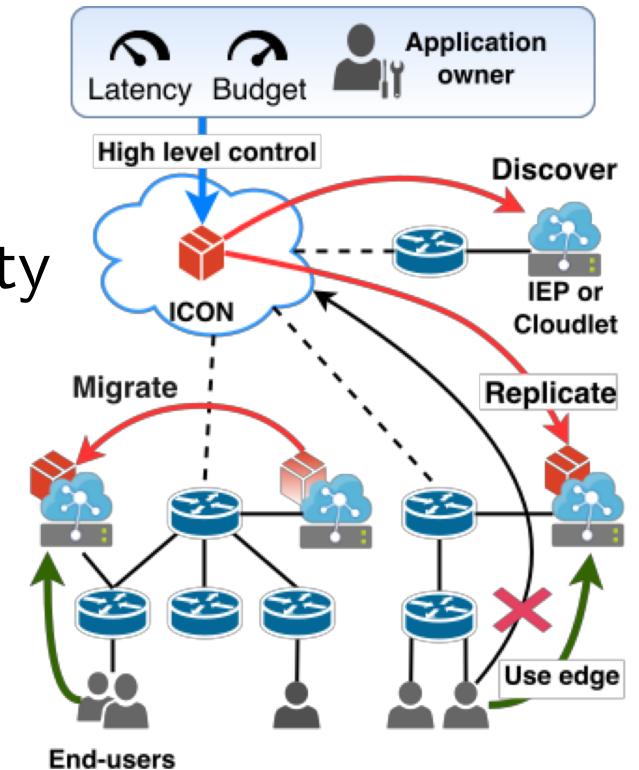


ICON: Intelligent Container

Aleksandr Zavodovski \top Nitinder Mohan \top Suzan Bayhan $^{\perp}$ Walter Wong $^{\perp}$ Jussi Kangasharju $^{\perp}$

^{\top}University of Helsinki, Finland ^{\Box}TU Berlin, Germany

Edge Computing


Edge Compute servers closer to end-users

- Lower application latency
- Data aggregation for lower bandwidth usage
- Locality of computation

System Overview

Self-managing container encapsulating service which adapts to changing environment

Objective↓User latency↓Provider operation cost↓Platform control complexity

Killer Applications

AR/VR, Vehicular networks, Cloud gaming, Industry 4.0, IoT etc.

Design Goals

- Open infrastructure. Not CDN for services!
- Decentralized. No single point of failure
- Local decision making. Better performance
- High-level objective control
- Autonomous operation. Dynamic adaptation

Independent Edge Providers

Facility where any service can be deployed

ICON Operation [3]

- Monitoring user requests
- Discover edge providers
- Migrate/Replicate
- User redirection to new edge server

Building Blocks

Based on existing tools & technologies Migration \rightarrow Docker Discovery \rightarrow traceroute Security \rightarrow SGX Enclaves

	Discovery (Tomography, DNS)
	Agreement, billing (Smart Contracts)
)))	Virtualization (Containers, VMs)
	TEEs (SGX, TrustZone)

Operated by

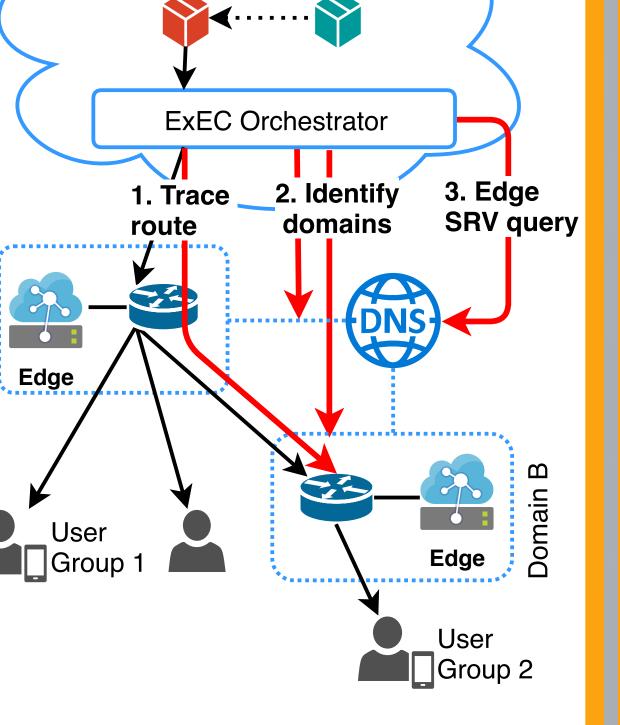
- **Cloud**: CloudFront, Azure Stack, ...
- **Telco**: MEC, Anveshak [1], ...
- **Crowdsourced**: iExec, Golem, ...

Configuration

- Software: Kubernetes, Mesos, Docker Swarm ... Processing: GPU, TPU, mobile CPU ...
- Networking: Any kind, various latencies

Discovery of Edge Providers

Assumption


Edge providers register with DNS SRV record

Cloudfront iExec Smart MEC Azure Stack Golem Agreement \rightarrow Ethereum Devices ICON Lifecycle ACTIVE **START** Deploy origin(s) Constantly monitor IEP Secure budget from provider locations & user requests Activate at provided timeslot I. Migration Move to a new IEP TERMINATE offering better *utility* Install redirection stub Assign child ICONs to parent Distribute budget to children II. Replication Redirect clients to parent Spawn copy on new IEP Relinquish resources Split operation budget

Open Questions

ExEC Discovery [2]

- Traceroute to clients
- Identify on-path DNS domains
- Perform SRV query
- Build network topology of on-path edge providers

Service X Service Y

- Intelligence of the platform
- Negotiation protocol
- Open marketplace for edge providers [4]
- Decentralized agreement
- Billing & payment
 - Unfair crowdsourced participants
- Transparent service discovery?

References

Mohan, Nitinder, et al. "<u>Anveshak: Placing edge servers in the wild</u>." 2nd Workshop on Mobile Edge Communications
Zavodovski, Aleksandr, et al. "<u>ExEC: Elastic Extensible Edge Cloud</u>." 2nd Workshop on Edge Systems, Analytics and Networking.
Zavodovski, Aleksandr, et al. "<u>ICON: Intelligent Container Overlays</u>." 17th ACM Workshop on Hot Topics in Networks.
Zavodovski, Aleksandr, et al.,"<u>DeCloud: Truthful Decentralized Double Auction for Edge Clouds</u>." ICDCS 2019