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ABSTRACT
The Internet is largely a self-organizing system that adapts
to changes in its operating environment. In this work, we
extend these principles to service infrastructure and introduce
ICON, standing for intelligent container. Technically, ICON
is a container encapsulating a service that is consumed ei-
ther directly by end-clients or other services. The novelty of
ICON is in the ability of containers to adapt to their environ-
ment, targeting near-optimal service delivery and requiring
only high-level guidance from the application management.
Once deployed, containers form an overlay, observe their set-
ting, and migrate or replicate themselves as needed, to the
locations e.g., closest to service consumers. ICON captures
our long-term vision for self-organizing service overlays that
have the potential for global outreach. Bringing intelligence
and adaptation to the level of individual containers renders a
decentralized solution that has desirable properties, such as
scalability, resilience, reliability, and adaptability to volatile
environments. We hope that technology like ICON can open
the way for more democratized service provisioning, disin-
termediating service providers from centralized brokers and
optimizing orchestrators.

1 INTRODUCTION
The Internet is largely a self-organizing system that adapts to
changes in its operating environment. While these principles
have successfully been used in the networking and transport
layers of the Internet, they have not yet been as widely applied
into service infrastructures. New approaches and paradigms,
such as edge computing [8, 32] or Service Function Chaining
(SFC), all rely on a wide distribution of various services, and
similar challenges are also relevant for many applications built
on top of microservices architectures, running in serverless or
containerized environments. Usually, the issue is addressed
as an optimization problem, assuming a global view by some
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entity performing the optimization [10, 35]. The problem with
this approach is that global information is difficult to gather or
it even might not be available due to its transient nature [33].

In this paper, we introduce ICONs, short for intelligent
containers, that are self-managing entities providing applica-
tions or services. We use the term “container” for any kind
of a virtualized entity that is executed by a host. In practical
terms, this could be containers, virtual machines, network
functions, unikernels, etc. An ICON analyzes incoming re-
quests and searches for the location of better (or optimal)
deployment, e.g., trying to minimize latency experienced by
the end-users. All ICONs for a particular service (or set of
interconnected services, such as SFC) share observations of
their environment and its changes via an overlay they form for
the purposes of communication. Possibility to communicate
enables cooperative adaptation that may pursue various (opti-
mization) targets, such as improving the end-user experience,
minimizing financial costs, or other objectives. After a better
location is discovered, the container initiates a migration to
this location and provides its service from there.

Given the rise of edge computing, we foresee new compu-
tation facilities, which we call Independent Edge Providers
(IEPs), emerge. IEPs are independent computational facilities
that provide a platform to run edge (and other) services in an
open environment. IEPs can directly address new challenges,
such as latency-critical edge services for AR/VR applications.
IEPs can be dedicated small or midsize facilities, but even
cloud providers can be considered as an extreme examples
of IEPs. Multi-access edge computing (MEC) [15] servers
installed by telco operators may also function as IEPs. ICONs
also address the concerns expressed in [26], pointing out that
crucial building blocks of the Internet are in the hands of
a very few gigantic players. ICON is a technical solution
that creates a market for IEPs and opens a way for a more
democratized service provisioning on the Internet.

State-of-the-art container or VM orchestration is based on
centralized controllers and is mostly limited to closed environ-
ments, whereas ICONs are intended to cross administrative
borders of cluster instances and benefit from decentralized
control. We believe the latter offers more flexibility, resilience,
and better adaptation; we discuss these in more detail later.

In this paper, we sketch the main aspects of ICON archi-
tecture, discuss key technological requirements and show
preliminary experimental results comparing ICONs with a
centrally managed orchestrator.
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2 ENABLING TECHNOLOGIES
ICONs depend on several key technologies and below we
sketch the major requirements and solution ideas.

Discovery of IEPs. Given the increase in Internet traffic [12]
and the rise in edge computing, we see that offering compu-
tational facilities near the edge of the network by the IEPs is
a possible trend for the future. Thus, we will need a means
to enable discovery of IEPs. Here, we briefly sketch our idea
of how IEPs can be located on the fly by using only existing
tools and standard protocols.1 We suggest that IEPs register
themselves with their DNS servers by adding a service (SRV)
record with a consistent service name (e.g., edge). Since their
revenue comes from hosting services, IEPs have a natural in-
centive to add these DNS entries. Assuming that SRV records
exist, ICONs can perform the network tomography to discover
relevant IEPs located on the paths to the end-clients. Note
that this procedure is only for discovering IEPs, and it is not
intended for discovery of ICONs themselves by end-clients,
which we discuss further in Section 3.3. Our discovery pro-
cedure is not supposed to render an ideal map of IEPs since
coarse-precision is enough in practical cases.

Migration. Capability to migrate is an essential feature of
ICON. The migration of containers or virtual machines in-
volving various scenarios (stateless, live or mobile handoff)
is a well-explored topic, e.g., [11, 17, 28, 30, 48], covering
all the major cases relevant for ICONs.

Security. Deployment of containers in untrusted environ-
ments makes them susceptible to security issues. While IEPs
are protected by virtualization, the containers are vulnerable
to the IEP examining their code and data. This is an open chal-
lenge which in some cases can be solved by Trusted Execution
Environments (TEEs). Although TEEs have their limitations,
Arnautov et al. [5] demonstrate how to run a Docker con-
tainer securely. Migration solutions [3, 16] and microservices
framework implementations [9] also exist. Some services will
not require special protection, thus ICON is not conceptually
dependent on TEEs.

Agreement. ICONs provide applications or services on be-
half of their owners and use the computing facilities provided
by IEPs. We assume that there will be a cost for the owner
to have its ICONs running in an IEP. As we foresee a large
market of IEPs, this will require a framework for concluding
agreements and settling transactions on the fly. One candidate
solution could be distributed ledger technologies (DLT) [37].
Their most attractive aspects are: i) no central authority ii) abil-
ity to make multi-party agreements using smart contracts [38]
iii) secure, fault-tolerant, and transparent bookkeeping. A de-
tailed description of DLT is out of this paper’s scope, but from
practical point of view, ICONs may utilize any platform sup-
porting smart contracts, e.g., [42, 45]. We discuss alternatives
and shortcomings of smart contracts in Section 7.

1For more details, please see [49].

Figure 1: Overview of the system. Dashed lines are links
from cloud to local subnets. Red solid arrows originating
from containers show actions of ICONs. Green arrows
show end-users flows switched from cloud to edge.

3 INTELLIGENT CONTAINER
Fig. 1 gives an overview of how ICONs operate. We refer to
set of ICONs performing cooperative tasks and managed by
the same entity as an application. The application owner (or
just owner) is an entity that takes strategic decisions such as
adjusting performance goals according to dynamic business
objectives and has full authority over the application.

We refer to the actual software that hosts ICONs as con-
tainer yard, which can be e.g., Kubernetes-based [25], aug-
mented with ICON-specific extensions. Fig. 1 shows ICONs
starting from the cloud, however, an application may start
unfolding from some cloudlet [32] or IEP. ICONs analyze
incoming requests, discover possible deployment facilities
(IEPs), and either migrate or replicate closer to the end-users,
for example, optimizing for latency. The owner assigns a cer-
tain budget for the application and ICONs need to respect
it in their decisions. There is a tradeoff between the best
possible user experience and budget, and the owner can regu-
late this tradeoff, by controlling the budget it assigns to the
ICONs. Having ICONs make independent decisions relieves
the application owner from necessity to optimize a large set
of containers in global deployment.

The traditional way of orchestrating such containers is to
use a centralized controller (e.g., Kubernetes) in a closed envi-
ronment, like a data center2. Extending this centralized model
to a wide area network with many IEPs would be challenging
as it requires essentially all of the key technologies from Sec-
tion 2 for managing the containers and IEPs, and in addition,
would require the application owner to specifically optimize
the behavior of the containers. ICONs free the application
owner from such “micromanagement” and enable the ICONs
to react faster to changes in their environment.
2Kubernetes has a new federation [24] feature, capable of joining a geo-
distributed set of clusters into a unified environment, that we discuss more in
Section 6.
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3.1 Overlay of ICONs
To facilitate cooperative communication and control message
flow, ICONs form an overlay, organized as a logical tree that
we sketch in Fig. 2. The tree grows organically as containers
deploy replicas of themselves, each replica becoming a child
of its parent. To prevent orphan ICONs in the case of its parent
crash, each container also has the address of the origin. Child
ICONs report aggregated information to their parents: number
of requests per second and other statistics can be calculated
as a sum of own and descendants’ requests, while latency
is averaged over own and descendants’ end-users. In such a
way, each node can determine its own state and that of its
sub-branches, while avoiding being overwhelmed by detailed
data but still having enough knowledge for decision-making.

We do not explicitly treat the case of the origin ICON
failing, although in such cases its immediate descendants
could initiate a leader election to select an alternative. The
same recovery can be used by any sibling ICONs further down
the tree in case their parent crashes. However, as the origin is
the main point of contact for the application, its crash is akin
to a modern web application’s hosting server crashing and
making the application unavailable. With ICONs, we still can
guarantee limited functionality where existing ICONs could
continue to provide a service for (a subset of) their clients.

3.2 Control mechanisms
One of the main objectives of ICON is to make the life of ap-
plication owner easier, relieving it of concerns such as discov-
ering the best places for deployment, adjusting components
individually, resorting to third parties to analyze incoming
traffic, etc. However, the application owner does retain a de-
gree of control over the ICONs it has deployed. As the ICONs
form a tree, technically, it is possible for the owner to control
ICONs individually, however, micromanagement is not the
intended way. Instead, we propose that the application owner
controls the ICONs by setting parameters, defining targets, or
providing decision-making code for them. This allows each
ICON to choose actions using its local information, thus mak-
ing optimization problems more tractable as they would only
relate to a small subset of the global network.

This flexible control system enables the potential for “intel-
ligence” in the containers. The control mechanisms could be
based on anything that the ICONs know or are able to observe,
and it would allow them not only to adapt to their environment
but actually learn from their actions. In this paper, we only
consider simple, utility-based forms of control and adaptation,
but the ICON framework is flexible enough to support more
complex solutions. To evaluate the performance of an ICON,
we compute the utility at a network location j which serves
λi requests per second from a subnet i as follows:

Uj = ((1 −w )bj +w
∑
∀i ∈S

λili, j ) (1)

where bj is the cost of running ICON at location j, li, j is
the latency experienced by users from subnet i if served from
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Figure 2: The ICON overlay tree. Blue solid arrows show
aggregated information propagation, red dash arrows –
control flow. The upper number is the number of re-
quests per second the ICON serves, the lower number is
rounded average end-user latency in milliseconds. Green
dash connections between sibling are recovery links.

network location j, andw is the weight parameter (0 ≤ w ≤ 1)
for tuning the importance of the cost or latency component.
Function (1) is given for example purposes, and it can easily
be extended by additional components for more complex
scenarios. Potentially, the application owner can “hot swap”
utility functions to running containers, although we assume
that updating weights will be enough in most cases.

3.3 Discovery of the Closest ICON
A key question is how clients will discover an ICON that
is closest to them. The IEP discovery mechanism sketched
in Section 2 only covers the discovery of potential deploy-
ment points, not the run-time discovery of ICONs. The best
method for ICON discovery depends on the environment, and
application requirements. Below we sketch a few candidate
solutions.

If the network supports IPv6 anycast3 (or some native
anycast), this could be used to direct clients to their clos-
est ICONs. The application is identified with an IPv6 anycast
address, and the network takes care of locating the closest run-
ning ICON. Anycast over IPv4 is feasible, as demonstrated
by the DNS and modern CDNs, but it has overhead.

A less efficient solution, but one guaranteed to work, is to
use HTTP redirection. In this case, shown in Fig. 3, the new
client always starts at the origin. The origin examines if any
child of it is on the path of this request. If there is a descendant
on the path, the ICON replies with the result of a request and
redirection to its child. Sending both replies is possible in
HTTP/2 [6], using server push.4 If no child ICON is on the
path, the request is served, and origin ICON may initiate IEP
discovery or replication to serve subsequent requests better.

3IPv6 supports anycast natively: packet sent to an anycast address is auto-
matically routed to the closest node with the address [22].
4Without HTTP/2, the client has to go through the chain of redirects to the
closest container before receiving the first byte.
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Figure 3: The redirection to the closest ICON. After the
3rd request, all subsequent requests go to the closest con-
tainer – ICON B. HTTP/2 push enables sending as the
response itself as well as the redirect to the next ICON.

When a child ICON receives the next request from the client,
it repeats the steps described above. As Figure 3 shows, the
client will be progressively redirected to the closest ICON,
although we do not immediately get to the closest ICON.

A middleground between the two solutions above would
be to use DNS similarly to CDNs. This can be either mim-
icking the usage of DNS services by CDNs [47] or investi-
gating third-party name resolution services, e.g. major cloud
providers running their own DNS service [4, 29]. Most of
these DNS and similar services are capable of dynamic up-
dates, thus having a potential for ICON discovery.

Each of the solutions has its pros and cons, but all of them
present issues when a mobile client, using a stateful service,
drastically changes its point of attachment in the network.
These cases would need more sophisticated discovery and
migration solutions, but their overall impact would need to
be evaluated in a more realistic setting. The technical details
of the discovery are beyond the scope of the paper, but the
above sketches can be used as a basis for a concrete solution.

4 LIFECYCLE OF AN ICON
We now describe the lifecycle of an ICON, main actions it
takes during its lifetime, and rationale behind them.

4.1 Start
The lifecycle of an ICON starts with initial deployment. The
application owner deploys ICON or set of ICONs to initially
preselected locations, which are either cloud provider facil-
ities or IEPs. There may be single or multiple origins, and
subsequent structure will be either a tree or a forest. The ap-
plication owner allocates a budget to each deployed ICON,
and the ICON is free to use its budget according to the control
mechanisms specified by the application owner (e.g., using
the utility function the application owner determines). While
we do not fix the charging model of the IEP, we assume that
IEP charges some fixed amount per unit of time for having the
ICON run at its location (“lease”). Once ICON has acquired
a timeslot, it can run to the end of the slot at chosen location.

4.2 Active Life
While serving requests, deployed ICONs analyze incoming
request patterns and discover IEPs locations along the paths
to their clients (see Section 2). In this phase, ICONs actively
look for better deployment locations for itself or its replicas.
Depending on the actual control code, this could be trying
to find a “better” place than its current place, performing
optimization of placement in the subtree underneath it, or
even terminating in the case of low utility.

Migration. An ICON can migrate to a more favorable lo-
cation, improving its utility by e.g. minimizing end-users
latency. The application owner may adjust migration behavior
with migration threshold, specifying how much estimated
utility needs to improve for migration to be a valid decision.
An important aspect of migration is how the clients using the
ICON at its current location will be served in the future. We
leave this on the responsibility of the container yard applica-
tion hosting ICONs. When migrating, the ICON will inform
the yard about its new address and the yard will be responsible
for redirecting clients to ICON’s new location. The redirec-
tion stub can remain active for some (predefined) amount of
time, depending on the properties of the application.

Replication. In the case ICON detects large request flows
from a new subnet underneath it, the ICON may prefer not to
leave the current location, but instead to deploy a replica of
itself to handle the recently emerged user group. The new con-
tainer will also be a fully-fledged ICON and will report to its
parent. The application owner may adjust replication behavior
in a similar way as in the previous case, using a replication
threshold. Migration and replication are competing options,
and if the ICON has enough funds, both are possible. Next,
the ICON reallocates some of its budget to the replica while
keeping the rest to itself; the sharing could be for example
proportional to the expected utilities of the two ICONs.

Termination. If the utility of an ICON itself falls below a
termination threshold defined by the owner, the ICON termi-
nates itself. To preserve the logical tree structure, the descen-
dants of terminating container will be assigned its parent. The
remaining budget will be redistributed among the children
of terminating ICON (or parent). Termination has the same
redirection problems as migration, and we solve it similarly
with redirection stub running at container yard, and remain-
ing clients being redirected to the parent of the terminated
container. The termination might be soft, in which the yard
stores the image of the container for an agreed period of time,
during which the terminated ICON may be restored promptly.

Stability. The time an ICON needs to replicate or migrate can
be assumed to be known. If the changes in the environment
happen faster than ICONs can react to, the system may end up
in an unstable state. One solution in these cases would be for
the ICONs to smoothen observations of their environments
over longer time periods, to allow for stable state changes.
The exact mechanisms and limits are left for further study.
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4.3 Foundering
When an ICON does not have the budget to pay for its contin-
ued deployment or operation, it enters a phase of foundering.
In other words, the ICON has run out of money. The ICON
will contact its parent to ask for an increase in its budget,
which the parent may or may not grant, depending on its
available budget, the situation of its other children, etc. The
parent may need to re-allocate the budget among its children,
possibly re-shuffling the ICONs underneath it.

If the parent cannot handle the situation, it can forward the
funding request up the tree, where it will eventually reach the
application owner. The (human) application owner then can
allocate more money for running the service or decide against
it. In the latter case, there may be a re-allocation of budget
across the child ICONs of the origin, and this re-allocation
propagates down the tree into the sub-branches and possibly
results in migration or termination of existing ICONs.

In order to avoid recurrent, massive re-shufflings, the charg-
ing model of the IEPs should be predictable, so that the ICONs
can make reliable, long-term decisions about their migration
and replication decisions. The idea of a fixed lease and run-
ning expense mentioned in above could be one such model,
but further work would be needed to investigate various charg-
ing models and their impact on the dynamics of the ICONs
under various network topologies and traffic conditions.

5 PRELIMINARY EVALUATION
In a preliminary evaluation, we compared ICON’s perfor-
mance with centralized orchestration in terms of communi-
cation overhead and adaptation speed. In Fig. 4 we show the
number of messages required by a centralized orchestrator
and an overlay of ICONs. We used the topology of Euro-
pean NREN provided by the Internet Topology Zoo [43]. We
scattered randomly different amounts of ICONs across the
graph and assumed a well-connected vertex to be the origin,
which is a place where either a centralized optimizer or an
origin would reside. In the centralized design, every ICON
reports its load and other vital metrics directly to the opti-
mizer. ICONs report their performance metric only to their
parents. As expected, passing only aggregated data up the
tree results in lower network utilization, and the growth in the
number of messages for ICON is logarithmic in the number of
containers, as opposed to linear for the centralized solution.

In Fig. 5, we show the results for the adaptation time of
ICONs vs. a centralized optimizer. In our experiment, we
assumed that the best placement of services results in 10 ms
average latency for end-users. Adaptation time shows how
quickly the system reaches the latency optimum after changes
in user request pattern. We used the public router dataset
from CAIDA [19], limited to the East Coast of the US. We
derived latency data by executing traceroute from an AWS
VM instance in this region, which was assumed as the location
of a centralized orchestrator. As the figure shows, ICONs are
able to get the required information in about 30% of the
time for the centralized solution. In Fig. 5 only information
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propagation speed is taken into account, and aspects such as
the amount of data to be processed are not included. As the
centralized orchestrator would need to optimize the whole
tree, rather than a small sub-tree for an individual ICON, it
would take more time to come up with a new deployment.
Also, the time required to transfer and deploy containers is
not included. For deployment, it would be similar in both
cases, but the transfer of the container from cloud to edge
may take longer than migration from one local IEP to another.

6 RELATED WORK
The work of Abdelwahab et al. [2] is conceptually close to
ICON and applies similar ideas to IoT message queuing. In
their work, IoT devices have clones to facilitate communica-
tion by queuing. Clones migrate by themselves according to
current needs of the application. Our approach differs from [2]
in several ways. First, we tackle a more generic problem
where ICONs are general-purpose containers for running In-
ternet services and applications. Second, we use a tree overlay
instead of a swarm, minimizing messaging overhead. Third,
we provide flexible high-level control mechanisms to ICON
applications for changing optimization targets. We also ad-
dress problems such as discovery and agreements.

The idea of cognitive IoT gateways presented in [20] is
also close to ICON. IoT gateway decides whether to deploy
itself to cloud or fog. The differences to our work are similar
as with [2]. Running containers across multiple clouds is
investigated in [1]. However, their containers lack autonomy
and are governed by a centralized orchestrator.
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Solutions like RightScale [31] or Turbonomic [46] aim to
optimize job handling across hybrid cloud or multiple cloud
providers. Compared to ICON, these are centrally governed
entities relying on proprietary technologies. In contrast, we
suggest an open approach without intermediary parties.

A lot of previous work in service placement has consid-
ered solving the optimal deployment of virtualized services
to support QoS and SLA constraints [34]. Research has pro-
posed semi-static placement of services in the network while
addressing several metrics such as minimizing network la-
tency [7], resource utilization [27], user-enforced policy [13,
36], etc. However, these solutions fail to consider the dynamic
nature of underlying network/user traffic and rely on SDN-
based approaches or even external supervision for migrating
already-deployed services. On the other hand, ICONs are a
better fit for requirements imposed by dynamic SFCs due to
their ability to proactively react to network changes.

Platforms like Docker Swarm [14] or Kubernetes [25] can
perform orchestration of containers and migrate them across
nodes of a cluster. Apache Mesos [18, 40] is more versatile
and supports other types of loads than containers. In our work,
we suppose that IEPs will be running instances of the cluster
management systems like these. Kubernetes has a new feder-
ation [24] feature, capable of joining a set of geo-distributed
clusters into a unified environment. However, it seems un-
likely that all global edge computational resources would be
under control of the same cluster management system. A so-
lution could be to have either an orchestrator of orchestrators
or autonomous entities relying on common set of rules and
conventions, able to execute in heterogeneous environments.
With ICONs, we follow the latter approach, as we consider
it to be more flexible. Alternatively, if some IEPs grow to
become CDN-like entities provisioning all the required com-
putational resources globally, they might still benefit from
using an overlay of ICONs internally.

7 DISCUSSION
ICONs are an appealing mechanism for spreading services
closer to the users and are likely to become more relevant
with the advent of edge computing, where services typically
reside near the users. The main power of ICONs comes from
their ability to make independent decisions following the
high-level guidance of the application owner.

The overlay of ICONs for a particular application can be
used for collaborative sharing of environmental observations,
and conflict avoidance. This information can further be used
to drive any kind of more sophisticated adaptation or learn-
ing algorithms, that allow for very flexible actions of ICONs.
For example, they could learn and follow the diurnal patterns
and proactively place themselves accordingly. Understand-
ing what kinds of algorithms would be suitable for this and
developing solutions and algorithms are left for future work.

The control scenario we described is overly simplified, and
for application consisting of interacting heterogeneous ser-
vices, we would need a more complex solution. That may

involve the possibility to group services by their type and
have different optimization goals for each group. For exam-
ple, the application may consist of latency-critical, and some
back-end services, all packed as ICONs. So, the application
owner may prefer to have separate “control panels” for these
two groups. Another way of grouping would be to put services
of various types together by their common responsibility. To
illustrate, one service chain consisting of ICONs may be as-
signed to serve users in the U.S. and another in Europe. These
two chains may have different optimization goals at different
times. Large systems having specialized ICONs should have
the possibility for vertically and horizontally partitioned man-
agement, while the concept of high level control inherent for
ICON overlay still remains applicable and beneficial.

Another essential element in our future work is the com-
munication between ICONs, which is especially crucial for
SFC-like scenarios where the service running on one ICON
needs to convey its results to a next ICON, possibly along a
longer chain of ICONs. This could be implemented as part
of the decision-making logic at the container, but the exact
mechanics are left for further study.

While advocating the use of smart contracts for the agree-
ments needed, we are well-aware of their shortcomings. Fortu-
nately, problems such as slow throughput of smart contracts,
high transaction costs, and energy-wasteful proof-of-work
are getting addressed in [21, 23, 39, 44]. Bookkeeping trans-
parency of distributed ledger is not always a benefit but may
pose problems, e.g., for competitive reasons. In such a case,
CryptoNote protocol can be used [41]. While retaining dis-
tributed ledger public, CryptoNote hides transaction details
from non-participants by utilizing techniques such as zero-
knowledge proofs and ring signatures.

8 CONCLUSION
We firmly believe that a framework like ICON will enable new
service provisioning paradigms and give a boost to edge com-
puting, SFC and microservices architectures. ICONs make
the network environment more open for entities such as IEP,
that facilitate the development of cloud and edge services,
weaken the monopoly of large cloud providers and, in the end,
make end-user experience better. We hope that technology
like ICON can disintermediate service providers from central-
ized brokers and optimizing orchestrators. Our next steps are:
completing the design of ICON overlay, developing online
decision algorithms, evaluating ICON’s performance by run-
ning existing distributed applications, elaborating on security
aspects. We also plan on implementing ICON using standard
containers and container frameworks as building blocks and
leveraging existing technologies wherever possible.
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