, the researchers have proposed edge
clouds. As the name suggests, edge cloud is a consolidation of com-
pute servers deployed very close to end user with limited compute,
storage and network capability [1, 12, 22]. The central objective
of edge clouds is to ensure low network delays for latency-critical
applications such as autonomous driving, drones, augmented real-
ity, etc. [10]. Such a requirement can be fulfilled by exploiting the
physical proximity between the edge server and the client.

Existing studies focus on optimal utilization of the edge server
by end-user requests, assuming that the server has been placed
already [2, 18]. Little to no attention has been paid to model the edge
server deployment problem along with its placement constraints.
There are similarities between the edge server placement problem
and replica server deployment problem in CDNs, for which several
solutions exist in the literature [14, 15, 17]. Akin to CDN cache
servers placement problem, edge server placement must also ensure
consistent connectivity to end users while minimizing the cost of
such a deployment. However, we argue that despite similarities in
their objectives, the two placement problems are essentially quite
different. Unlike replica servers, an edge server is more likely to
cater to several compute requests of local relevance which does not
require high volume data transfer over the network. In such a case,
the availability and network latency associated with an edge server
have greater priority over link usage and network bandwidth.

Several options for deploying edge servers have been proposed
in the literature. Mobile Edge Clouds (MEC’s), defined by European
Telecommunications Standards Institute (ETSI), aim to co-locate
edge servers with cellular base stations set up by telecom providers
operating in the area [1]. On the other hand, researchers have also
proposed to utilize non-conventional compute resources, such as
WiFi access points, smart speakers, network switches, etc., to sup-
port computation capability at the network edge [9]. Unlike MEC,
these resources are owned and managed by end-users. Even though
the proposed models differ in deployment requirements, manage-
ment, capacities, etc.; we envision that the models are independent
of the protocols, software stacks and user applications that will
drive the edge cloud platform as a whole.

In this paper, we present Anveshak, a deployment framework
which enables edge service providers to select optimal sites for edge
server placement. Our contributions are as follows. (1) Anveshak
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Figure 1: Abstraction of possible edge servers and users in a
geographical area

considers the availability and density of unmanaged edge resources
in the area to steer the deployment location of a managed server.
The novelty lies in predicting future deployments of user-owned
edge servers and incorporating it in current edge server deploy-
ment problem. (2) We identify the areas of higher preference for
deployment by observing the mobility pattern of the users in the
area. We consider previous requests issued by the users to prioritize
locations with a higher probability of edge service requests, thereby
optimizing user satisfaction. (3) We extensively simulate Anveshak
on real-world datasets collected over the city of Milan, Italy. Our
evaluation shows that Anveshak increases the user request satisfac-
tion by 67% while maintaining an average server utilization of 83%.
To the best of our knowledge, there exist no previously known stud-
ies which consider server provisioning in a scenario where multiple
edge cloud models coexist and operate in the same physical space.

The rest of the paper is organized as follows. Section 2 discusses
the physical edge cloud abstraction composing of multiple edge
cloud models in same space. Section 3 provides an in-depth de-
scription of model, framework design and optimization problem of
Anveshak. We implement Anveshak and evaluate its performance
on real datasets in Section 4. Section 5 reviews the related work.
We conclude our paper in Section 6.

2 PHYSICAL EDGE CLOUD NETWORK
Researchers have proposed several edge cloud architectures to sup-
port the use-cases present in real world [2]. Mobile Edge Com-
puting (MEC) is a telecommunication-vendor centric edge cloud
model wherein the deployment, operation, and maintenance of
edge servers is handled by an ISP operating in the area [10]. The
model has garnered interest from standardization bodies [6]. On the
other hand, researchers have proposed a user-centric view where a
user can deploy computationally-capable network devices local to
their surroundings. The proliferation of smart speakers, home au-
tomation hubs, intelligent wireless access points provides evidence
to the adoption of such edge architectures [16]. Unlike the MEC re-
sources, the user-centric edge resources are self-managing in nature

and are less likely to have consistent network and computational
availability.

Both above models consider different deployment options from
in-network placement at aggregation level to opportunistic consol-
idation composed of small compute hubs. However, we consider
a holistic view of a physical space where several edge servers be-
longing to different cloud models and technologies coexist. As each
model brings in its advantages and drawbacks, the coexistence and
cooperation between available edge servers will be critical to effi-
cient computation and context availability in future. Figure 1 shows
the physical abstraction of edge servers and users coexisting in a
geographical area. The model is a two-tier hierarchy of edge servers
in a physical space alongside with users, the details of which are
explained below.

Users: The subscribers of edge cloud in a region act as the source
for all compute requests. Previous research in user mobility has
shown that user request distribution in any area is temporally and
behaviorally influenced [11]. For example, user request density is
more populated in city centers than suburban areas. Such request
patterns profoundly affect the utilization of edge server deploy-
ments in any region. An efficient server deployment algorithm
must consider the origin and pattern of user requests in a geograph-
ical region to allocate server resources for optimal utilization and
availability.

User-managed Edge: This layer is composed of edge servers
which are managed by individual entities for local usage and are
likely to be deployed in households, small workplaces, etc. These
servers utilize WiFi (short-range) networks to interact with end-
user. The user-managed edge servers are responsible for handling
computational requests from a small set of clients and are thus
limited in computation power. However, they provide a very local
context to user-generated request. The availability of such servers
is highly dependent on user residency and mobility itself. For ex-
ample, densely-populated residential areas and tourist attraction
spots have a higher availability of WiFi access points than in indus-
trial/office areas [19].

Service Provider-managed Edge: The top-most layer of the
edge server abstraction model is composed of service-provider man-
aged edge servers. Such servers are co-located with cellular base
stations set up in the region due to their strategic locations and
constant ISP management. An edge server physically co-located
at the base station significantly reduces the operation and mainte-
nance costs involved for specifically setting up a location to house
a server. Unlike user-managed edge, the edge servers managed by a
third-party service provider have a higher computational capability
and wider-area coverage. These edge servers utilize the network
fabric and capability offered by the cellular base station to connect
with users and amongst themselves. ISPs can also remotely manage
and maintain these edge servers by utilizing their existing set up
infrastructure.

3 ANVESHAK : MODEL AND DESIGN
The problem of deploying edge servers in a physical space boils
down to ensuring low latency, proximity and high availability to
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Figure 2: The overall workflow of Anveshak.

clients. Further, installing a server at any location incurs a combina-
tion of CAPEX (purchase and deployment) and OPEX (maintenance,
security) costs to the service provider. To maximize the profits, it
is in best interests of the provider to select edge sites intelligently
such that the deployed server has maximum impact and utiliza-
tion. Anveshak enables service providers to find optimal edge sites
in a large metropolitan area. It selects a prioritized list of cellular
base stations within an area which can be augmented with an edge
server. Through its insightful utilization of pre-existing user request
patterns and edge servers in the area, Anveshak ensures that the
selected edge site has maximum reachability and high user request
satisfaction.

Figure 2 shows the workflow of Anveshak. We categorize the
framework’s functioning in three phases, user mapping, user edge
incorporation and edge location selection.

Phase 1: User Mapping to Physical Space
The design of Anveshak is based on the assumption that the edge
service provider works in conjunction with the ISP to ensure op-
timal installation of edge servers on ISP-managed base stations.
Therefore, the service provider will have access to the user request
database from ISPs operating in the region. These request databases
can include Call Detail Records (CDR), message requests, internet
usages etc. which can be augmented to form user request pattern.
Anveshak utilizes the dataset of communication requests by the
clients of the ISP in its first phase. The objective of the framework
in this phase is to identify areas of high communication requests
in the geographical region as these areas have a higher probability
of receiving edge compute requests.

Anveshak begins the phase by dividing the space S into evenly
spaced square grids2 (shown in Figure 3a). Further, Anveshak maps

2The grid size and total number can be tweaked to allow at least one-to-one mapping
between grid and base station.

(a) Dividing S in Grid (b) Mapping User Requests

(c) DBScan Request Clusters (d) User Request Heatmap

Figure 3: Anveshak Phase 1.

the user communication request originating from a location in
S , as shown in Figure 3b. The user requests are normalized and
averaged over a time duration of one to several months such that
temporal outliers in the dataset (user gatherings, fairs, concerts etc.)
are ironed out. Once the framework has all user requests mapped
to point set P in S , it clusters them based on inter-request distances
and density3. The clustering algorithm identifies regions with dense
and frequent user requests in S by selecting a minimum number
of request points withinMinPts radii of an existing base station in
that area. Further, the algorithm also specifies ϵ which defines the
minimun required distance between two points to classify them
as part of a single cluster. Figure 3c presents the user requests
clustered together in S . The choice of ϵ andMinPts is key to efficient
clustering in Anveshak and can be easily adjusted by the service
provider to best suit deployment requirements.

Following request clustering, Anveshak maps arbitrary cluster
shapes to the corresponding grids in S (shown in Figure 3d). The
density of a cluster is normalized to generate grid-based heatmap of
the region. In doing so, Anveshak can handle overlapping clusters,
small dense clusters, and clusters of various shapes more efficiently
than related approaches. Furthermore, this enables the framework
to overcome the inefficiencies of the clustering algorithm used.

The density heatmap and its location coordinates is fed into the
next phase of Anveshak.

Phase 2: User Edge Incorporation
As discussed in Section 2, compute-capable network devices such
as smart speakers, home automation, smart WiFi routers, etc. have
become quite popular and are expected to develop into $4.2 billion

3Even though numerous clustering algorithms have been proposed and used in related
works [3], we adopt Density-Based Clustering Essentials (DBScan) [5] in Anveshak.
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market by 2022 [16]. Such smart devices can resolve relatively small
computations locally to the clients and will be preferred by users
over a service provider-managed server in the same location. The
availability of these devices significantly impacts the utilization of
deployed edge server in an area as the number of user requests
which will be offloaded to a managed edge server will notably
reduce. In its second phase, Anveshak integrates the current and
future availability of user-managed edge servers by the end users.
It does so by building on the assumption that areas with high
density of WiFi access points (APs) are more likely to have a future
deployment of user-managed edge servers. The inclusion of this
phase is key to the novelty of Anveshak over related works.

Anveshak merges all user requests from grid Gi ∈ S such that
user requests in the same clusterC are distributed over several grid
groups. It further exploits already existing datasets of WiFi APs in
space S (such as Wigle [19]) and maps them on the same grid Gi .
Based on the density of existing deployment, Anveshak revises the
user request heatmap of S where grids with denser WiFi availability
receives negative request density adjustment. The resulting map
prioritizes locations with a lower number of local edge deployments
as the probability of clients to request a provider-managed edge
server is higher. The grid locations GL is fed into the next phase of
Anveshak.

Phase 3: Edge Location Selection
In its final phase, Anveshak increasingly orders grids from Phase
2 on ratio of user request density. The set of users U within a
grid Gi can be served by x possible edge locations (existing base
stations) denoted by LGi = l1, . . . , lx 4. Anveshak ensures one-hop
connectivity between users and deployed server by selecting a
location lk which is best reachable for majority of users in Gi . Let
Rmax
(u,Sl )

be the maximum tolerated network distance betweenU and
Sl where l ∈ LGi .

Rmax
(ul ,Sl )

=max[u − Sl ] ∀u ∈ U (1)

Based on the requirements and number of servers to be placed in
S , Rmax of Sl will specify the cluster boundary for satisfying u
and is influenced by the connectivity range of the existing base
station. Further, let α denote the maximum cost incurred to access
the server Sl by users in the cluster. Thus, the network cost (n(S,u ) )
of a cluster can denoted as

n(S,u ) = α ∗ R (S,u ) (2)

In order to estimate the network costs between users and server
location within a grid, the model utilizes a coordinate based net-
work latency approximation technique [13]. Anveshak attempts to
minimize the latency to one-hop between majority of users and
deployed server Sl within gridGi based on Equation 1. Further, the
users in same grid which do not fall under direct connectivity of
Sl are reachable within 2-3 hops by utilizing the internal network
between base stations.

Let xl denote a binary decision variable which is 1 if we locate Sl
in candidate location l ∈ LGi . Therefore, the optimal server location

4In case there exists only single base station within a grid, it becomes the only candidate
for server deployment for that grid

(a) User requests in
100x100 grid

(b) User-managed
WiFi access points

(c) Base station den-
sity

Figure 4: Distribution of normalized user communication re-
quests, WiFi access points and Telecom Italia’s cellular base
stations over Milan, Italy

for an arbitrary user u can be defined as,

Su =min
∑

l ∈LGi

{Sl |Sl ∈ S,n(Sl ,u ) < nmax }xl (3)

The equation 3 is a variant of facility location problem (FLP) [7] with
network capacity constraints. The resulting optimization is a well-
known NP-hard problem, the approximate solution of which can
only be obtained by adding specific placement constraints. However,
since Anveshak divides S in small grids with limited number of edge
site locations, even the worst-case iterative solution for optimizing
Equation 3 takes reasonable time.

4 EVALUATION METHODOLOGY
We now evaluate the efficiency of Anveshak in placing edge servers
over Milan, Italy by utilizing several open datasets. We first im-
plement Anveshak’s workflow (shown in Figure 2) as two separate
pluggable modules. The Phase 1 of the framework is implemented
as clustering module in R. The module produces clusters of user
requests based on request patterns, WiFi access points, and base
stations datasets provided to it. We design the module to be in-
dependent of the choice of clustering algorithm used and can be
freely selected by the service provider (default is DBScan). Phase 2
and 3 of Anveshak are implemented in Python and return base sta-
tion coordinates to the service provider considering the constraints
imposed.

We compareAnveshakwith two alternative placement approaches
which have been discussed in the literature [14, 17]. The approaches
are described as follows:

(1) Greedy: This method allocates average user request densities
to the base stations in the area of interest. It then utilizes
a greedy selection algorithm to select top-k base stations
which serve most number of users in the area.

(2) Random:As its name suggests, this approach randomly chooses
k base stations on the map and assigns edge servers to them.

Unlike Anveshak, both of the approaches mentioned above nei-
ther consider whether selected base stations serve the same set of
users due to connectivity overlap nor the availability of other edge
servers in the area.

4.1 Dataset
In order to gauge the impact of selection algorithm on real networks,
we utilize several open datasets over city of Milan, Italy. For user
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connectivity requests, we use the dataset published by Telecom
Italia from November 1st to December 31st 2013. The anonymized
dataset divides the map of Milan into 100x100 grids of 250m width.
The dataset contains user’s internet connection to base station as
user request tied to its grid ID along with the time when it was
made. In our evaluation, Anveshak utilizes the average total user
requests in November, 2013 to generate clusters of user requests.
The heatmap of unclustered user internet requests for November is
shown in Figure 4a .

We map all WiFi access points in the same area of that of Tele-
com Italia dataset by utilizing open crowd-sourced dataset from
Wigle [19]. The dataset contains SSID, location coordinates, sig-
nal strength, channel number etc. for all access points. Out of the
entire dataset, we filter out the hotspot access points to reduce
variations in access point location density. Figure 4b shows the
density heatmap of WiFi access points in Milan. We utilize an open
dataset of all cellular base stations in the world and use the ones
in Milan using the coordinates provided in the dataset. We further
filter and use close to 800+ Telecom Italia base stations in Milan
in our evaluation. The heatmap of Telecom Italia base stations in
Milan is shown in Figure 4c.

As assumed in design of Anveshak, we can observe from Figure 4
that both user requests and WiFi access points are concentrated in
populated areas of the city (such as city center) whereas the cellular
base stations are evenly distributed throughout the map.

4.2 Results
We now evaluate the placement efficiency of the discussed ap-
proaches. We task the placement algorithms to select 50 out of total
812 base stations in Milan as edge server deployment sites. The
average coverage radius of base station in the dataset is little higher
than 1000m; we utilize a coordinate based latency approximation
[13] to estimate user requests which can be satisfied within this
area. These requests may originate from neighboring grids of the
selected base station5. Further, Anveshak utilizes users internet traf-
fic requests for November 2013 for initial clustering and edge site
selection. We then evaluate the efficiency of the selection for user
requests in December 2013.

We focus our evaluation and comparison on two metrics: (1) the
percentage of user requests satisfied by selected edge site, and (2)
the total utilization of the deployed edge server. All our results are
averaged over ten runs.

User Request Satisfaction: Figure 5 compares the percentage
of user requests whichwere satisfied by the base stations selected by
each approach for every third day in December. As observed from
the figure, edge servers deployed via Anveshak can serve ≈ 67%
more users than Greedy in an area. We attribute this behavior to
greedy selection of sites based on user requests inherent to Greedy
functioning. Even though the site selection by Greedy prefers high-
est serving base stations, it often fails to consider locations which
are far away from densely populated areas yet having significant

5As mentioned in Section 3, Anveshak utilizes DBScan for clustering user requests
as it is one of the most commonly used clustering algorithm used in the literature.
We currently leave the effects of different clustering algorithms on performance of
Anveshak in our future work.
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.

request origination. On careful analysis, we found that unlike An-
veshak which satisfies all clusters on the map, Greedy favors base
stations within most dense user cluster.

From the results, we also see that Anveshak satisfies ≈ 25% of
total user requests on average by selecting 8% of total base stations.
In our further experiments, we found that Anveshak achieves more
than 90% user satisfaction by installing just 124 edge servers (on
average). WhereasGreedy and Random require 218 and 300+ servers
respectively. We do not show the detailed results due to space
limitations.

Server Utilization: We deploy edge servers on all selected lo-
cations where a server can handle up to 500 user requests every
10 minutes. Further, we augment 10% WiFi APs in the coverage
area as compute-capable and a single AP handle 50 requests/10mins
within the grid thereby operating at 10% compute power of that
of a managed edge server. As discussed in Section 2 user-managed
edge server first handles all user requests upon exceeding which it
is sent to base station edge server. If the base stations receive more
requests than its capacity in 10 minutes, it offloads additional re-
quests to the remote cloud. Figure 6 shows overall server utilization
in December 2013.

Anveshak achieves 83% server utilization on average whereas
Greedy and Random achieve 66% and 12% utilization only. We at-
tribute the reason for such high utilization by Anveshak to its se-
lection of edge servers with less availability of user-managed edge
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servers. The sites selected by Greedy have a high concentration of
WiFi APs which leads to lesser requests sent to the managed server.

5 RELATEDWORK
In the past few years, several works have focused on offloading user
requests to a network embedded server [8]. Several studies have
focused on selection algorithms for identifying the strategic location
on in-network servers in the context of Content Delivery Networks
(CDN) [17]. The CDN cache placement problem is modeled in two
problem subclasses in literature, (i) cache placement and (ii) server
placement. Both placement problems optimize the objective function
designed to choose K replicas from N possible sites within the
network. The cache placement problem concentrates onminimizing
user latency whereas the server placement minimizes network
traffic load [14].

Considering the similarity between edge and CDN servers, re-
searchers have proposed edge cloud architectures closely mimick-
ing that of CDNs [2]. Instead of specific CDN nodes set up in the
network, the edge servers are deployed within the ISP network
to ensure that they lie on client’s path to the cloud. However, the
specific node placement within the ISP network is left up to the
discretion of the service provider. In [4], the authors place edge
server on aggregator network nodes and focus on VM placement
and migration between deployed edge servers. Yang et al. [21]
consider a MEC architecture where the server nodes have already
been placed within the ISP network and only need to be activated
per-user request capacity and the required delay.

In other edge cloud models, researchers consider placing servers
in strategic locations within a geographical area. Tentacle [23] at-
tempts to find optimal edge sites for cache placement which may
or may not be co-located with an existing base station. The au-
thors optimized selection problem by adding constraints on user
request latency from selected edge server site. However, due to
the design of their objective function, the authors prioritize edge
sites which do not have an associated base station which leads to a
high first-time deployment cost for edge service provider. Further-
more, the work only accounts for network delays between users
and base station but do not consider the high-speed network con-
nections between neighboring base stations. In [20], authors design
a placement algorithm for capacitated cloudlets in a flat wide-area
metropolitan network (WMAN). In their abstraction model, an edge
server can only colocate with a WiFi access point whose network
delay to other access points is the least. The author’s model re-
quired per-link delay knowledge for entire edge network. Lastly,
Bouet et al. [3] divides a geographical area into distinct user clusters
and assign an edge server to each cluster based on request density.
However, the estimation of exact edge site within the cluster where
the server must be placed (whether co-located with a base station
or as independent) is left un-tackled by the authors.

6 CONCLUSION
Edge clouds have emerged as a leading research interest which
aims to deploy compute servers couple of network hops away from
the end user. Several edge cloud models have been proposed by
researchers which focus on edge server placement in the network

based on application use-case being tackled. In this paper, we pro-
pose Anveshak, a deployment framework designed to assist edge
service providers in efficiently identifying base stations in a geo-
graphical region for edge server deployment. Anveshak considers
the user request patterns and user-managed edge servers in the
area to holistically select which base stations must have a colocated
edge server. We evaluateAnveshak by utilizing real user request and
cellular datasets over city of Milan, Italy released by Telekom Italia.
Our results show that edge servers deployed by Anveshak achieves
upto 67% increase in user request satisfaction while keeping average
edge server utilization at 83%.
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