
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multicloud Infrastructure Broker for Edge
Orchestration Framework

Michael Schlicker

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Multicloud Infrastructure Broker for Edge
Orchestration Framework

Multicloud Infrastructure Broker für Edge
Orchestration Framework

Author: Michael Schlicker
Supervisor: Prof. Dr.-Ing. Jörg Ott
Advisor: Dr. Nitinder Mohan, Giovanni Bartolomeo
Submission Date: 15.12.2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.12.2023 Michael Schlicker

Abstract

Up-and-coming technologies like Augmented Reality, Internet of Things and Artificial
Intelligence are trending towards increased use of edge computing philosophy, moving
bandwidth heavy and low latency applications towards the user on the edge. However,
there are still many use cases from offloading and usage peaks to specialty needs when
an edge network alone reaches its limitations. In these cases using some cloud resources
is very advantageous but integrating them in a way without risking a lock-in to one
cloud provider is still difficult. Many frameworks that offer both cloud provisioning
and orchestration are mostly designed for use in data centers under assumption that
are too strict in a volatile edge environment. Here this thesis proposes a novel design
for a multi-cloud broker which works together with an edge computing orchestration
framework, enabling access to cloud resources from multiple providers directly from
the edge. An example of this design is implemented for the Oakestra framework in a
modular design which allows the dynamic extension for more cloud providers using a
provider-agnostic interface. The implementation of the resource creation operations
have been evaluated and are competitive with multi-cloud sky brokers designed for
non-edge usage.

iii

Kurzfassung

Aufstrebende Technologien wie erweiterte Realität, Internet der Dinge und künstliche
Intelligenz tendieren zu vermehrter Nutzung der Edge Computing Philosophie, welche
datenintensive und latenzempfindliche Anwendungen näher zum Nutzer. Allerdings,
gibt es weiterhin viele Nutzungsszenarien bei denen Cloud Ressourcen sehr vorteilhaft
sind allerdings ist das Integrieren dieser ohne dem Risiko des Lock-in Effektes zu
einem Cloud-Anbieter noch immer schwierig. Viele Frameworkprogramme bieten
zwar sowohl Cloud-Bereitstellung als auch Orchestrierungs Funktionalitäten allerd-
ings unterstehen diese oft zu strikten Voraussetzungen, die in unbeständigen Edge
Umgebungen nicht garantiert werden können. Diese Arbeit präsentiert ein neuartiges
Design für einen Multi-Cloud Broker, welcher in Zusammenarbeit mit einem Edge
Computing Orchestrierungsframework es ermöglicht direkt von der Edge Zugang zu
Cloud Ressourcen zu schaffen. Eine Beispielimplementierung wurde umgesetzt auf
Basis des Oakestra Frameworks in einem modularen Design, welche die dynamische
Erweiterung um weitere Cloud Anbieter ermöglicht über eine anbieteragnostische
Schnittstelle. Die Implementierung der Ressourcenerstellungsoperationen wurden
ausgewertet und sind wettbewerbsfähig mit Multi-Cloud Sky Brokern, die für nicht
Edge-Nutzung konzipiert wurden.

iv

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1
1.1 Problem Statement . 1
1.2 Contribution . 1
1.3 Thesis Structure . 1

2 Background 3
2.1 Edge Computing . 3

2.1.1 Concept . 3
2.1.2 Types of Edge Computing . 3
2.1.3 Application Areas . 4

2.2 Cloud Computing . 4
2.2.1 Concept . 4
2.2.2 Cloud Providers . 6
2.2.3 Core Functionalities . 6

2.3 Multi-Cloud Computing . 8
2.3.1 Definition . 8
2.3.2 Sky Computing . 9

2.4 Orchestration . 11
2.4.1 Docker Compose . 11
2.4.2 Oakestra . 12

3 System Design 14
3.1 Requirements . 14

3.1.1 System Objectives . 14
3.1.2 Functional Requirements . 16
3.1.3 Non-Functional Requirements . 18

3.2 Architecture . 20
3.2.1 Root Components . 23
3.2.2 Cluster Components . 27

v

Contents

3.2.3 Worker Node . 30
3.2.4 Cloud Adapter . 31

3.3 Operations . 32
3.3.1 Infrastructure Creation . 33
3.3.2 Deployment . 37
3.3.3 Infrastructure Scaling . 38

4 Implementation 41
4.1 Technologies . 41

4.1.1 Server . 41
4.1.2 Technologies . 41

4.2 Implementation Mapping . 42
4.2.1 Root . 42
4.2.2 Cluster . 44
4.2.3 Node . 44
4.2.4 Cloud Provider Adapter . 44

4.3 Server Structure . 45
4.3.1 Main & Server . 45
4.3.2 Router . 45
4.3.3 Controllers & DTOs . 46
4.3.4 Services . 46
4.3.5 Clients . 47
4.3.6 Repositories & Models . 47

4.4 Provider . 47
4.4.1 Architecture . 47
4.4.2 Interface . 49
4.4.3 Installation . 54

5 Evaluation 56
5.1 SkyPilot Comparison . 56

5.1.1 Key Differences . 56
5.2 Setup . 57
5.3 Testing Procedure . 58

5.3.1 Parameters . 59
5.4 Data Preprocessing . 60
5.5 Results . 61

5.5.1 Influence of Cluster Size & Cloud Provider 61
5.5.2 Comparison of Operation Durations 62

vi

Contents

6 Conclusion 64
6.1 Final Remarks . 64
6.2 Future Work . 64

List of Figures 65

List of Tables 66

Bibliography 67

vii

1 Introduction

1.1 Problem Statement

The increased popularity of edge-computing applications like the Internet of Things
[26], Artificial Intelligence [20], and Augmented Reality [6] relying on low latency with
high bandwidth usage that shouldn’t waste capacity has sparked research on new edge
frameworks. However, in many settings, available edge resources might not satisfy the
requirements thoroughly, needing cloud computing to contribute additional resources
to bridge the gap.

Provisioning them can be much faster, but in a fragmented cloud provider market
[12], setting up the correct instances can involve many detailed and provider-specific
steps leading together with data gravity to vendor lock-in [25].

Existing multi-cloud provisioning and orchestration applications too often rely on
strong assumptions from a reliable world in the cloud, which is not given in mobile
and edge environments. On the other hand, edge computing orchestrators often work
in their trusted environment of contributed common resources, which come at a little
extra cost.

1.2 Contribution

This thesis provides an approach for a solution by abstracting the necessary operations
to set up and manage cloud infrastructure in a provider-agnostic form so that it can
easily be extended to support many additional cloud providers. It introduces a novel
multi-cloud broker that can perform and manage these complex operations of creating
and provisioning clusters and workers automated and integrated into an existing edge
orchestration framework. An implementation of this is evaluated against a somewhat
comparable framework with the same goal but coming from a batch jobs side.

1.3 Thesis Structure

This thesis first introduces the basic concepts in Chapter 2, focusing on edge and
multi-cloud computing and orchestrating services on them. Then, it will introduce in

1

1 Introduction

Chapter 3 a design for such a multi-cloud broker for this edge environment with a
detailed analysis of requirements. An implementation of this approach is presented in
Chapter 4, including a detailed explanation of how modularity is achieved for multiple
cloud providers. This solution is then tested in Chapter 5, and its speed performance
is evaluated against the sky computing framework Sky Pilot. Finally, in Chapter 6,
an outlook will show the future potential of this design when extended and deeply
integrated into an orchestration framework.

2

2 Background

2.1 Edge Computing

2.1.1 Concept

One of the most promising distributed paradigms is edge computing. The core idea is
to decentralize the computing needs from a few powerful units to many small ones,
which are then placed closer to consumers in various geographic areas. [16]. This brings
several benefits ranging from significantly shorter latencies and reduced bandwidth
usage due to the shorter distance data has to travel to lower power consumption taking
advantage of common energy efficiency in smaller units. [6] Also, it’s possible to
include nodes with very specialized hardware that is often not realizable in cloud
infrastructure. [3]

On the downside, they introduce additional challenges to the generic distributed
computing ones that break common underlying assumptions of cloud computing
methodologies and techniques. [4] The first one is the wide heterogeneity of resources,
so while one management application might work on one type, it might not work
on very specific or very restricted hardware, so the Quality of Service requirements
of such software might not be met, which creates these trade-off problems. Another
issue is networking and, in particular, the bandwidth, as small devices often cannot
handle as much incoming and outgoing data as specialized cloud infrastructure. Also,
their networks tend to be more unreliable than at robust data centers, especially in
mobile edge computing environments. [17] Here, the nodes need to be managed and
operated in a way that is aware that nodes can be unavailable at any time and be very
fault-tolerant.

2.1.2 Types of Edge Computing

There has been an emergence of various types that try to bridge the gap between edge
and cloud computing, with one of the most notable being. Fog Computing It comes
more from the cloud computing side and tries to preserve most of its benefits but layers
its cloud resources hierarchically. This allows for some of them to be right at the edge
of the cloud network, close to consumers. [11]

3

2 Background

A similar concept is Cloudlets, which are small cloud-like data centers located close
to the end-users. They still offer cloud-like services with more dense geographical
coverage, reducing latencies, better reliability, and more computing power than pure
edge computing. [1]

A third interesting approach is Mobile Edge Computing (MEC). It integrates com-
puting power and data storage inside a cellular provider’s radio access network. It is
increasingly common with 5G networks. This allows mobile devices to connect with
these resources directly without ever needing to leave the networks, reducing latency
and bandwidth use.[26]

2.1.3 Application Areas

While edge computing has still not that many real-life application, in certain scenarios
its benefits are especially highlighted and useful. [23]

Since low latency is a one of the biggest advantages of edge computing it is a good
approach to use edge processing power to offload time-critical but computing-intensive
applications like Artificial or Virtual Reality from small wearable devices. [6]

Another good use case is artificial intelligence and especially Deep Neural Networks
(DNN) as they have to process huge amount of data as an input and using edge
computing they can span their network closer to the information source reducing the
large amount of bandwith needed for the data transfer of raw input to some remote
processing units. [20]

The MEC servers inside cellular networks are especially helpful for video streaming
applications since these are among the largest bandwith applications. By caching some
content in the networks a lot of backbone traffic to datacenters can be eliminated. [26]

Also with the increasing number of internet of things devices it makes sense for
them to not always have to communicate back to a remote data center but instead
take advantage especially since each IoT device is basically already a node in an edge
network. Examples for these can be autonomous vehicles. [26]

2.2 Cloud Computing

2.2.1 Concept

Cloud Computing as a concept is best defined by the NIST [39] using five essential
characteristics. They are computing capabilities in datacenters shared by multiple
consumers via resource pooling that can be acquired via on-demand self-service
without requiring a human interaction with the resource provider. These resources
have rapid elasticity so that can be quickly scaled with changing demand while

4

2 Background

providers optimize this resource use automatically by metering with a measured
service. Consumers can interact with and use these capabilities via broad network
access from heterogenous thin clients.

This allows customers a vast flexibility both in terms of scale and in time leading to
fewer unused excess resources. Along with the effects of economies of scale from a
cloud provider perspective it makes cloud computing at competitive price attractive to
many companies. [14]

Besides the commonly associated public cloud providers which are available for
use by any entity of the general public, the NIST also classifies additional deploy-
ment models. The opposite would be a private cloud which is exclusively used by
(multiple) consumers of a single organization while still offering similar services just
on organization-dedicated hardware managed either by themselves or a third party.
When such a non-public cloud is available to a specific set of consumers from multiple
organizations which share concerns like a common mission it is then often called
community cloud. Additionally each of these distinct cloud infrastructures can also be
combined to a common hybrid cloud approach, where these unique entities are tied
together in a bigger architecture.

Service Models

These cloud computing offerings are then again categorized into four distinct service
model types depending the level at which cloud resources are offered with different
amount of abstracted setup.

The most low-level one of them is Infrastructure-as-a-Service (IaaS). Here cloud
providers offer individual resources like virtual machines, storage and networking to
consumers which through virtualization act similar to dedicated on premise hardware
while in the real underlying cloud infrastructure is abstracted away. This type gives
the consumer total control over the operating systems, allows them to run arbitrary
software and even control parts of the networking by e.g. hosting firewalls.

The next higher level is Platform-as-a-Service (PaaS). Here the previously mentioned
basic infrastructure is already provided and not controllable by the consumer. They
can however deploy and run any applications which are supported by the underlying
selected platform.

The third common service model is Software-as-a-Service (SaaS) where consumers
directly consume provided applications running on cloud infrastructure without man-
aging any of infrastructure and application deployment and the only customizations
are in-app configurations.

Finally there has been recently the emergence of a fourth another service model
Function-as-a-Service (FaaS) which is not yet defined like the previous ones by the

5

2 Background

NIST [39].
Also known as Serverless Computing it completely abstracts the use of continuously

running servers all together and instead offers the development of specific functions or
tasks which are started by specific triggers or requests without any knowledge of the
underlying programs, platforms or infrastructure environment [37].

One of the most intuitive analogies between the first three types with the process
of getting and eating a Pizza has been provided by [2]. It compares in Figure X the
traditional on premises computing with making a pizza at home to either baking a
pizza at home with pre-purchased ingredients (IaaS), getting pizza delivered (PaaS)
and dining out (SaaS). At each step the vendor manages more of the process and the
consumer less of it.

2.2.2 Cloud Providers

Although there are hundreds of cloud providers around the world, just three biggest
providers themselves (Amazon Web Services, Microsoft Azure and Google Cloud
Platform) have reached a market share of 65% of all spending on cloud computing
[12]. However many of the other cloud providers are relevant be it through special
hardware, regulatory or commercial offerings.

2.2.3 Core Functionalities

While each cloud provider has their own set of features and APIs most of providers
implement a similar set of core functionalities. The most important IaaS ones needed
to implement are here explained by the example of the top three providers.

Virtual Machines

The core of Infrastructure-as-a-Service computing are virtual machine instances running
on the virtualized abstracted datacenter hardware. These services are respectively called
at the big three providers AWS Elastic Cloud 2 [36], GCP Compute Engine [10] and
Azure Virtual Machines [21].

Instance Type Each Virtual Machine instance has a number of virtual CPUs, GPUs
and memory available to it to perform computing tasks. These are usually grouped into
different instance type configurations that consumers can choose from and vary in size
and price. Many offer configurations grouped into families with different focuses like
general purpose, compute- or memory-optimized and speciality accelerated hardware
configurations.

6

2 Background

Image Type The second major computing configuration is the selection of a template
disk image from which instances are initially booted upon launching. These images
contain primarily an installation of an operating system but can also have applications
and services pre-installed. Some are offered by the provider themselves, third party
image providers and these images can be created by consumers themselves as a
snapshot from an existing root volume of a previously launched instance. However,
since providers use different underlying virtual machines those images usually have
different disk formats which can not interchangeably be used between them [14].

Networking

As these public clouds are not hosted at the consumers on premise they need to be
reachable via the public internet. The instances can communicate both internally with
other instances and externally with clients outside of a particular cloud. Providers offer
therefore numerous network configuration and setup options.

Virtual Private Cloud One of the most commonly used ones are virtual private
clouds (VPCs) which allows to logically isolate multiple instances into a virtual network
separate from instances other consumers. These networks offer various services from
subnets, routing to gateways.

Firewall A standard networking configuration in cloud computing are firewalls which
restrict incoming and outgoing requests to certain ports and white- or blacklisting IP
ranges. These firewall configuration can be reused via identifiers and attached in an
additive way to instances.

Data Storage

As many applications for cloud computing need to persist data it’s storage is another
core functionality. There are usually two different types of storage first a low-latency
disk / block storage used primarily as volumes by instances for both system and
application data. For longer-term or larger data storage cloud providers offer dedicated
storage services at reduced prices like AWS S3, GCP Storage and Azure Blob Storage.
They are again classified into different storage classes from regular to long-term archive
storage with varying retrieval time and minimum storage durations. Besides general
purpose storage there are also specialized Platform-as-a-Service storage solutions like
Key-Value, Relational Database and Secrets Management services which are optimized
for these purposes.

7

2 Background

Identity and Access Management

Since resources and services in the cloud incur costs access to them have to be regulated
by robust identity and access management services (IAM). Additionally applications on
these resources can contain sensitive data and should be protected from unauthorized
interference. These IAM services allows for the creation of different user accounts
assuming roles with fine-grained permission rules which can be grouped into policies.
These users can then authenticate themselves to the clouds services via IAM using
tokens, credentials or keys. Connections into virtual machines happens usually via
SSH tunneling either through provider services or more universal via SSH keys.

Localization

Many of these services have data centers across the world and have regionally differ-
ent offerings available. This can lead to a trade-off in certain applications of cloud
computing between a geographically closer region or one further away but with some
specialized resource types. Therefore most resources are not globally easily usable but
instead are scoped to a specific region. One example would be images or keys where
virtual machine instances can usually only use local ones or regionalized copies. Larger
cloud providers offer also multiple availability zones within one region. These are
distinct, separate locations within a wider region are that work completely independent
from other zones within a region to ensure that a major outage in one zone doesn’t
affect the all locations within the same region.

Pricing

Just as diverse as cloud offerings are are various pricing models [19] although most
providers bill each resource use very detailed. Typical pricing schemes are time-based
(e.g. computing instances), volume based (e.g. data storage & transfer), access-based
(e.g. secrets), free until a specific limit or a combination of multiple policies.

Price is also a tool to incentivize the use of specific resources. One popular one are
spot instances which are temporarily unused cloud resources that can be used for these
jobs at discounted prices.

2.3 Multi-Cloud Computing

2.3.1 Definition

Multi-Cloud computing is a very broad term which can range from simply using
two clouds providers in an organization to a Federated Cloud. In the first most basic

8

2 Background

case this could be just two completely separate workloads running each on manually
provisioned different cloud providers [45]. On the other end at federated clouds,
providers share their resources themselves among each other in a collaborative way
without the user even having to be aware which provider’s ones have been used [25].

Motivation

While most cloud providers have similar offerings there are still many arguments why
organizations should consider consuming cloud services from multiple providers. First
of all some do offer unique or specialized services which are not available by others or
not available at specific locations, so by not restricting oneselve to a single provider user
increase their number of options[25]. This also affects common services as the bigger
choice allows for more price competition, increase availability and deal with peaks in
services [25]. Diversifying with multiple clouds helps reducing the dependency on
a single supplier of cloud resources who could leverage their position and create a
vendor lock-in situation.

Challenges

However, applying a multi cloud solutions to a concrete scenario is significantly more
difficult than just using one cloud. First and foremost is the lack of standardization
in this field. There have been attempts by the IEEE to establish Inter cloud standards
including an service catalog and federation layer but they haven’t been successful. The
two biggest reasons are the lack of incentive by dominant cloud providers to adopt
them when this would only increase competition while gaining few benefits and the
sheer complexity of such a standardization effort. The scope needed for a complete
standard would not only have to abstract and cater to countless specialized, proprietary
infrastructure services but also operate together with higher-level PaaS and lower-lever
orchestration services [45].

Another way cloud providers discourage using multiple clouds at once is pricing
the outgoing data at a higher rate than incoming data. Users are then tempted to store
huge amount of data which they can’t inexpensively retrieve and therefore more likely
also process at the storing provider leading to a data gravity[40].

2.3.2 Sky Computing

One alternative approach to standardization is sky computing where incompatible
cloud resources are uniformly provisioned, aggregated and used through intermediaries
as if they were all one big sky rather than separate clouds[45].

9

2 Background

Parts

This architecture of the Sky computing concept builds on three main logical components
[40]:

The first one is a compatibility layer which maps the needed proprietary cloud
resources and their APIs into a common interface so that the other components can
use them uniformly. There are many hosted service providers that offer multi-cloud
services who built their implementations with open source offered compatibility layers
as base.

The core builds an inter-cloud broker layer on top of the compatibility one. It
handles the management of both the infrastructure and the applications concerns from
provisioning cloud resource to the placement of jobs to specific cloud instances. This
usually includes a catalog that stores all resources both infrastructure and application
using a common naming scheme as well as an accounting service to keep track and
optimize costs.

And thirdly data peering between different cloud providers. Ideally this should
come at no extra cost however fees can often be offset by optimized pricing at target
clouds. Such an agreement is especially beneficial when an inter-cloud common trusted
subnet is created.

SkyPilot

One such sky computing implementation is SkyPilot from UC Berkeley which is
primarily designed for batch jobs and machine learning pipelines with a big focus on
spot instances [45].

The framework implements an inter cloud broker consisting of a provisioner for
provisioning and managing the specified infrastructure needs, an executor that manages
applications and deploys them to the concrete resources and an optimizer which
calculates the best placements for jobs across clouds according to the application’s
DAG and requirements provided via yaml files or the API. It gets the cloud providers
infrastructure offers from a service catalog which stores them along with long-term
average prices as well as a tracker that observes spot prices. These prices are provided by
service publisher for each cloud. Another cloud-specific component are compatibility
set components that map the abstracted APIs to the cloud proprietary APIs.

SkyPilot builds when possible on top of existing solutions like Ray & Terraform for
mapping infrastructure management and deploying to it.

10

2 Background

Terraform

One of the most widely used foundations for implementing multi cloud setups is is the
Infrastructure-as-a-Code (IaaC) tool Terraform. [42] It allows automated provisioning
of cloud and on-premise resources through human-readable configuration files. Those
configuration files define which resources there should be, they get then transformed
together with the existing infrastructure into a directed acyclic graph of execution steps
needed to attain the desired infrastructure, which can then be applied.

Each cloud provider has its own Terraform provider as intermediaries between
Terraform and Cloud APIs they are available in a terraform registry and can be installed
as need be. As a result the configurations itself are still very much tied to actual cloud
resources and barely abstracted and Terraforms main focus is to automize these custom
setups.

2.4 Orchestration

As a result of the emergence of microservice architecture consisting of many small
services there has been an increased need to compose and orchestrate a large amount of
them automatized. Each individual service has to be setup, specified and configured to
not just run on it’s own but to correctly run in cooperation with other services to a form
a common bigger functionality. The most important functionalities for an orchestration
framework are the facilitate communication among the services and their environment,
syntactic as well as semantic alignment of services as configurations of them, and
persistency of data from non-persistent service units to data storages [5]. Additionally
they also allow monitoring of these services and offer life-cycle functionalities like
restart policies.

2.4.1 Docker Compose

One of the most common ones for configuring and orchestrating services on a single
computing instance is Docker Compose as it’s the officially supported tool by Docker
themselves and even has been integrated as a plug in to Docker itself. [7] It offers the
functionality to start and stop services, build and pull docker images, create and attach
data volumes to containers and also set up networking like bridges and bound ports
from containers to the host machine.

This is configured via additive YAML configuration files that are fed as an input to
the compose orchestrator command line interface which can then either orchestrate all
services or selective ones.

11

2 Background

2.4.2 Oakestra

Oakestra [22] is a lighweight edge-computing orchestration framework that tailors
exactly to the specific needs of an edge environment. It acknowledges in its design the
limitations on the edge like unreliable availability of nodes, nodes with small processing
power and general high heterogeneity between nodes ranging from the smallest IoT
devices to edge data centers. The principal philosophy of the framework is the pooling
together of computing resources of various types into a shared federated infrastructure
where users can provide their own resources to others.

Concept

Oakestra therefore proposes in their white paper the following concepts:

Three-tiered resource management Oakestra is hierarchically structured into three
separate tiers consisting of worker nodes, which are organized into clusters, which are
then again managed by a single root instance. This design allows fine-grained control
of each cluster over their own worker nodes and keeps the cluster independent when
the connection to the root is unreliable. A local cluster in proximity to their nodes also
decreases the latency of intra-cluster management communication.

These separate clusters also remove overhead from the root component by only shar-
ing aggregated capabilities and status of their workers which in an edge environment
can easily go into the thousands or millions of nodes.

Delegated Scheduling Another key concept is that both root and cluster level have
their own schedulers. On root it simply searches for the best cluster using its aggregated
resource information and then delegates the concrete scheduling in a next step to the
cluster. The cluster scheduler then finally schedules the to a concrete worker node. Ser-
vices are scheduled to a fitting node which can fulfill the minimum requirements at the
edge set by their job SLA’s for processing power performance, networking requirements,
location restriction and more. Oakestra allows the use of custom schedulers so that they
can be individually tuned for different applications like a basic resource-only match,
more complex latency & distance aware placement or other schedulers. This separation
also lets the cluster completely handle node failures on its own as long as it has enough
resources without needing management support from the root. Redeployments can
happen without data transfers as long as the are services are stateless.

Semantic Network Overlay Additionally Oakestra also supports intra-service com-
munication using an optional NetManager component which keeps address tables

12

2 Background

to services on the same or other instances which can be accessed via proxying and
tunneling.

Components

The implementation is organized into the same three logical tiers.

Root Orchestrator On the root level the system manager is the main component
which controls the global infrastructure. It is the single entry-point for all incoming
user requests like adding application SLA’s to the root or deploying services. Therefore
it also serves the frontend components with all necessary data. This data is stored in
the root database which is accessed by both the system manager and root scheduler.
Additionally there is a separate root service manager which coordinates the networking
part in regards to subnets.

Cluster Orchestrator On cluster level the general structure is logically mirrored from
the root tier except that it only manages all worker nodes within the cluster with the
cluster manager. It uses the cluster scheduler to determine on which node of this
cluster a job instance gets deployed to. It also stores them in it’s own cluster database
and the networking is once again coordinated by a cluster service manager.

Node Finally on the last tier there are two components. A node engine which executes
the services on the runtime on deployments. It monitors these jobs and reports their
status back to the cluster manager along with the nodes performance metrics like CPU,
GPU and memory usage. The networking overlay part on the edge is handled by the
net manager which doesn’t allows Oakestra nodes to not require IP addresses.

13

3 System Design

This chapter offers an implementation-agnostic approach for a multi-cloud infrastruc-
ture broker. While its design was inspired to work with the Oakestra framework. the
principles, general design, and operations are kept generic so that they can be applied
to other three-tier orchestration frameworks.

The first section 3.1 specifies the requirements for this solution by first defining and
motivating the four overall goals as system objectives, then breaking them down into
concrete functional requirements, and finally stating the most important non-functional
quality requirements that the proposed design should strive for.

These requirements are then used in section 3.2 to identify the key logical components,
examine their design choices, and arranged them into an overall system architecture.
Lastly, in section 3.3 the system’s behavior is defined through a set of operations in
which the introduced components realize the requirements through interactions with
each other.

3.1 Requirements

3.1.1 System Objectives

While there exists a lot of models and methodologies to find and structure overall
goals of a system many of them like GORE focus primarily on aiming for completeness
by integrating as many stakeholders through a complex, structured process. These
processes seem to be a bit too overarching for this narrow, technical system which is
why this section only presents the systems major goals and focuses on their motivation.

Cloud Infrastructure Management

The core objective of the system is bringing cloud computing capabilities to an edge
computing environment via an orchestration framework in accessible way. It extends the
functionality of only application management by offering the possibility to provision,
manage, and connect these cloud resources to existing edge infrastructure.

As a result an edge-computing framework can gain some of the benefits like flexibility
of cloud computing without impacting the rest of the existing system. One potential

14

3 System Design

application scenario is the use of cloud instances to fulfill a need for more resources
than the pure edge infrastructure can provide. Such cases can be both short time due to
usage peaks or availability issues with unstable edge networks and more medium term
like the need for resources at different locations and prototyping before committing to
the establishment of own infrastructure. The proposed interface should automize the
repetitive, manual steps of provisioning and configuring this cloud infrastructure to
integrate it with an edge computing framework.

Multi-Cloud Sky Computing Broker

The second system objective is broadening the cloud capabilities by not just interfacing
a singular cloud provider to the edge but instead offering resources from many different
providers in a sky computing broker design which allows to seamlessly have clusters
on multiple clouds.

This approach prevents the common issue of vendor lock-in as the proprietary APIs
and interfaces which usually make moving applications between clouds hard and
expensive can be easily instantiated and deployed via the orchestration framework. As
each provider offers different types of resources like specialty hardware in different
locations having the option to use any of them results in a more flexible and diverse
offerings to choose from. This increased supply and comparability between options
incentivizes market competition by making it easier for users to choose the most cost
effective offers for each cluster need.

Simplified Scaling

Another path to use cloud resources more economically is providing a simple solution
to scaling resources down if they are underutilized and scaling them back up in a short
time when there’s more demand.

While an automated scaling based on resource utilization monitoring and policies on
when and how to scale is out of the scope of this thesis, the proposed system should
be designed with this option in mind so that in the future these decision could be
automated. This scaling option can not just save costs by keeping billed resources to
a minimum, it also allows to better cover higher peaks with more bullish upscaling
policies when scaling operations need less effort.

Automatic Security Configuration

The final system objective is addressing the security configuration needs arising
from cloud providers operating over the public internet when interacting with edge-
computing networks outside the cloud.

15

3 System Design

As the cloud resources need to be available from the open internet it should be
prevented through appropriate security measures that unauthorized entities can interact
with the systems components especially since the system can perform operations that
incur unapproved costs at the cloud providers. Besides the system components also
the applications running on the system need to be secured. Since each application
can have different public interfaces these application-specific settings have to be taken
into account when applying the principle of least privilege to the components security
configuration. And as deployments happen automated also this configuration setting
has to happen automated.

3.1.2 Functional Requirements

The functional requirements which define the systems main features are structured
into eight separate use cases which can also be seen in Figure 4.1.

Figure 3.1: Use Case Diagram

These features are initiated by two types of actors. An Infrastructure Provider
user whose role is to provide and manage the infrastructure that is available to the
orchestration system and an Application Provider whose role is to run their registered
applications on the system by deploying it to the available resources.

16

3 System Design

Cloud Provider Registration

Infrastructure Provider users can attach and detach cloud provider adapters to and
from the system to either increase the support for more cloud providers or remove the
support for unused ones. As a multi cloud system, adapters for many cloud provider
can be attached at the same time. A list of currently available cloud provider adapters
can be retrieved.

Cloud Credentials Management

Infrastructure Provider users can store their cloud credentials in the system so that the
system can use them to create and manage the cloud resources. However the system
may only use them for operations that their cost has been explicitly approved by the
infrastructure providers. A list of available credentials can be retrieved to choose from
but only the system can have access to the plain text credential data after they’ve been
added, never the end user themselves. When a credential is no longer in use by any
currently billed resource it can be removed from the system.

Cloud Offer Retrieval

Infrastructure Provider users can get a price estimate when creating new cloud resources
in order to consent explicitly to the incurred costs. To receive an accurate offer they
can select generalized provider-agnostic attributes for new cloud server instances like
location, instance type and image type from a list of available ones for each option.

Cluster Management

Infrastructure Provider users can create new cloud clusters and attach them to the
current system. Therefore this multi cloud broker should provision a cloud server
instance as specified by the offer using chosen credentials, install and set up the cluster
part of the system on this instance, and then connect the new blank cluster to the
existing system. A cluster can then be deleted again if it has no actively billed nodes.

Worker Node Management

Infrastructure Provider uses can create multiple new worker node instances for an
existing cloud cluster. Like the cluster creation the specific instance configuration can
be selected from an offer. Using the credentials of the cluster new cloud instances are
provisioned, the worker node orchestration software installed, and then those new
nodes are connected to their cluster. Also worker nodes can be deleted if no applications
are currently running on them.

17

3 System Design

Worker Node Scaling

Application Providers can scale a cluster by turning off or on individual worker
nodes of the cluster. When nodes which are currently running application are being
turned off they need to redeploy first those running service instances. Besides just
stopping and restarting cloud instance, a user can also completely terminate and
recreate worker nodes from scratch to further reduce costs. This recreation requires
the same infrastructure creation and worker node software installation functionality
as the Worker Node Management requirement instead of just reconnecting. Turning
worker nodes back on or recreating them doesn’t need the approval of an infrastructure
provider user as the costs for running of all created nodes have been consented to upon
initial creation. Scaling those nodes up and down only saves costs compared to them
running constantly.

Application Firewall Configuration

Application Providers can trigger the reconfiguration of the worker node’s firewall by
deploying or undeploying applications to this worker. The system should automatically
adjust the firewall upon deployment to allow traffic to the exposed applications port
and upon undeployment the firewall should block traffic once again to the previously
exposed application port.

Graphical Web Interface

Both Infrastructure Provider and Application Provider users should have a graphical
web interface where they can initiate all of their operations related to the multi-cloud
broker. Additionally they should be able to see the status of their managed cloud
infrastructure so that they can directly control it.

3.1.3 Non-Functional Requirements

Non-functional requirements are usually either defined as requirements describing
properties, characteristics, constraints of a system, or as quality attributes that the
product must have [18]. This section defines some of the important qualities that the
proposed system should strive for in its design when making decisions. These qualities
are than evaluated in section 5 to validate that they have been observed.

18

3 System Design

Extensibility

As there are so many cloud providers on the market that not everyone can be covered,
one of the most important qualities of the system should be its extensibility to allow
the easy development and integration of new cloud provider adapters. It should be
possible to integrate such a new adapter without the need for changes to the rest of the
systems code.

Modularity

Another result of the quantity of cloud provider most users only need the support for a
few providers. Therefore it should be possible to only use and run the adapters for the
used cloud providers. Adding or removing them should work without disrupting the
running system.

Portability

While the number of cloud providers is already large, each of them has additionally
many configuration options like instance types and images leading to an exponential
amount of possible configuration combinations. It is clear that not every single one can
be supported but in order to support as many out of the box the cluster and worker
software should be able to run on at least basic Ubuntu or Debian distribution images
with few preinstalled software as many build on top of those.

Performance (Speed)

Since a major benefit of the proposed system is the ability to provision cloud resource
within a short time, the speed of the systems operations especially the key contributor to
the systems quality especially when compared to similar broker orchestrators. Therefore
the design should take steps to keep the duration of these operations low.

Responsiveness

Even if the provisioning operations would be implemented as high-speed as possible
they would still take minutes to complete. Therefore this system should respond before
that by having for a response time of never more than two seconds. This is especially
relevant for the frontend to make the system not appear being stuck. Instead the current
state of each operation should be communicated to the user.

19

3 System Design

Low Resource Overhead

As an edge-computing orchestration framework which is designed to have be lightweight
because its just a helper for the actual running applications, this introduced multi-cloud
functionality should only add minimum overhead in terms of CPU usage, memory
usage and network activity during normal operations.

Operational Cost Effectiveness

Since operating on cloud instances incurs already significant costs. The system of
creating and managing these resources should be not be wasteful and only consume as
many cloud resources as it really needs for operating.

Security

By adding cloud computing to an edge computing network it becomes necessary to
communicate between those components via the public internet. Therefore security
measures have be taken as the system is not operating within a secure environment.
While security considerations should be taken along the whole design process in
particular these following security aspects need to be realized. First of all every
interaction which is not on the same machine has to be authenticated so that only
valid components of the system can interact with each other and the identity of users
is ensured. This identity has then also be checked whether a user is authorized to
perform certain operations especially with regards to operations which are billed by
cloud operators. And thirdly, as the system handles a lot of secret credentials they have
to be kept confidential across all components that interact with them.

Usability

Finally, the graphical web frontend which is the main way users interact with the
proposed multi cloud broker has to be designed in such a way that the user can easily
access with a few click all operations they could initiate.

3.2 Architecture

The proposed system is to be built on top of an existing three-tiered, hierarchical
orchestration framework, consisting of a root orchestrator, cluster orchestrator and
worker node component. Every feature that the multi-cloud system explicitly interacts
with is a separate logical component from the existing components even if part of
the functionality might already be part of the existing system. This separates the

20

3 System Design

concerns and highlights using this approach better where the edge orchestration and
cloud infrastructure provisioning use common resources and functionalities. Besides
extending these tier components, a new separate cloud adapter component is introduces
which is responsible for translating the provider-agnostic operations to the provider-
specific API. This section gives an overview over all the logical subcomponents which
can also be found in Figure 3.2. The pre-existing abstract components of a generic
three-tier orchestration framework are highlighted in the Figure 3.2.

21

3
System

D
esign

Figure 3.2: System Architecture

22

3 System Design

3.2.1 Root Components

Root Orchestrator

The root orchestrator abstracts the root component of an existing orchestration system.
It contains all the root functionality that is needed to manage, schedule, and deploy
micro-services and applications to specific clusters. The main functionalities that it
shares with the multi cloud components are extracted into logical services. These
services are used to interact with users, their authentication and the management of
(edge-computing) clusters.

Multi Cloud Broker

The multi cloud broker component is the singular entry point for all newly introduced
cloud infrastructure related operations on the root tier. Its main purpose is to validate
incoming external requests and then direct the calls to other components, both inside
and outside the root tier, acting as a driver managing the control flow of an operation.
This approach was chosen over a design with multiple entry-points where external
actors could directly address the direct components via an explicit api gateway and
save one hop. However this would result in either the external actor having to do
drive the many sub-calls or the driving functionality being located at the first call
component which not necessarily. With a graphical web interface intended as the main
interaction mode this complexity would fall onto the frontend which is abstracted
by having a single target for all cloud-related requests. An additional benefit is that
this single entry point is the only component which is required to check requests for
authentication using a middleware. Therefore such a middleware can be omitted at the
other components that are not exposed to external actors.

Authentication Service

As the multi cloud broker component introduces a second externally exposed compo-
nent besides the existing root orchestrator both need to be able to handle authentication
with a common secret to avoid duplicate authentication procedures. The best practice
therefore is to have a separate authentication component which hold this common
secret and can create tokens and validate them. Another benefit is that this component
can be reused as a second instance on the cluster tier for cluster level authentication.

Cluster Service

The first components which interacts with a data repository is the cluster service. It’s
purpose is to persist the cluster states in the root component. It can register new

23

3 System Design

clusters, delete existing ones and retrieve a list of all clusters with their states as this
information is needed to manage and interact with them. The persisted cluster objects
should at least support the following attributes for this multi cloud functionality as
depicted in Table 3.1

Field Type Description

Id Identifier Unique primary key for the cluster
UserId Identifier Identifier of the user who registered the cluster
ClusterName Text Unique name of the cluster
IP Text IP address of the cluster
Port Text Port of the cluster orchestrator
ProviderType Text Cloud Provider Name if created via MCB
InstanceId Text Cluster Instance Identifier on Cloud Provider
RegionId Identifier Identifier of the associated Region Info
PairingComplete Boolean Encrypted password for the user’s account

Table 3.1: Cluster Model

Credentials Service

The credential service is for persisting and accessing the cloud credentials and cloud
account dependent data. They are only passed temporarily to the provider adapters
for creating, managing, and deleting cloud resources. Since each cloud provider has
a different credential format, the repository has store them in a generic format like
a binary-encoded file, which can then be decoded again by the respective provider
adapter using their provider-specific implementation. This leads to the following
schema with at least these attributes for the credentials as depicted in Table 3.2

Field Type Description

Id Identifier Unique primary key for the credential
UserId Identifier Identifier of the user who added the credential
Name Text Descriptive display name for the credential
ProviderType Text Name of Cloud Provider for this Credential
Credentials Binary Actual Credentials binary encoded
LastUsedRegionId Identifier Identifier of the region last used with this cred

Table 3.2: Credential Model

24

3 System Design

As these credentials can be used to incur significant costs for using resources they
have to be kept secure and their use has to be restricted strictly with consent. This
design assumes that all infrastructure provider of a root instance are allowed to use all
the registered credentials, as this is exactly what the role is meant for. However when
using one root instance in a larger organization then it can make sense to adapt the
credential authorization from a simple role check to either a user check, so that only the
user who added the credentials can use them, or that infrastructure providers can only
used credentials provided by the same organization. In terms of storage security there
are many different hardware and software based solutions like encryption. In pursuit of
this design being portable it doesn’t specify concrete storage security strategies. Instead
it just assumes a trusted root environment for the database which is risky and has to
be addressed by the operator according to their specific setup requirements. Besides
the credentials themselves the design also caches two non-instance resources which
can be reused across multiple clusters and thereby save time being spent on repeated
setup before the actual computing instance creation and a reduction of cost on billed
resources. The first reusable resources are firewall groups as the exposed ports by the
system components are the same across all across the same component types. The other
one are SSH keys for connecting to the cloud instances when they are created by the
same credentials. Generating SSH key pairs is computationally expensive and should
be stored securely by the clouds secrets management systems as they allow unlimited
access to the worker nodes which can hold potentially sensitive application data as
well as sensitive cluster and worker information. This storage of secrets is relatively
expensive and since these instances are available anyways with the credentials it makes
sense to reuse those keys. These kind of non-instance resources are usually not global
but are only available within a cloud providers region. Therefore they are cached and
reused on a credential and region pair base. This leads to the following schema for a
repository of region information.

Field Type Description

Id Identifier Unique primary key for the region defaults
Region Text Provider Name for the region
ClusterFirewallId Text Provider Id for Default Firewall Rules of a Cluster
WorkerFirewallId Text Provider Id for Default Firewall Rules of a Worker
DefaultKeyName Text Provider Name for Stored Reusable Instance Access Key
ProviderType Text Cloud Provider Name if created via MCB
CredentialId Identifier Identifier of the associated Credential

Table 3.3: Region Info Model

25

3 System Design

User Service

The main purpose of the User Service from the Multi Cloud Broker perspective is the
authorization checking. It is assumed that most of the other user service functionalities
like registration and login are provided by the main orchestration system. A secondary
purpose is to store with the region information containing cloud provider, region, key
name and firewall groups used on the last created cluster by the user. This allows the
pre-filling of the cluster creation fields in the web frontend.

Field Type Description

Id Identifier Unique primary key for the user
LastUsedRegionId Identifier Identifier of the associated Credential

Table 3.4: User Model

Provider Registry

The provider registry is a service registry in the spirit of the micro-service architecture
specifically for registering dynamically multiple cloud provider adapters both the same
or different providers. However to make sure that not just anyone can register as
a cloud provider adapter and get access to the cloud credentials transmitted each
prospective provider adapter has to register with a registration token through the multi
cloud broker. The multi-cloud broker can retrieve the list of available providers and get
the address of an available adapter for a specific provider type.

Reverse Proxy

Besides fetching a provider adapter of a specific type via an explicit call to the provider
registry, calls can also be redirected to the correct by integrating the registry with a
reverse proxy.

Web Frontend

The web frontend provides a graphical user interface for users to manage the system at
the root tier. It connects to both the root orchestrator for most regular orchestration
needs and to the multi cloud broker for the cloud infrastructure management as this is
the singular entry-point for these operations.

Two web pages can be categorized in two main frontend subcomponents for creden-
tials and cluster management.

26

3 System Design

The credentials feature has a list of existing credentials which also have a delete
option if a deletion is possible and an add form where infrastructure providers can
select a connected cloud provider and insert the credentials file. Registration tokens for
additional providers can be generated via a registration button.

The clusters management page has a list of all clusters both manually provisioned
clusters and managed cloud clusters, although only the latter ones can be deleted. A
new cloud cluster creation request can be initiated by completing a cluster creation form
where infrastructure providers have to select from the available credentials, regions,
instance type and image type options. Display For cloud managed clusters there exists
a worker list on the cluster detail page. Each managed worker instance can be here
stopped, started, terminated, recreated or deleted. Similarly to the cluster there is also
a form to create new worker instances however since the region and credentials are
already defined by the cluster the user only needs to choose the instance type and
image types for the new workers.

3.2.2 Cluster Components

The cluster level tier is similarly structured to the root tier except that each cluster
is directly associated with only one provider adapter because of the constraint that
managed cloud clusters consist of only workers in the same region within one cloud
provider. Therefore it doesn’t explicitly require a service registry as part of its sys-
tem design however an implementation may include it. The authentication service
component is directly duplicated from the root tier and is once again used for token
issuance.

Cluster Orchestrator

The cluster orchestrator is the counterpart of the root orchestrator on the cluster tier. It
abstracts all the functionality of an existing edge orchestration framework on a cluster
level which is not shared with the following multi cloud support components. It’s
purpose is to manage, schedule, and deploy micro-services to specific worker nodes, as
well as checking and aggregating the worker nodes state into a complete cluster wide
state.

Worker Manager

The worker manager is the main cloud infrastructure component on the cluster tier.
Similar to the multi cloud broker component on root it is the singular entry-point for all
cloud management requests and drives the control flow by calling other components.
It is connected to a single cloud adapter due to the constraint that all workers have to

27

3 System Design

be in the same region of the same cloud provider. When interacting with this cloud
adapter also it has to provide cloud credentials to it. Since infrastructure requests like
creating or stopping worker nodes originate from the root there’s no need to copy
them permanently to the cluster tier and risk increased exposure. Instead they can be
passed with each infrastructure call from the root to the cluster tier through the trusted
and encrypted connection. The firewall configuration however is triggered by either
an explicit deployment request from a root application provider or internally via a
redeployment and both options don’t have access can to the credentials on root but still
require some credentials to use the cloud provider adapter. Therefore each cluster gets
own credentials which are solely for creating and assigning firewall configurations to
worker nodes of its cluster.

Worker Service

The worker service is analogue to the cluster service on the root tier. It handles the
management of the workers in particular their creation, stopping, starting, termination,
recreation and deletion. These states are persisted in a data repository this service
interfaces. They worker node objects should at least have the following attributes:

Field Type Description

Id Identifier Unique primary key for the worker node
InstanceId Text Worker Instance Identifier on Cloud Provider
IP Text IP address of the worker node
NodeState Text Enumeration storing the nodes state
InstanceType Text Instance Type Identifier of Node on Cloud Provider
ImageId Text Image Identifier of Node on Cloud Provider
Storage Number Selected Storage Capacity for Node

Table 3.5: Node Model

Each cloud node in the database here primarily represents the consent to the costs
that this node can incur by the user who initially created. Therefore these stored
node entries are being kept even if they get temporarily shutdown or permanently
terminated to lower costs. In order to recreate terminated nodes with the same type
this system also stores the configuration attributes for each node. Because each logical
node entry in the database can be realized by multiple actual cloud instances over its
lifetime, the system needs to keep track of each node’s state itself. This state attribute
acts as part of a state machine which only allows the recreation of nodes when they
are currently shutdown to prevent multiple cloud instances for one node and resulting

28

3 System Design

in conflicts that could lead to the inability to manage lost instances. The states and
transitions of between them are visualized by Figure 3.3. Where yellow states represent
the ones which incur costs and red the ones that don’t.

Figure 3.3: Worker Node State Diagram

Job Service

The job service handles the persistence of the states of deployed services as jobs. While
it’s mostly used by the cluster orchestrator for scheduling and state reporting, the
worker manager still needs access to service information for correctly managing the
firewall configurations of the worker nodes. Additionally before shutting down or
turning off worker nodes, the worker manager needs to track the state of their job
redeployments. Therefore the job objects in the repository must include at least these
attributes:

29

3 System Design

Field Type Description

Id Identifier Unique primary key of the job
Port Text Port number used to receive traffic by the job
FirewallId Text Firewall Identifier on Cloud Provider for this job
Status Enumeration Running state of a job

Table 3.6: Job Model

Cluster Registration Service

This is a service which always runs upon startup. It connects the cluster tier to the root
tier at its provided location and establishes the connection between the root and cluster
orchestrator. To authenticate with the root it uses a token issued by the root, so that
only the real registered cluster can connect to it.

Deployment Service

The deployment service handles the deployment on a cluster level to specific worker
nodes. It is assumed that this is part of the core functionality of the existing orchestration
framework. However this specific functionality is here modeled as a separate service
since it has an explicit interaction with the worker manager. It has to notify the worker
manager about deployments in progress so that it can adjust the firewall settings to
either allow traffic to a newly exposed port of a deployed service or restrict traffic to
a port no longer exposed as the service has been undeployed. Because the worker
manager in particular and the multi cloud broker functionality in general should be an
optional addition to an existing edge orchestration framework this interference has to
be kept to a minimum and therefore this call about a deployment is a fire and forget
request, that doesn’t expect a response and is an optional trigger only. Also it can
deploy and undeploy jobs which is needed before turning off or shutting down worker
nodes.

3.2.3 Worker Node

The last pre-existing tier is the worker node. As it doesn’t manage any other components
it only has components that expose functionality to other cloud components or that are
pre-existing components.

30

3 System Design

Node Engine

The main component of a worker node is abstracted into a node engine which receives
deployment requests, runs the jobs locally and reports back their state.

Node Registration Service

The main registration service is the only service of this tier that is explicitly triggered
by a multi cloud component. This service starts on startup after the installation and
attaches a new node with its cluster using a token similar to how the cluster registers
at the root through the Cluster Registration Service.

3.2.4 Cloud Adapter

The cloud adapter is a completely newly introduced parent-component logically entirely
separate from the existing three tier system meaning that while it usually runs beside
the root, it can also run on separate infrastructure or even as a microservice on a
pre-existing node. The cloud adapter purpose is to provide a common interface for the
required operations of a multi cloud broker, breaks them down into and coordinates
them as smaller suboperations which are then forwarded to a concrete provider-specific
suboperation implementation. For security reasons it doesn’t store credentials which
could come from various instead it just uses and deletes.

Provider Manager

Similar to the other multi-cloud components also the adapter has a single entry-point
main component, called Provider Manager, which directs the provider operation by
coordinating the sub operations to other logical and provider-specific components.

Provider Registration Service

Similar to clusters also provider have to register with the root component so that only
trusted ones are called by the root. However these registrations are only unidirectional
since the provider adapters don’t initiate requests themselves to other tiers of the
orchestration system and therefore don’t need to keep track of which systems they are
connected to. This makes it also easier to reuse the same adapter instance for multiple
root system instances by reducing this state keeping.

31

3 System Design

Cloud Service

The cloud service contains all sub operations that interact with specific cloud providers
API and SDKs to create, retrieve, modify or delete cloud resources. It implements these
sub operations using a common provider-agnostic call signature and maps these calls
to concrete provider-specific implementation using the concrete resources. In order to
maximize reuse and minimize the share of the provider-specific implementation this
is the only logical component which is different for each cloud provider. Since these
API calls to the cloud providers have to be authenticated, this component requires the
cloud credentials as an input and then casts them from their generic credential format
to the cloud-specific one.

Installation Service

The installation service handles the second, cloud-provider-independent part of pro-
visioning which is installing and setting up the software components of the system
on new (virtualized) hardware. This design chooses to install all necessary software
from scratch assuming a nearly blank cloud instance. Compared to the alternative of
using images with the software pre-installed storage it offers more portability because
it doesn’t require to provide these custom images for each operating system on each
cloud provider in each region. These images would not only cost effort to provide for
the amount of combinations but each instance also incurs hosting fees at the cloud
provider with no clear responsibility for these costs. The disadvantage of installing
everything from scratch, however, is the time and computing effort spent on installing
the same software over and over again. This can still be avoided with this design
by specifying such an image with the pre-installed software. The installation service
checks before installing each software component if it is already present and if doesn’t
reinstall it. After a successful installation on the new target resources this service
launches the components with the required configuration so that they connect to the
rest of the system.

3.3 Operations

Built on top of these logical components there are these distinct operation that realize
the seven functional requirements. In this section the most important ones are presented
in sequence diagrams with a description on how the logical components interact with
each other. These operations are grouped into six phases of the program use to highlight
similarities.

32

3 System Design

3.3.1 Infrastructure Creation

The most complex part operations are the actual creation of cluster and workers.

33

3
System

D
esign

Figure 3.4: Cluster Creation Workflow

34

3 System Design

Cluster Creation

The creation of a cluster see Figure 3.4 starts in the Multi-Cloud Broker where first
the initiating user is authenticated, the chosen credentials are retrieved if the user has
access to them and checked in the registry whether an adapter for the chosen provider
is available. Only then is a new cluster entry in the repository created and a registration
token for this new cluster generated. Just before the provider adapter gets requested to
create the actual infrastructure using the selected cluster configuration like instance
type, the broker gets if available the cached ids for the cluster firewall and key that
have been used previously with the same account in the same region. Depending on
whether these cached reusable resources exist on the provider, the adapter then either
creates those resources from scratch or uses the existing ones as the parameters to
create the actual virtual machine instance for the cluster along with the passed cluster
configuration. As soon as the actual provider API responds with the identifier of the
newly created instance this request completes and returns the identifier to the initiating
broker. The multi-cloud broker first completes the request as now the most likely failure
scenarios regarding instance creation itself succeeded and finally updates the cached
region defaults, stores the provider specific information to the cluster entity and sets the
region as the users’s last used one. While the adapter waits for the provisioning of the
virtual machine to complete, it already creates checks or creates another firewall for the
future workers of the new cluster. Additionally it creates a separate cloud provider user
account which is solely used for creating job-specific firewalls and attaching them to
worker nodes. Therefore these credentials can safely be stored on the cluster so that it
retains the autonomy of (re-)deploying jobs within the cluster without interaction with
the root. Once the created virtual machine is ready, the installation service connects
to the virtual machine using the previously created key and installs all the cluster
components with their necessary software and starts them up using parameters from
the multi-cloud broker. Upon start-up of the cluster the cluster registration service
attaches itself with its address to the root using the registration token, which completes
the creation of a cluster.

Worker Node Creation

35

3
System

D
esign

Figure 3.5: Worker Creation Workflow

36

3 System Design

The worker node creation starts as shown in Figure 3.5 similarly in the multi cloud
broker as the user won’t interact directly with the cluster’s worker manager. As the
cluster already exists containing the region info which in turn links to the credentials
they can simply be retrieved from the credential service using the information without
needing to select the credentials explicitly. Thereby the same credentials are used for
both the cluster and all its provisioned worker instances reducing the risk of inaccessi-
bility when credentials are retracted. After all this necessary cached information has
been gathered on the MCB it is then forwarded in a worker creation request to the
worker manager on the cluster. There the worker manager mirrors the behavior of the
cluster manager on root by registering new worker nodes using the Worker Service
and creating registration tokens with the Authentication Service. Each newly created
worker database entry has then added the worker configuration settings and its state
set to booting so that it’s in the correct state for later attaching. Then the create worker
request gets forwarded a second time now to the Provider Manager. It fetches like on
root level the key pair although it can’t create a new one. It also doesn’t have to prepare
firewalls and user accounts as they have all been already created upon cluster creation.
If the creation from the cloud service succeeds then the provider sends a response
back to the worker manager with a list of the just created instanceIds. These are then
added to the node database entries. In the meantime provider waits for the instance to
become up and running. When the instances are finally ready they get the worker code
installed and then upon start of the node the node registration service attaches via the
cloud orchestrator using the cloud service.

3.3.2 Deployment

While deployments are separate from resource management they still require some
adjustments for security reasons to adapt the firewalls of a worker node. So that only
the necessary ports are exposed to public internet. These adaptions are triggered
unlike all other operations not explicitly via the multi cloud broker but instead by the
deployment service itself. In order to keep the multi cloud components an optional
part these triggers are sent without waiting for responses and the changes inside the
deployment service are kept to a minimum.

Assigning Firewall

Upon deploying the deployment service sends the assigning trigger to the worker
manager with the chosen job and node ids. The worker manager receives this request
and then first retrieves the needed ports for the job from the job service. Using the
cluster user credentials, that have been set during cluster creation, the worker manager

37

3 System Design

requests the provider adapter to create a new firewall with those ports if the job
doesn’t already have an existing firewall. The provider adapter calls the create firewall
operation from the cloud service and returns the firewall id. This firewall id is then
saved for the job so that it can be reused on future deployments. After the optional
creation the firewall then needs to be assigned to the node, where the job is deployed
to. Therefore the nodes cloud instance id is retrieved and then sent to the provider who
executes the assign firewall to instance operation with the cloud service. Once this has
succeeded then the firewall configuration is adapted for the node to the new job.

Unassigning Firewall

During the deletion of a job as part of undeploying it is checked for which nodes that
previously had the job deployed there is no longer a single instance of this job. For
these nodes is then an unassigning request to the worker manager triggered containing
the node and job id again. It simply retrieves the node from the worker service for the
node’s cloud instance id and the job for the job’s firewall id. Using these two ids and
the cluster user credentials again the worker manager calls the provider who performs
the unassign operation with the cloud service.

3.3.3 Infrastructure Scaling

The scaling down and up of previously created and therefore consented workers is in
certain parts pretty similar so this section will first show how the worker manager gets
the call and then go into the different operations individually.

Set Worker Status

The scaling is from a root perspective a simple setting of a worker nodes status to either
STOP, RESTART, TERMINATE or RECREATE. Traditionally the root level of orchestra
had no detailed information about individual worker nodes to keep the independence
between the tiers. However when managing and provisioning the infrastructure of a
cluster itself then we need to show these individual nodes on the root level. On root
level the cluster is received from the cluster service along with the credentials and
region info. From there the set status request is forwarded to the worker manager
where they are then handled differently depending on the selected status. The result
of the operation is then returned again as a status back to the root to show whether it
succeeded.

38

3 System Design

Stopping, Terminating & Deleting Worker

Deleting a worker requires the node also to be terminated first before it gets deleted.
Therefore all three operations can be described together. All of these turning off worker
operations start by setting the node to a TERMINATING state so that it is no longer
counted as an active node and can no longer accept new deployment instances. Next
all currently running jobs of the node are being un- and redeployed by the deployment
service to the now remaining nodes of the cluster or in case of not enough resources
back on a global root level. After the undeployment has been triggered the node can
then be stopped or deleted on the provider via the provider manager using the stop
or delete provider operation. The delete operation is used for both just terminating
the worker instance and permanently deleting it. Once the provider has confirmed the
successful stopping or termination the node status is set accordingly to the STOPPED
or TERMINATED state. In case the node should be completely deleted and not just
stopped or terminated, then the node gets deleted in the repository by the worker
manager as well using the worker service. This means that application provider can
no longer recreate a completely deleted instance. A completely new one has to be
approved again by the infrastructure provider. Therefore only those can delete workers
permanently.

Restarting Worker

Restarting a currently stopped worker begins with the reissuing of a new registration
token by the authentication service. With that the restart request is directly forwarded
to the Provider Adapter. There cloud service first triggers the restart instance cloud
operation and then already responds back to the worker manager. Next, asynchronously,
the restart of the node components is prepared by retrieving the key to access the worker
instance and then waiting for the cloud instance to become ready with an external IP
address. As soon as it is ready the installation service is called to connect to the instance
and there restart the node component using the new IP address. The node then starts
with the node registration service and just like on creating a worker it connects to the
cluster using the reissued registration token. Upon this registration the node becomes
ACTIVE and ready to accept jobs again.

Recreating Worker

After terminating an instance it only exists anymore in the cluster’s node repository
but no longer in any form on the cloud. Therefore the recreating is a mix of the worker
restart and creation operation. First it reissues a token again via the Authentication
Service, then it retrieves the node configuration information with the Worker Service

39

3 System Design

and then it sets the node to booting again. The stored configuration information from
the initial worker creation is then reused for the input to trigger the same create worker
operation of the provider which is explained in more detail in its section. The returned
new instance id of the worker is then set as the current one to the node in the repository.
Then the attaching process is the same as soon as the node is running with the node
components as in restarting and creation of a worker.

40

4 Implementation

This chapter presents an MVP implementation for the previously introduced design
of a multi-cloud infrastructure broker. It is applied to the Oakestra because its low-
overhead, heterogenous approach is uniquely fitting to this design. This chapter first
4.1 introduces and justifies the chosen technologies for the implementation of the
design. The following section 4.2 maps the operations and logical components to the
actual endpoints and components in the implementation with a particular focus on the
integration into the existing Oakestra implementation. Next in section 4.3 the general
implementation design of the server structures are presented. And finally there’ll be a
more in-depth look into the design of the Provider Adapter so that they can easily be
implemented to support more cloud providers.

4.1 Technologies

4.1.1 Server

Golang Gin Server Almost all of the newly introduced components are implemented
using the Golang [9] programming language. It was chosen due to it’s high perfor-
mance, low-overhead design and robust lightweight multi-threading using Goroutines.
Therefore it is widely used in networking and cloud computing. As for the HTTP
server and networking frame framework the choice went to Gin [41] as one of the two
most used frameworks since Gorilla Mux was at the time of the start of the project in
an archived state and only has been recently revived [44].

Python Flask The only server written using a different language is the JWT Generator
with Python Flask as it’s used in most of the Oakestra framework including some token
issuance functionality which was extracted from the main components and therefore
could be reused in large parts without breaking changes.

4.1.2 Technologies

Consul For the service registration and discovery functionality Consul was chosen as
the solution. A great benefit of it, is the option to combine it in the future with Consul

41

4 Implementation

Template which allows it to work with the lightweight API gateway NGINX.

MongoDB Apart from being already used as the existing database, mongoDB [13] is
the optimal choice for an optional component like this multi cloud broker. It allows
with its document-oriented design to create collections and entries without the need
for database migrations. Therefore the main oakstra components don’t even have to be
aware of these multi cloud components.

Docker In order to allow the system to run in a multitude of environments each
component on root and cluster level is virtualized as Docker containers. Along with
docker compose they are easy to run either by building or pulling an image.

JWT As a result of so many different components interacting in various different
locations over the public internet they need to be properly secured. For this JSON Web
Tokens (JWT) were chosen as they are the industry standard and widely used inside
Oakestra [43]. There even existed already a registration mechanism on cluster level to
the root which has been extended to work on the node and provider registrations. Also
it is used to authenticate individual users interacting with the root system.

4.2 Implementation Mapping

This section maps the in the System Design to actual components and endpoints in the
implementation. It especially details the separation of functionality within a tier.

4.2.1 Root

Root Orchestrator

The root orchestrator is the collection of all pre-existing Oakestra root components
and therefore consists of several components like the service manager and scheduler.
Although only the root database in connection to the system manager are the only
directly interacted with components as part of the multi-cloud functionality. The
database is shared among both the multi-cloud broker component and system manager
with each of them implementing their respective database interfaces for the needed
functions. This database contains all the user, cluster and credentials data. The
root orchestrator uses them directly for multi-cloud purposes to register clusters and
indirectly by handling the login of users and deployment of services which can trigger
firewall changes in the cluster tier. Apart from bugfixing and minor changes the only
big change needed was the extraction of the JWT issuance to a dedicated service,

42

4 Implementation

which is a good idea independent from the multi-cloud functionality but a necessity to
authenticate incoming requests with the broker as a second user entrypoint for root.

Multi-Cloud Broker

The main component for multi-cloud functionality is the broker itself which is the
only entrypoint for infrastructure-related requests. It handles the functionality of
the same named logical component in handling all incoming requests, orchestrating
and delegating all steps on the root level. Besides that it also implements the whole
credentials service with the credentials and region caching data as well as most cluster
objects related interaction, aside from registering them, using the root database. It also
interacts with the users in the database by setting the last used region. While most
authentication handling is part of the system manager the broker also uses the JWT
generator to generate and validate registration tokens for provider adapters. [33]

Consul Registry

The consul component which is so far exclusively used for provider registration, but
should be extended to also register internal root services, is kept stock from the Docker
image. Only the Multi-Cloud Broker interacts with it to attach providers after handling
the registration process ahead on its own and to retrieve provider adapter server
instances.

JWT Generator

The JWT generator implements the Authentication Service functionality by generating
a private signing key and then issuing JWT tokens to other root services which can
be validated via the public key it provides. It is a complete custom implementation
which offers token issuance and public key retrieval as http endpoints and maps
them to the jwt_flask_extended library functions. The introduction of this generator
replaces the previously used symmetric token issuance using the same library in the
root orchestrator’s system manager. The change to asymmetric JWT signing is needed
to allow both system manager as well as the multi cloud broker to validate the tokens
in their respective middlewares without having to dangerously share a common shared
or private key. [35]

43

4 Implementation

4.2.2 Cluster

Worker Manager

The main multi-cloud component on the cluster is again combined into a single-entry
component called worker manager which manages all the worker related infrastructure
concerns on a cluster level. It is not just called from the system manager who authen-
ticates, interprets and relays worker requests on the root level to the cluster tier but
it also receives requests directly from the cluster manager when firewall changes are
needed. The worker manager itself contains the logical functionality of the worker and
job services which act as a repository for those objects in the cluster database. [34]

Cluster Orchestrator

Similarly to the root orchestrator it is also made up of four main components however
with an adapted functionality. The multi-cloud components again only interact with
the cluster database and cluster manager directly. However upon notification of the
schedulers result the cluster manager also now sends a firewall adaption request to
the worker manager so that it is configured for the newly deployed service. Also in
reverse it triggers the removal of a firewall if the last job instance of a type is being
undeployed. Since the worker manager can also stop or terminate workers and to
ensure continual uptime of services the cluster manager also offers a new endpoint to
redeploy all jobs of a given node. Besides the mainly deployment related changes to
the cluster manager the introduction of creating workers also required the adaption
of the existing cluster registration to the root a new node registration to this cluster
manager. For this task exclusively as of now the cluster tier gets the copy of the roots
JWT generator to generate and validate the node registration tokens it issues.

4.2.3 Node

The node tier stayed almost the same with the incorporation of the logical node
registration service into the Node Engine. It basically just adds the node registration
token as a parameter and sends it as part of the handshake with the cluster.

4.2.4 Cloud Provider Adapter

The four logical components inside the provider tier are combined into a single cloud
provider server which contains all those functionalities. The provider registration and
installation services are simply realized as service as described in the server structure
4.3. The cloud service has a unique architecture and integration to allow for maximum

44

4 Implementation

reuse and more in-depth explained in the provider implementation section 4.4. [30]
[29] [32]

4.3 Server Structure

In total the multi-cloud functionality introduces three completely brand new go gin
servers into the system with the multi-cloud-broker, worker manager and cloud
provider. While they each serve very functionality the general structure of the server
is the similar, especially the first two, and therefore will be examined together. Most
custom structures of the cloud provider server are examined in the next section 4.4.

4.3.1 Main & Server

The main.go file is only for solely for initializing the server, which has its initialization
function in server.go. This server initializes there all the special low-level clients which
are used across the whole application which is in this case is a generic http client and
the mongoClient connected to either the root or cluster database. Finally the server
creates a router and runs them on the chosen port.

4.3.2 Router

The router itself is configured in router.go along with controllers, services, repositories
and clients. The main functionality of the router of routing the requests to concrete
functions is implemented using the routers GET(), POST() and DELETE() functions
which each take in a path with parameters /path/:parameter/subpath and a function
from a controller which handles the request using the gin.Context.

JWT Middleware Lastly on the multi cloud broker server the router also initializes a
JWT middleware and sets the JWT public key it received in a setup key retrieval request
inside the router. This middleware simply checks when a JWT authorization bearer
token is provided if it’s valid using the public key and parses it to retrieve the tokens
data which is primarily the signed identity as the sub claim and can be extended to
also check roles. The token and identity are then attached to the context via Set(key
string, value any) before the request are forwarded to the controllers where those
two attributes are now available through the context.

45

4 Implementation

4.3.3 Controllers & DTOs

The controllers’s purpose is to receive the incoming requests, process the inputs,
calling the respective service functions and then respond with the results or http
errors. The requests are typically grouped into controllers by their first path component
in the url. In the requests implemented there are three sources of inputs that are
getting processed. First values from the middleware like identity that have been
processed there and stored in the context. They can be mandatory or optional and
have to be casted from any context.MustGet("identity").(string). The second
source of input are path variables that are passed via the URL and caught via the
router to the context where they can be read (e.g. context.Param("workerId")). And
lastly input from the requests body formatted in json which can be bound to an
empty pointer of the expected object err := context.ShouldBindJSON(&requestBody).
Typically these object types are defined as Data Transfer Objects (DTO) structs which
contain a json key that can be different to the attribute name (e.g. ClusterName
string j̀son:"cluster_name"`). When all inputs are retrieved they are then passed
as parameters to specific service functions which do the most work. These services are
held within the controller objects. Once these service functions conclude they provide
a result either in form of a response object (mostly DTOs) and potentially raised errors.
A response with either the DTO or error message are then sent along with a http status
code via the context as a JSON context.JSON(http.StatusOK, responseObject) or
string context.String(httpError.StatusCode, httpError.Error()).

The multi-cloud broker has the following controllers: ClusterController,
CredentialController, ProviderController and WorkerController.

The worker manager has only these two controllers: firewall and worker.
The cloud provider has these controllers: AttachController, FirewallController,

OfferController and WorkerController.

4.3.4 Services

The core of the orchestration is achieved by services. They can exclusively focus on
that without need to bother about http request and response parsing (controller) or
actions on others (clients, repositories). It handles this control-flow and operates on
input, intermediate and response values. However for simple requests like creating
credentials they have been omitted as there are no complex flows but instead controllers
call directly the repository. Services themselves usually don’t contain other services but
they store clients and repositories. The workflows inside these services are for the most
part just the operations from System Design 3.3 from the Multi Cloud Broker, Worker
Manager and Provider Manager components.

46

4 Implementation

4.3.5 Clients

Clients are primarily interfaces for request to other components or certain library clients
(consul). They contain the code to perform these requests with url creation, request
encoding, response decoding and error handling so that the functionality of these
requests appear as easy black boxes from the services point of view like local function
calls.

The clients include on the multi-cloud broker Consul, JWTGenerator, Provider,
SystemManager, and WorkerManager.

The worker manager has only two clients: cluster-manager and cloud provider.

4.3.6 Repositories & Models

Repositories interface the MongoDB collections. They are each initialized with a
mongoClient on which the collection is retrieved and stored as the repository attribute
like this:

func NewClusterRepo(mongoClient *mongo.Client) ClusterRepo {
return ClusterRepo{
clustersCollection: mongoClient.Database("clusters").Collection("clusters"),

}
}

Each database operation is then interfaced here with input validation mapping to filters
and updates. The results from the database are then either directly returned as model
objects, gathered from cursors on list operations, or only returned as an optional error
to indicate whether or not the operation worked.

4.4 Provider

4.4.1 Architecture

The overall structure of the provider server is pretty similar to the multi-cloud broker
and the worker manager with its controllers and services. A key difference however is
that the provider-specific clients (like AWS EC2Client) can’t be created at start-up as
they for the most part require authentication credentials to initialize which are only
provided by the requests. This would mean in a traditional set-up that upon one
request from a worker manager or the multi-cloud broker which triggers multiple API
calls to the cloud provider that on each one of them they would need to initialize a
separate client which is quite inefficient.

47

4 Implementation

Instead, at the beginning of each request, the handling services instantiate the
provider-specific, credentials-dependent provider service from a factory type which
takes the credentials as an argument and creates the provider service with the provider-
specific clients. Since the request handling services are part of the provider-independent
provider manager logical component, they can’t contain concrete provider factories.
Therefore inheritance is used via an abstract interface which defines all needed cloud
operations in provider-agnostic functions representing the cloud service from the design
3.2.

Together this forms an abstract factory pattern [designPatterns] as depicted in
Figure since the handling services expect any provider factory which then creates the
provider-specific service.

Figure 4.1: Abstract Factory Pattern

The is factory is passed through the whole structure starting from the server via the
controllers to the handling services. This allows the whole server to be decoupled from
the provider-specific code and only take the factory as a single parameter. Using the
decoupling the common server can be a separate library in form of a go module that
can be imported by provider implementations. These then only need to implement

48

4 Implementation

a provider specific service implementing the specified functions, a factory which can
instantiate this service and a base application that calls the creation of the server from
the library. As a result there’s very little implementation overhead when creating a new
adapter for another cloud provider. With only small adaptions in the router and server
input it would be even possible to host multiple provider adapters in one application
using the same abstract factory pattern.

4.4.2 Interface

Since all providers need to implement the uniform interface for the factory and service
these have to be both generic enough to support any provider and specific enough
to provide all the information needed by the concrete implementation. Therefore this
interface is very generic and on a high level leaving all these details to the provider
service implementations. In this subsection the interface’s function signatures are
provided and the mapping described for the AWS and GCP providers showing how
they differ and how these differences are handled using this architecture.

Instance Management

CreateInstances(
instanceCount int,
instanceType string,
imageId string,
diskSize int,
keyName string,
firewallId string,
clusterName string,
workerInstances bool,

) ([]string, error)
StopInstance(instanceId string) error
RestartInstance(instanceId string) error
DeleteInstance(instanceId string) error
WaitForInstanceRunning(instanceId string) (string, error)

The instance functions represent the four actions on instances of creating and deleting
them as well as stopping and restarting instances. All very common features for cloud
computing instances and needed for the multi-cloud broker operations. On AWS they
are realized with the ec2.Client and on GCP with the compute.InstancesClient.

49

4 Implementation

CreateInstances first of all takes in all the instance configuration attributes from
the operation itself like instanceType, imageId and diskSize. Then it is assumed
that firewall and keys to connect to instance later on can be configured separately
and reused so therefore just ids or names are needed. Then a cluster name from the
root orchestrator is passed as many resources are based on this name and it helps
identifying them along with a flag whether not the created instances represent workers
or a cluster. Finally there is also an instant count which makes it possible to support
batch creations of this complex operation. This operation returns then an array of
strings with instanceIds of the created instances which are provider specific ids and
used for identification with the other instance provider functions.

On AWS this is a very straight forward using ec2.Client.RunInstances although
in order to connect the created Amazon Elastic Block Store start disk it is needed
to bind it correctly to the instance according to the image’s specification as different
operating systems have different boot disks. This information is retrieved by a second
ec2.Client.DescribeImages request.

Using GCP on the other hand the boot disk is directly specified via a boolean attribute
so such a check and specification is not needed here. But in comparison to AWS the
SSH keys are not explicitly stored so therefore it needs to first retrieve the public key
from the SSH secret using the service’s GetKeyPairData function and then add it as a
metadata to the created instance. Two additional differences are that GCP Compute
instances have the firewalls automatically attached via instance tags and they don’t
have by default a public network interface. To be accessible by the internet and have a
public IP address it needs to be configured which can happen as part of the instance
creation request which is compute.InstancesClient.Insert.

StopInstance, RestartInstance and DeleteInstance work pretty similar for both
cloud providers as a simple ec2.Client.StopInstances, ec2.Client.StartInstances
& ec2.Client.TerminateInstances as well as compute.InstancesClient.Stop,
compute.InstancesClient.Start & compute.InstancesClient.Delete requests.

WaitForInstanceRunning is a provider operation which is really different between
both implementations. While AWS provides with ec2.InstanceRunningWaiter.Wait()
a blocking function out of the box which waits until the instance is running and
ready for interaction, GCP doesn’t offer anything like this. Therefore for Google
Compute Instances there’s a retry loop with exponential backoff to get the instance
compute.InstancesClient.Get and check whether the network interface has already
a public IP address assigned. This address is then returned by this operation while
on AWS after the wait has completed the IP address has to be fetched in a separate

50

4 Implementation

ec2.Client.DescribeInstances request.

Key Management

GetKeyPairData(keyName string) (dto.KeyPairData, error)
CreateAndStoreKeyPair(keyName string) (dto.KeyPairData, error)

On both AWS and GCP secret managers are used to store the SSH keys that are used
to connect.

CreateAndStoreKeyPair however is very different between them. AWS offers via the
ec2.Client to generate key pairs itself ec2.Client.DescribeKeyPairs which can then
be directly attached to instances via the key name. This key’s content is retrieved via
ec2.Client.CreateKeyPair and then stored secretsmanager.Client.CreateSecret.

GCP’s SDK itself doesn’t offer the functionality to create new keys or even store
them directly. Therefore the private key is generated with the rsa.GenerateKey
function, marshaled with x509.MarshalPKCS1PrivateKey and stored as pem bytes
pem.EncodeToMemory. The public key is calculated using ssh.NewPublicKey and also
marshaled ssh.MarshalAuthorizedKey. The storing itself has also one key difference
as in GCP the secrets are created blank secretmanager.Client.CreateSecret and only
have the content stored explicitly in secret versions
secretmanager.Client.AddSecretVersion.

GetKeyPairData is very similar to the storing of the secret itself as on AWS the secret
value can be retrieved directly with secretsmanager.Client.GetSecretValue while
GCP again operates over the version secretmanager.Client.AccessSecretVersion.

Firewall Management

CreateFirewall(ports []int, name string, clusterName string) (string, error)
AttachFirewall(firewallId string, instanceId string) error
DetachFirewall(firewallId string, instanceId string) error
CheckIfFirewallExists(firewallId string) (bool, error)

Firewalls are realized again in different way between cloud providers. AWS EC2
has them as SecurityGroup resources that can be directly attached to instances while
Google Compute attaches their firewalls via a tagging system where target tags are
specified on the firewall itself and it is then attached to those instances who have one
of these tags. Both EC2 SecurityGroups and Compute Firewalls are pretty similar with

51

4 Implementation

a configuration of traffic directions, IP protocols, IP & port permissions. However in
AWS the creation ec2.Client.CreateSecurityGroup of a security group and setting
up the ingress rules ec2.Client.AuthorizeSecurityGroupIngress are two separate
requests while on Google Cloud it’s a single one compute.FirewallsClient.Insert.
In the Oakestra case only tcp ports are supported as a parameter.

Attaching and Detaching of firewalls is works on both clouds by adjusting the in-
stance attributes. On AWS this achieved by fetching the instance
ec2.Client.DescribeInstances, changing the SecurityGroups array of string ids and
then updating again the instance attributes ec2.Client.ModifyInstanceAttribute. On
GCP it’s pretty much the same with fetching the instance compute.InstancesClient.Get,
adapting the target tags array and then setting the tags compute.InstancesClient.SetTags.
Since the firewalls use a specific naming scheme it’s necessary to check whether or
not the firewalls exist which is achieved by the CheckIfFirewallExists function using
ec2.Client.DescribeSecurityGroups and compute.FirewallsClient.Get.

Cluster User Management

CreateClusterUser(clusterName string) (json.RawMessage, error)
DeleteClusterUser(clusterName string) error

Despite different user and identity management systems the creation of dedicated
cluster user accounts that can adapt firewall walls independent from the root or-
chestrator is very similar. First a new user account gets created. On AWS they are
regular users iam.Client.CreateUser and on GCP they are called ServiceAccount
iam.IamClient.CreateServiceAccount when they are meant to be used by an API like
this. Then policies are defined which for AWS are pretty complex JSON objects describ-
ing the various permissions with conditions iam.Client.CreatePolicy. On GCP AMI
this is realized via roles describing the permissions iam.IamClient.CreateRole. Once
the policy / role is created it needs to be attached to the user which was previously
created. AWS has for that a single endpoint iam.Client.AttachUserPolicy while on
the Google Cloud the roles mappings are stored in a project-wide policy object. So
therefore this policy object has to be fetched
cloudresourcemanager.Service.Projects.GetIamPolicy, adapted to include a new
binding between the role and the service account and finally once again set
cloudresourcemanager.Service.Projects.SetIamPolicy. Now that the user account
is correctly configured account keys still need to be generated for the cluster to
be able to use them as credentials in the provider adapter. This is achieved by
iam.Client.CreateAccessKey on Amazon and
iam.IamClient.CreateServiceAccountKey on Google.

52

4 Implementation

Offer Retrieval

GetRegions() ([]string, error)
GetInstanceTypes() ([]dto.OfferInstanceTypeResponse, error)
GetImagesIds() ([]dto.OfferImageTypeResponse, error)

Besides the actual management of the multi-cloud infrastructure through the provider
it is also used to retrieve information about offered resources so it can be displayed
uniformly by a frontend.

GetRegions When it comes to regionalization Google Cloud resources are much
more restricted to zones within a region. So in order to have the best consistency
in all resources it was decided to use directly zones instead of regions as interme-
diaries. Therefore the GCP implementation simply retrieves all zones and returns
their names compute.ZonesClient.List. On Amazon the regular regions are used
ec2.Client.DescribeRegions.

GetInstanceTypes is used to get not just the name of available instance types but
also attributes like number of vCPUs, vGPUs and memory which are the performance
constraint attributes of Oakestra. Google provides these details already in the standard
retrieval compute.MachineTypesClient.List of MachineTypes, as they call it. Amazon
offers this detail only in a separate ec2.Client.DescribeInstanceTypes request for
which the instance type names are fetched from
ec2.Client.DescribeInstanceTypeOfferings.

GetImagesIds is basically the same on both cloud platforms with the
ec2.Client.DescribeImages and compute.ImagesClient.List APIs.

Additional Information

GetDefaultUserName() string

Finally there is one more additional info function GetDefaultUserName that enables the
rest of the provider adapter to get the user name that is used on the instances which is
needed to login via SSH. Some providers have default names that can be provided here
and some allow the specification of one in which case the choice is also available there.

53

4 Implementation

4.4.3 Installation

The second major part of the Provider Adapter besides the mapping of operations to
provider-specific code is the installation of the Oakestra and its multi cloud components
to newly created instances so that they can connect.

SSH Connection

The implementation is executed using the Secure Shell Protocol (SSH) [15] and the Go
implementation [8]. A connection is established using the username from
GetDefaultUserName, ip address from WaitForInstanceRunning and the private key
from either
CreateAndStoreKeyPair or GetKeyPairData. Most of the installation is done via bash
scripts that is copied to the using the Secure Copy Protocol (SCP) [24].

Cluster Installation

The cluster installation first copies the cluster_install.sh and installer_function.sh
helper script and then two environment files parsed to via ssh using the cat program.
The cluster installation script first installs using the helper script git, curl and docker
along with docker-compose. Then it clones worker manager repository and the oakestra
one for the cluster orchestrator. Finally it runs both of these docker compose files with
the respective env file.

Worker Installation

The worker installation runs in comparison to the cluster not within a docker container
but as an executable. As it has a significantly lower overhead which is necessary for
less powerful edge nodes. First of all also here it installs all necessary helper programs
with wget, tar, iptables, runc and jq. The net manager installation starts with the
download of the binary and an accompanying installation script which gets executed.
The necessary parameters get set via its configuration JSON file. Then the NetManager
itself gets started.

The same procedure happens then also with the NodeEngine except that here all
parameters are passed as command line arguments which include the cluster’s IP
address and the nodes registration token. Ahead of the start of the NodeEngine there’s
a sleep function of ten seconds called. NetManager usually takes a bit of time to fully
boot up and it is necessary to have it ready when starting the NodeEngine with the
NetManager enabled.

54

4 Implementation

Worker Restart

A worker restart after an instance has been stopped also requires the execution of some
commands again as the stopping has terminated both NodeEngine and NetManager
processes. Since the worker node gets usually a new IP address assigned after restart it
has to be updated as well in the NetManager configuration json using the jq program.
Then both NetManager and NodeManager can be started again just like after the
installation also with a ten seconds pause between them.

55

5 Evaluation

Following the implementation of the multi cloud broker integration into Oakestra
this chapter aims to aims to show how efficient and quick this implementation in
comparison to a similar cloud broker. The focus is the provisioning of new cloud
instances, set up and connection time until they are ready to receive computing jobs as
this is the most significant measurable benchmark.

5.1 SkyPilot Comparison

As a comparison broker and orchestrator SkyPilot [45] was chosen as it’s another novel
approach of implementing the vision of Sky computing. While Oakestra approaches this
topic from the edge computing point of view and extending it by cloud functionality,
SkyPilot is primarily designed for running queued batch jobs and other non-urgent as
cost-effective as possible on the cloud taking full advantage of cloud spot management.
However, since both can provision cloud instance worker nodes organized into clusters
and run services on them dependent on SLA requirements they make this aspect an
interesting and fair comparison under the consideration of their different application
areas and goals.

5.1.1 Key Differences

These differences in goals is also mirrored by key differences in both their offered
functionality and implementation structure. First of all while Oakestra is mixed of
Python and Golang components, with the latter almost exclusively used for the multi
cloud integration, SkyPilot is completely written and running in Python.

Cloud Provider & Credentials Management Similar to Oakestra it allows the instal-
lation of various cloud provider plugins however they are not dynamically bound as
separate server instances. Instead they are part of the SkyPilot installation itself upon
which the to be installed provider plugins can be chosen and even later on extended.
Each provider plugin however relies on the installation of their respective python
command line tool like boto3 for Amazon Web Services and gcloud for Google cloud
Platform. The credentials setup runs via those installed command line clients. All these

56

5 Evaluation

steps are not abstracted in a uniform cloud provider agnostic fashion like the Oakestra
Multi Cloud Broker does with both a service discovery based provider plugin system
to dynamically attach providers without interacting with a provider-specific interface
and storing and managing credentials from multiple users and organizations.

Cluster Architecture The biggest architectural differences of the provisioned clusters
is that on Oakestra each cluster usually and especially using the broker runs on its
own instance consuming hardware exclusively in a strict three tier system. SkyPilot
on the other hand doesn’t dedicate resources only for cluster management but instead
delegates this responsibility to one worker node called the head node. So from a cloud
resources point of view it looks more like a two-tier system than the logical three tier
one. Therefore SkyPilot needs one less instance saving costs while taking computational
power from one worker node.

Immutable Cluster Management A third major difference is the immutability of
cluster configurations on SkyPilot. Once a cluster’s configuration has been defined it
can’t be changed anymore This makes sense as it was designed to dynamically spawn
up resources taking advantage of cloud spot management to execute a finite job after
which those resources can be deleted again. Oakestra coming from an edge computing
background had a number of fluctuating resources it can offer to the system and host
longer-term offloading use cases where it’s not expected for resources to be turned off
or on. This results in various features being available only to the Oakestra broker. First
the number of nodes in a cluster is already fixed upon creation of the cluster and can’t
be scaled up or down. Either the whole cluster is running or it is completely down.
The Oakestra MCB on the other side can dynamically scale by adding workers to a
cluster, stopping or terminating individual ones and restarting or recreating them.

This immutability is not only limited to cluster wide configurations but also to node
configurations but also extends to the port exposure. In SkyPilot all about to exposed
ports have to be defined by during start up and can’t be adapted depending on which
service is currently running. In contrast Oakestra checks as part of the deployment and
undeployment operations whether the firewall needs to be adjusted for these jobs.

5.2 Setup

To ensure the best effort in terms of fairness between the two evaluated competitors
the root tier of both run inside of docker containers. They evaluated operations are
executed, monitored and controlled by a python script.

57

5 Evaluation

However, since SkyPilot is exclusively a Command Line Interface program and
Oakestra is an HTTP server based solution the operations are sent to the broker
respectively via executing commands inside the docker container and as HTTP requests
to the containers port.

Tested have been the version 0.1.0 of the Oakestra Multi Cloud Broker enabled with
extensive logging and the nightly build of SkyPilot from the 23rd September 2023 with
the AWS and GCP plugins installed and a minor adaption to the logging increasing the
accuracy to nanoseconds level. [38]

Additionally the root database of the Oakestra instance has been regularly queried
during the evaluation. Except for that there has been no external influence on them.
Both Oakestra and SkyPilot instances ran on a single, shared, neutral Digital Ocean
server with 2 Intel vCPUs, 4 GB memory and 120 GB disk space running on Ubuntu
22.04 (LTS) in Frankfurt, Germany.

5.3 Testing Procedure

The evaluation python script loops alternating over two very similar procedures im-
plemented for Oakestra and SkyPilot respectively so that they are as comparable as
possible. Each of them logs the start, end, failure and some in between steps as format-
ted rows into a csv log file containing all necessary context information like parameters,
operation and steps. [27]

Set Up On Oakestra the setup builds and starts both the regular Oakestra root
orchestrator and the multi cloud broker components via their respective docker compose
files. The AWS and GCP plugins are started from their pulled DockerHub image in
their pre-librarization state [31]. Once all containers are running the credentials are
added for both AWS and GCP to the broker via the POST /credential endpoint. Then
both provider adapters get registered and attached to the broker. The already running
SkyPilot container is retrieved from the docker demon.

Cluster Creation The cluster creation including the initial workers is executed twice
per iteration. Once from a clean slate without any other clusters running where infor-
mation is being cached. These two clusters are called ColdCluster and WarmCluster.

On Oakestra each cluster creation is split up into two parts first the creation of the
cluster itself via POST /cluster and once the cluster is paired, which is checked by
a direct database query every five seconds whether the pairing_complete flag is set.
The second step is creating the worker via the POST /cluster/<clusterId>/worker
request since the cluster is running independent from workers on a separate instance

58

5 Evaluation

and therefore has a separate endpoint. Just like with the cluster pairing the evaluation
script also waits for the all requested workers to become active by querying the database
for the number of active_nodes of the cluster.

For SkyPilot all cluster operations use the same empty yaml configuration file as
all parameter are instead directly passed as command line arguments. New clusters
including workers are created by running sky launch with the specified parameters.
This command is executed via the Docker python library’s exec_run. Once the com-
mand has successfully completed then a cluster creation finished log entry is created.
Additionally, the internal logs of SkyPilot are parsed to create additional logs to store
the time when the head node is created compared to the other nodes.

Worker Stop & Restart For stop and restart an according status request is sent to the
Oakestra MCB. The restart is once again confirmed by waiting for the correct number
of active nodes of the cluster.

The SkyPilot evaluation uses sky stop and sky launch as apparently the durations
suggest that for a stopped cluster the sky launch command is equivalent to sky start.
Unlike Oakestra which enables the workers fine-grained individually, SkyPilot always
stops or starts the whole cluster.

Worker Termination & Recreation The termination and recreation of worker is very
similar in the evaluation to the previous stop and restart behavior. Except that for
Oakestra the statuses parameter is adapted and the SkyPilot evaluation uses sky down
to completely destroy the instance.

Additional Workers Besides restarting and recreating workers or clusters, Oakestra
offers a unique possibility compared to SkyPilot to create additional workers. The
evaluation in total triggers this thrice as besides the explicit increase in additional
workers in this step it was part of the cluster creation as the second step.

Clean Up Finally in the end both evaluation processes are cleaned up so that the next
iteration is completed without interference. On Oakestra this includes a complete de-
struction of all containers while SkyPilot already gets rid of all data with the command
sky down –all.

5.3.1 Parameters

For the the evaluation the following parameters where executed and evaluated.

59

5 Evaluation

Instance Type Initially the goal was to test both AWS and GCP with the most basic
general purpose instance types t2.micro and e2-micro. However, the latter on GCP
was so slow that most of the times timeouts were triggered. Therefore on GCP it was
evaluated with the one size larger instance type e2-small.

Locations As the locations the region near Frankfurt in Germany where also the
evaluating root server on Digital Ocean is hosted. On AWS it’s eu-central-1, on GCP
europe-west3 and since Oakestra uses zones for GCP europe-west3-c.

Images The images have been chosen to be the default ones on all four configurations.
For Oakestra this means on AWS a basic Amazon Linux 2 image and on GCP a Debian
11 image. SkyPilot uses its own default images Google, Deep Learning VM, M113,
Debian 11, Python 3.10 and Deep Learning AMI GPU PyTorch 2.1.0 (Ubuntu 20.04)
which have a lot of Python Deep Learning kits like NumPy and SciPy already prein-
stalled while the ones Oakestra tested with were pretty blank.

Node Counts The evaluation was carried out with a single worker cluster, to see how
the head node performs in SkyPilot. Along with cluster with a worker count of two,
five and ten to get an indication how the provisioning times correlate with number of
worker nodes.

Miscellaneous Besides these specific parameter settings the disk size was set to 60
GB in general as these Python installed SkyPilot default images are relatively big. And
in general both frameworks Oakestra and SkyPilot were evaluated for both AWS and
GCP provider.

5.4 Data Preprocessing

The raw data was delivered as csv files containing individual timestamps with context
about operation, configuration and run identifiers. As cloud provisioning is very likely
to result in failures from time to time which can be resolved by rerunning operations
also a lot of initial errors occurred. The amount of retrying and error handling that the
evaluation script is more limited than what an end user resolve. Therefore the evaluation
run itself was stopped multiple times and resumed with continuing higher iteration
numbers. From there it has been preprocessed into durations for each operation on
each run. Failures resulted in either 0 values, negative values or impossible high values.
There has been one small bug in the Oakestra evaluation where the no timestamp
was created for the AddWorker start. This has been resolved by just using the previous

60

5 Evaluation

finished timestamp from the previous RecreateWorker timestamp which was logged
directly before a 30 seconds delay and the start of the adding of workers. Therefore this
timestamp was used with just 30 seconds subtracted. Another distinction worth noting
is that for the workers there were always two types finished timestamps Finished and
WorkerReady with the latter showing the time when the worker node was up compared
to when the creation was completed also on root side. Especially on the SkyPilot
evaluation this was important as finished was also logged if the operation failed so
using this extra timestamp all failed tries were identified.

As a final step of the preprocessing all failed attempts had to be filtered out from
averages as well as unusually high durations which occurred occasionally but were so
big as to influence the averages significantly but also rare enough to have them as clear
outliers and no regular variance.

5.5 Results

Analyzing the resulting durations two very interesting conclusions have been drawn
first on the parameters influence of the parameters of cluster size and cloud provider.
The second analysis is on how the operations compare in duration between them with
the same configuration. The raw data and all processing steps have been made available
on GitHub. [28]

5.5.1 Influence of Cluster Size & Cloud Provider

The first graph Figure 5.1 is combining the average cluster creation duration including
worker creation for both Cold Cluster and Warm Cluster starts and comparing it
primarily with start durations of the same cloud provider and platform set up but with
different number of worker nodes. The goal is to find whether there is a correlation
between creation duration and number of nodes.

Given the modest sample size and large variance of start up times with the same
setup due to the large number of factors inside a datacenter that can influence them,
there can only be one such correlation be drawn. The start up time for a single cluster
using SkyPilot is about 42-45% faster than clusters with two or more worker nodes. A
quick look into the raw data confirms the theory that this is due to the head node being
setup first in SkyPilot just like the cluster instance in Oakestra. However since SkyPilot
doesn’t create a separate instance for the cluster this first created head node is the only
one created in this operation and therefore there is no second step cutting the start up
time almost in half.

From the same figure can also a comparison be drawn between SkyPilot and Oakestra
with the same provider and how the same platform performs with different cloud

61

5 Evaluation

Figure 5.1: Provider Platform Duration Evaluation

providers. On AWS the two platforms are about the same speed and on GCP SkyPilot
is a bit faster. While these comparisons between platforms always use the same
instance type it was observed during the evaluation preparation that the type has
a very strong impact on start up time. For example the e2-micro machine type on
Google Cloud Platform was so slow setting up that SkyPilot always timed out the
operation. In conclusion it can be said that the multi cloud broker implementation from
a performance point of view is competitive with the proven SkyPilot. It seems that the
overhead of each is to some point small even though both do heavy long lasting setups
once the the instances are reachable. However the speed of the cloud provider seems to
be the biggest determining factor.

5.5.2 Comparison of Operation Durations

A second analysis in Figure 5.2 compares the duration of various instance creations for
all node counts now that we have determined that except for the single node cluster on
SkyPilot they are about the same with the same provider and platform setup.

It shows that there is no significant speed difference between a cold and warm start
despite there being a lot more setup work on Oakestra on the first start like creating
key pairs, firewalls and user accounts.

Surprisingly the duration for restarting a stopped cluster or worker and recreating a
terminated one is about the same in SkyPilot while in Oakestra it is about 45-55% slower.
The reason for that being that worker nodes get installed from scratch on Oakestra, it

62

5 Evaluation

Figure 5.2: Operation Duration Evaluation

hasn’t been determined why this difference was not observable. The Oakestra exclusive
feature of adding new workers to existing clusters is only marginally slower with about
7% than recreating a terminated worker. It is however still important to have these two
options since the recreating can be triggered by an application provider and not only
by an infrastructure provider user.

In conclusion Oakestra is from a speed point of view competitive with SkyPilot while
offering many unique features targeted to an edge computing application. The results
between operations were about as expected with those operations with more heavy
lifting taking longer than lightweight operation and in a range as expected.

63

6 Conclusion

6.1 Final Remarks

The in this thesis presented multi-cloud broker approach for an edge orchestration
framework offers a new, easy and provider-agnostic approach to provision cloud
resources and integrate them in existing systems. It helps bridging the gap between the
edge and the cloud coming from an edge-first orchestration without the often strong
underlying assumptions of cloud orchestration frameworks. The modular design of
the provider plugins with a common generic interface requiring only the minimum
set of features needed prevents vendor lock-in by making it easy and flexible to create
and manage supporting cloud resources from multiple cloud providers. It doesn’t
require knowledge resulting in another step towards the vision of sky computing.
The evaluation showed that it can rival established novel sky computing frameworks
in terms of provisioning speed while providing unique features like scaling worker
nodes with restarting or recreating nodes that have been previously consented to before
stopping or terminating by infrastructure provider users. Additionally it automatically
reconfigures firewall configurations for the currently deployed services.

6.2 Future Work

The implementation provides already the necessary functionality for it to work properly
but certain improvements haven’t been completed at the time of this thesis submission.
This is includes especially security related topics like encrypting communication with
TLS, access control using organizational accounts and the planned frontend interface
even though except for the quote offer endpoint all necessary APIs are ready. Besides
the immediate completion there are several ways this architecture was designed to
incorporate future additions. First and foremost the number of supported cloud
providers can be increased from the currently only two to more using the generic
interface and the common library. The biggest future potential lies in the possibility to
integrate the multi cloud broker with the scheduler who could then within a certain
policy automatically create and terminate worker nodes for clusters depending on
demand instead of like currently needing a manual trigger to scale from any user.

64

List of Figures

3.1 Use Case Diagram . 16
3.2 System Architecture . 22
3.3 Worker Node State Diagram . 29
3.4 Cluster Creation Workflow . 34
3.5 Worker Creation Workflow . 36

4.1 Abstract Factory Pattern . 48

5.1 Provider Platform Duration Evaluation 62
5.2 Operation Duration Evaluation . 63

65

List of Tables

3.1 Cluster Model . 24
3.2 Credential Model . 24
3.3 Region Info Model . 25
3.4 User Model . 26
3.5 Node Model . 28
3.6 Job Model . 30

66

Bibliography

[1] A. Bahtovski and M. Gusev. “Cloudlet Challenges.” In: Procedia Engineering 69
(2014). 24th DAAAM International Symposium on Intelligent Manufacturing and
Automation, 2013, pp. 704–711. issn: 1877-7058. doi: https://doi.org/10.1016/
j.proeng.2014.03.045.

[2] A. Barron. Pizza as a Service. 2014. url: https://www.linkedin.com/pulse/
20140730172610-9679881-pizza-as-a-service.

[3] G. Bartolomeo. “Enabling Microservice Interactions within Heterogeneous Edge
Infrastructures.” PhD thesis. Master’s Thesis. TUM, 15.09, 2021.

[4] G. Bartolomeo, M. Yosofie, S. Bäurle, O. Haluszczynski, N. Mohan, and J. Ott.
“Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge Com-
puting.” In: 2023 USENIX Annual Technical Conference (USENIX ATC 23). Boston,
MA: USENIX Association, July 2023, pp. 215–231. isbn: 978-1-939133-35-9.

[5] S. Chollet and P. Lalanda. “An Extensible Abstract Service Orchestration Frame-
work.” In: 2009 IEEE International Conference on Web Services. 2009, pp. 831–838.
doi: 10.1109/ICWS.2009.14.

[6] V. Cozzolino, L. Tonetto, N. Mohan, A. Y. Ding, and J. Ott. “Nimbus: Towards
Latency-Energy Efficient Task Offloading for AR Services.” In: IEEE Transactions
on Cloud Computing 11.2 (2023), pp. 1530–1545. doi: 10.1109/TCC.2022.3146615.

[7] Docker. Docker Compose. https://docs.docker.com/compose/. 2023.

[8] Google. Go: Crypto SSH. https://pkg.go.dev/golang.org/x/crypto/ssh. 2023.

[9] Google. Golang. https://go.dev. 2023.

[10] Google. Google Cloud Compute Engine. https://cloud.google.com/compute?hl=
en. 2023.

[11] O. C. A. W. Group. OpenFog reference architecture for fog computing. https://www.
iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf. 2017.

[12] S. R. Group. Quarterly Cloud Market Once Again Grows by USD 10 Billion from 2022;
Meanwhile, Little Change at the Top. https://www.srgresearch.com/articles/
quarterly-cloud-market-once-again-grows-by-10-billion-from-2022-
meanwhile-little-change-at-the-top. 2023.

67

https://doi.org/https://doi.org/10.1016/j.proeng.2014.03.045
https://doi.org/https://doi.org/10.1016/j.proeng.2014.03.045
https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service
https://www.linkedin.com/pulse/20140730172610-9679881-pizza-as-a-service
https://doi.org/10.1109/ICWS.2009.14
https://doi.org/10.1109/TCC.2022.3146615
https://docs.docker.com/compose/
https://pkg.go.dev/golang.org/x/crypto/ssh
https://go.dev
https://cloud.google.com/compute?hl=en
https://cloud.google.com/compute?hl=en
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.iiconsortium.org/pdf/OpenFog_Reference_Architecture_2_09_17.pdf
https://www.srgresearch.com/articles/quarterly-cloud-market-once-again-grows-by-10-billion-from-2022-meanwhile-little-change-at-the-top
https://www.srgresearch.com/articles/quarterly-cloud-market-once-again-grows-by-10-billion-from-2022-meanwhile-little-change-at-the-top
https://www.srgresearch.com/articles/quarterly-cloud-market-once-again-grows-by-10-billion-from-2022-meanwhile-little-change-at-the-top

Bibliography

[13] M. Inc. MongoDB. https://www.mongodb.com. 2023.

[14] K. Keahey, M. Tsugawa, A. Matsunaga, and J. Fortes. “Sky Computing.” In: IEEE
Internet Computing 13.5 (2009), pp. 43–51. doi: 10.1109/MIC.2009.94.

[15] C. M. Lonvick and T. Ylonen. The Secure Shell (SSH) Connection Protocol. RFC 4254.
https://www.rfc-editor.org/info/rfc4254. Jan. 2006. doi: 10.17487/RFC4254.

[16] P. López, A. Montresor, D. Epema, A. Datta, T. Higashino, A. Iamnitchi, M. Bar-
cellos, P. Felber, and E. Riviere. “Edge-centric Computing.” In: ACM SIGCOMM
Computer Communication Review 45 (Sept. 2015), pp. 37–42. doi: 10.1145/2831347.
2831354.

[17] S. Maheshwari, D. Raychaudhuri, I. Seskar, and F. Bronzino. “Scalability and
Performance Evaluation of Edge Cloud Systems for Latency Constrained Appli-
cations.” In: Oct. 2018. doi: 10.1109/SEC.2018.00028.

[18] D. Mairiza, D. Zowghi, and N. Nurmuliani. “An Investigation into the Notion
of Non-Functional Requirements.” In: Proceedings of the 2010 ACM Symposium
on Applied Computing. SAC ’10. Sierre, Switzerland: Association for Computing
Machinery, 2010, pp. 311–317. isbn: 9781605586397. doi: 10.1145/1774088.
1774153.

[19] A. Mazrekaj, I. Shabani, and B. Sejdiu. “Pricing Schemes in Cloud Computing: An
Overview.” In: International Journal of Advanced Computer Science and Applications
7.2 (2016). doi: 10.14569/IJACSA.2016.070211.

[20] F. McNamee, S. Dustdar, P. Kilpatrick, W. Shi, I. Spence, and B. Varghese. “The
Case for Adaptive Deep Neural Networks in Edge Computing.” In: 2021 IEEE
14th International Conference on Cloud Computing (CLOUD). 2021, pp. 43–52. doi:
10.1109/CLOUD53861.2021.00017.

[21] Microsoft. Microsoft Azure Virtual Machines. https://azure.microsoft.com/en-
us/products/virtual-machines. 2023.

[22] T. Munich. Oakestra. https://www.oakestra.io. 2023.

[23] S. A. Noghabi, L. Cox, S. Agarwal, and G. Ananthanarayanan. “The Emerging
Landscape of Edge Computing.” In: 23.4 (May 2020), pp. 11–20. issn: 2375-0529.
doi: 10.1145/3400713.3400717.

[24] OpenSSH. Secure Copy Protocol. https://man.openbsd.org/scp.1. 2023.

[25] D. Petcu. “Multi-Cloud: Expectations and Current Approaches.” In: Proceedings of
the 2013 International Workshop on Multi-Cloud Applications and Federated Clouds.
MultiCloud ’13. Prague, Czech Republic: Association for Computing Machinery,
2013, pp. 1–6. isbn: 9781450320504. doi: 10.1145/2462326.2462328.

68

https://www.mongodb.com
https://doi.org/10.1109/MIC.2009.94
https://www.rfc-editor.org/info/rfc4254
https://doi.org/10.17487/RFC4254
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1145/2831347.2831354
https://doi.org/10.1109/SEC.2018.00028
https://doi.org/10.1145/1774088.1774153
https://doi.org/10.1145/1774088.1774153
https://doi.org/10.14569/IJACSA.2016.070211
https://doi.org/10.1109/CLOUD53861.2021.00017
https://azure.microsoft.com/en-us/products/virtual-machines
https://azure.microsoft.com/en-us/products/virtual-machines
https://www.oakestra.io
https://doi.org/10.1145/3400713.3400717
https://man.openbsd.org/scp.1
https://doi.org/10.1145/2462326.2462328

Bibliography

[26] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust. “Mobile-edge
computing architecture: The role of MEC in the Internet of Things.” In: IEEE
Consumer Electronics Magazine 5.4 (2016), pp. 84–91.

[27] M. Schlicker. Multi-Cloud Broker Evaluation Code. https://github.com/michaelschlicker/
oakestra-mcb-evaluation. 2023.

[28] M. Schlicker. Multi-Cloud Broker Evaluation Result. https://github.com/michaelschlicker/
oakestra-mcb-evaluation-result. 2023.

[29] M. Schlicker. Oakestra AWS Provider. https://github.com/michaelschlicker/
oakestra-aws-provider. 2023.

[30] M. Schlicker. Oakestra Cloud Provider. https://github.com/michaelschlicker/
oakestra-cloud-provider. 2023.

[31] M. Schlicker. Oakestra Cloud Provider Image 0.1.0. https://hub.docker.com/r/
michaelschlicker/oakestra-provider. 2023.

[32] M. Schlicker. Oakestra GCP Provider. https://github.com/michaelschlicker/
oakestra-gcp-provider. 2023.

[33] M. Schlicker. Oakestra Multi Cloud Broker. https://github.com/michaelschlicker/
oakestra-multi-cloud-broker. 2023.

[34] M. Schlicker. Oakestra Worker Manager. https://github.com/michaelschlicker/
oakestra-worker-manager. 2023.

[35] M. Schlicker. Simple JWT Generator. https://github.com/michaelschlicker/
simple-jwt-generator. 2023.

[36] A. W. Services. Amazon Web Services: Elastic Cloud 2. https://aws.amazon.com/
ec2. 2023.

[37] H. Shafiei, A. Khonsari, and P. Mousavi. “Serverless Computing: A Survey of
Opportunities, Challenges, and Applications.” In: ACM Comput. Surv. 54.11s (Nov.
2022). issn: 0360-0300. doi: 10.1145/3510611.

[38] SkyPilot. SkyPilot AWS GCP Build. https://hub.docker.com/r/michaelschlicker/
oakestra-worker-manager. 2023.

[39] N. I. of Standards and Technology. The NIST Definition of Cloud Computing. Tech.
rep. Federal Information Processing Standards Publications (FIPS PUBS) 140-
2, Change Notice 2 December 03, 2002. Washington, D.C.: U.S. Department of
Commerce, 2011. doi: 10.6028/NIST.SP.800-145.

69

https://github.com/michaelschlicker/oakestra-mcb-evaluation
https://github.com/michaelschlicker/oakestra-mcb-evaluation
https://github.com/michaelschlicker/oakestra-mcb-evaluation-result
https://github.com/michaelschlicker/oakestra-mcb-evaluation-result
https://github.com/michaelschlicker/oakestra-aws-provider
https://github.com/michaelschlicker/oakestra-aws-provider
https://github.com/michaelschlicker/oakestra-cloud-provider
https://github.com/michaelschlicker/oakestra-cloud-provider
https://hub.docker.com/r/michaelschlicker/oakestra-provider
https://hub.docker.com/r/michaelschlicker/oakestra-provider
https://github.com/michaelschlicker/oakestra-gcp-provider
https://github.com/michaelschlicker/oakestra-gcp-provider
https://github.com/michaelschlicker/oakestra-multi-cloud-broker
https://github.com/michaelschlicker/oakestra-multi-cloud-broker
https://github.com/michaelschlicker/oakestra-worker-manager
https://github.com/michaelschlicker/oakestra-worker-manager
https://github.com/michaelschlicker/simple-jwt-generator
https://github.com/michaelschlicker/simple-jwt-generator
https://aws.amazon.com/ec2
https://aws.amazon.com/ec2
https://doi.org/10.1145/3510611
https://hub.docker.com/r/michaelschlicker/oakestra-worker-manager
https://hub.docker.com/r/michaelschlicker/oakestra-worker-manager
https://doi.org/10.6028/NIST.SP.800-145

Bibliography

[40] I. Stoica and S. Shenker. “From Cloud Computing to Sky Computing.” In: Pro-
ceedings of the Workshop on Hot Topics in Operating Systems. HotOS ’21. Ann Ar-
bor, Michigan: Association for Computing Machinery, 2021, pp. 26–32. isbn:
9781450384384. doi: 10.1145/3458336.3465301.

[41] G. Team. Gin. https://gin-gonic.com. 2023.

[42] Terraform. Terraform. https://www.terraform.io. 2023.

[43] M. N. Vi nals. “Designing Interaction Framework for Multi-Admin Edge Infras-
tructures.” In: ().

[44] A. Vulaj. Gorilla Mux archived. https://www.oakestra.io. 2023.

[45] Z. Yang, Z. Wu, M. Luo, W.-L. Chiang, R. Bhardwaj, W. Kwon, S. Zhuang, F. S.
Luan, G. Mittal, S. Shenker, and I. Stoica. “SkyPilot: An Intercloud Broker for
Sky Computing.” In: 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23). Boston, MA: USENIX Association, Apr. 2023, pp. 437–
455. isbn: 978-1-939133-33-5.

70

https://doi.org/10.1145/3458336.3465301
https://gin-gonic.com
https://www.terraform.io
https://www.oakestra.io

	Abstract
	Kurzfassung
	Contents
	Introduction
	Problem Statement
	Contribution
	Thesis Structure

	Background
	Edge Computing
	Concept
	Types of Edge Computing
	Application Areas

	Cloud Computing
	Concept
	Cloud Providers
	Core Functionalities

	Multi-Cloud Computing
	Definition
	Sky Computing

	Orchestration
	Docker Compose
	Oakestra

	System Design
	Requirements
	System Objectives
	Functional Requirements
	Non-Functional Requirements

	Architecture
	Root Components
	Cluster Components
	Worker Node
	Cloud Adapter

	Operations
	Infrastructure Creation
	Deployment
	Infrastructure Scaling

	Implementation
	Technologies
	Server
	Technologies

	Implementation Mapping
	Root
	Cluster
	Node
	Cloud Provider Adapter

	Server Structure
	Main & Server
	Router
	Controllers & DTOs
	Services
	Clients
	Repositories & Models

	Provider
	Architecture
	Interface
	Installation

	Evaluation
	SkyPilot Comparison
	Key Differences

	Setup
	Testing Procedure
	Parameters

	Data Preprocessing
	Results
	Influence of Cluster Size & Cloud Provider
	Comparison of Operation Durations

	Conclusion
	Final Remarks
	Future Work

	List of Figures
	List of Tables
	Bibliography

